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Abstract—Personal privacy is facing severe threats as social 

networks are sharing user data with advertisers, application 
developers and data mining researchers. Although these data are 
anonymized by removing personal information, such as user 
identity, nickname or address information, personal information 
still could not be protected effectively. In order to arouse the 
attention of people from academia and industry for privacy 
protection, we propose a random forest method to de-anonymize 
social networks. First, we convert the social network 
de-anonymization problem into a binary classification problem 
between node pairs. In order to partition large sparse social 
networks, we use the spectral partition method to partition large 
graphs into a number of small subgraphs. And then we use the 
features of the network structure to train the random forest 
classifier. As a result, candidate node pairs from anonymous 
network and auxiliary network can be classified as matched pair 
by the random forest classifier. Furthermore, we improve the 
efficiency of our solution through parallelizing proposed method. 
The experiments conducted on the real datasets show that our 
solution’s Area Under the Curve (AUC) is 19% higher than 
baseline methods on average. Besides that, we test the robustness 
of the proposed algorithm by adding some noisy data, and the 
result demonstrates that our solution has good robustness. 
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I. INTRODUCTION 
Many social networks such as Facebook and Twitter generate 

a large amount of data every day, which contain many useful 
information such as user profiles, social relationships, and daily 
life etc. Hence, social network analysis has attracted 
researchers’ attention in recent years [1][2][3][4]. Social 
network data are provided to third parties for precise marketing, 
personal recommendation [5], academic research or data 
mining [6]. Nevertheless, the release of social data will lead to 
privacy disclosure and trigger public concerns. Removing user 
ID before publishing data is not enough to protect privacy [7]. 
Researchers have proposed a variety of data privacy protection 
methods and corresponding breach methods, such as k-degree 
anonymity [8] using the graph-based method, where an 
auxiliary graph is employed to de-anonymize social graphs. 
Unfortunately, there are three deficiencies. Firstly, most of the 
attacks only focus on one certain type of network, and the 
proposed method does not suit to other types of networks. 
Therefore, the proposed model is not universal for general 
social networks. Secondly, previous work assume the attacker's 
prior knowledge is limited. Some methods assume that an 
attacker has only one type of information, such as node degree. 
There are also other methods assuming that an attacker only has 
network topology information [9]. Some methods only require 
node attribute information, such as personal profiles, user 
behavior trajectories, and user-generated content information 
[10]. However, attackers usually own more personal 
information than we expected. Thirdly, the modeling of user’s 
feature is more difficult, and automatically extracting features 
to de-anonymize social networks is challenging.  

To overcome these shortcomings, we are aiming to build a 
comprehensive, automated attack model which can alert social 
network providers to prevent potential privacy exposures. We 
use this model to assess the effectiveness of structural 
anonymous methods, so that we can give suggestions to privacy 
protection researchers.  

We are facing three main challenges. First, it is difficult to 
build a generic structure-based feature model. As it is 
challenging to extract features from network structural features 
such as node degrees, link relationships, and neighbor’s 
subgraphs. Second, the sizes of social networks are large, and it 
is difficult to explore network structures in a sparse social 
network. Therefore, how to partition a large graph into small 
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subgraphs is a challenging problem. Third, how to match the 
nodes between anonymous graph and auxiliary graph with an 
efficient and automated way is also a challenging task. Since, 
existing de-anonymize social networks methods need 
labor-intensive work and need a lot of features. We propose an 
automatic method to de-anonymize social networks with 
desirable accuracy and efficiency only with network structures. 

In this paper, we propose a random forest classifier to 
de-anonymize social networks. First of all, we convert the 
social network de-anonymization problem into a node 
matching problem between networks. Then, we utilize the 
spectral partition method to partition large graphs into a number 
of small subgraphs. Subsequently, the features of network 
structures (such as node degrees, node clustering coefficient 
and eigenvector centrality) are used to train the random forest 
classifier. Thereafter, the candidate node pairs of the 
anonymous network and the auxiliary network are classified as 
matched pairs by the classifier. Then, we parallelize the 
proposed algorithm to improve the efficiency of the solution. 
Finally, we test the robustness of the proposed algorithm by 
adding some noisy data. The experimental results demonstrate 
that the proposed algorithm is effective and robust. To 
summarize, the main contributions of this paper are as follows: 

1. We propose a random forest classifier to de-anonymize 
social networks, which is able to identify the matched node 
pairs automatically and make the attack model more efficiently. 

2. We extract node degree, node clustering coefficient, and 
eigenvector centrality features from network structures, and 
employ these features to train the random forest classifier. 

3. We utilize the spectral method to partition large social 
networks into small subgraphs, which makes our proposed 
method to be parallelable with multiple processors. 

4. We verified the effectiveness of our proposed algorithm 
with real dataset. Test result shows that our solution’s Area 
Under the Curve (AUC) is 19% higher than the baseline 
methods on average. The robustness of the method also proved 
by adding noisy data in the test dataset. 

The rest of this paper is organized as follows: Section II 
introduces related work. Section III defines some terminologies 
and formulates a de-anonymization problem. The proposed 
scheme for de-anonymizing social networks is described in 
Section IV, and the test of proposed algorithm is covered in 
Section V. Finally, we conclude the whole paper and outline 
possible future work in Section VI.  

II. RELATED WORK 
In recent years, de-anonymizing social networks has 

attracted significant attentions from researchers and social 
media marketing companies. Researchers proposed various 
methods to de-anonymize social networks, which can be 
divided into three categories: node information based, network 
structure based and knowledge graph based approaches.  

A. Node Information Based De-anonymization 
Attackers only employ node information to de-anonymize 

social networks. Node information contains user’s nicknames, 
profiles, user generated contents and user behaviors. Latanya 
[11] models user behaviors in social networks and utilizes 
usernames to correlate social network users. Mohotra et al. [12] 

propose a profile-based similarity method to match similar 
users across social networks, where a classifier is used for 
profile matching. They employ user’s digital footprints such as 
usernames, nicknames, locations and photos to calculate user 
profile similarity. Tan et al. [13] find that about 50% users use 
the same username across different online social networks 
(OSNs). Based on this finding, Zafarani et al. [14] utilize 
username to de-anonymize user accounts by adding or deleting 
the prefix/postfix of usernames. Furthermore, Peritio et al. [15] 
estimate the uniqueness of username by modeling a Markov 
chain process. Similarly, Liu et al. [16] propose an 
unsupervised approach which takes the n-gram model to 
estimate the uniqueness of a username. Moreover, Iofciu et al. 
[17] de-anonymize users across OSNs by measuring the 
distance between user profiles based on their IDs and tags 
through string edit distance. In addition, Zhang et al. [18] use 
the Jaro-Winkler [19] method to de-anonymize user accounts 
among different OSNs with a language model [20]. This 
method first converts user profiles into a bag of word vectors 
and then calculates profile similarity by analyzing vector 
similarity through the cosine distance. Although above 
methods can achieve a good performance in some scenarios, 
the biggest challenge is the authenticity and integrality of user 
profile information. Such as when social networks are suffering 
Sybil attacks the user profile is not real. Therefore, node 
information based de-anonymization methods cannot achieve a 
good result when the veracity of profiles is not guaranteed. 

B. Network Structure Based De-anonymization 
Attackers also utilize the feature of network structure to 

de-anonymize users across social networks. Kazemi et al. [21] 
propose a graph matching method to map users between two 
social networks. However, this method cannot solve the cold 
start problem and causes higher time and space complexity. 
Fabiana et al. [22] use the bootstrap filter and graph 
segmentation method to de-anonymize scale-free social 
networks. Nonetheless, there is a user's maximum group in 
social networks, which makes the common neighbor threshold 
go erroneous. 

Many the privacy protection models derive from 
k-anonymity [23], assuming that the attacker has limited prior 
knowledge. Unfortunately, if the attacker has more priori 
knowledge than imagined, such privacy protection method 
becomes fragile. For example, when k-degree anonymity is 
used for preventing attacks. The attack model that uses the 
equal number of users and the degree of vertex to 
de-anonymize users is invalid. But this method cannot prevent 
community re-identification [24]. Researchers have proposed 
similar method, such as k-neighborhood anonymity [25]. In 
addition, there are some de-anonymization methods based on 
clustering or aggregation, differential privacy [26] and random 
walk methods. 

A community-enhanced de-anonymization algorithm is 
proposed to complete a two-stage matching process [20]. The 
de-anonymization is executed at community level, after which 
it is extended to the entire network. Due to the asymmetry of 
communities on both sides, their two-stage approach may meet 
new problems [27] when network structure is destroyed. Korula 
and Lattanzi [28] design a simple, local and effective algorithm 
to solve the de-anonymization problem  and give the theoretical 
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guarantee of the algorithm performance. Nevertheless, in case 
merely a small number of seed nodes are provided, this method 
will not be effective. There are quite a few solutions that do not 
need seed users, such as [9] and [29]. These methods assume 
that the attacker has an auxiliary network that overlaps the 
anonymous network and the attacker is sure that the priori 
information is 100% correct. Such methods have following 
shortcomings. First, their social network model is unweighted 
and ignores the close relationship between users. Second, they 
barely utilize the local features of a network (such as node 
degree and common neighbors) and usually ignore the global 
features of the network, which caused low accuracy rate. Third, 
above methods are not able to extend to general social networks 
as they only utilize local features of networks. In contrast, our 
approach is based on the general features of social networks, so 
it is more versatile. 

C. Construction Model-based De-anonymization 
Researchers construct lots of labor-intensive models to 

de-anonymize social networks. To de-anonymize Google+ and 
Pokec social networks, Qian et al. [30] employ a knowledge 
graph to model priori knowledge of attackers to improve the 
accuracy of de-anonymization results. Hay et al. [31] use vertex 
refinement queries, subgraph queries, and hub print queries to 
de-anonymize social networks, but they have neither the actual 
ability to model an attacker nor the priori knowledge of the 
attacker owns. Wondracek et al. [32] point out that group 
relationships can identify individual users in social networks. 
Narayanan et al. [33] use the random forest method to predict 
the link relationships between nodes and consequently 
de-anonymize the Kaggle dataset. Such methods require 
constructing complex attack models, which demand lots of 
labor-intensive work. By contrast, our method is to 
automatically extract the structural features of the node from 
the network structure, so the efficiency is higher. 

To analyze the de-anonymization and privacy problem, 
Narayanan and Shmatikov [20] design an account linking 
method for Twitter and Flickr, in which account-linking only 
based on network topology. Even if the overlapped information 
between target network and auxiliary network is little, the 
robustness of this method is good. Similar techniques are 
utilized to de-anonymize the Netflix dataset with the IMDB 
dataset. Narayanan et al. [33] employ the de-anonymization 
method to do link prediction for the Kaggle dataset and utilize 
the random forest method to do link prediction between nodes. 
Similarly, Sharad and Danezis [34] address the 
de-anonymization problem using the random forest method to 
match the node pairs automatically. Korula and Lattanzi [28] 
use the Erdös-Rényi (ER) random graph and preferential 
attachment model to link accounts from intense nodes (nodes 
with a large number of neighbor nodes). This method proposes 
a many-to-many mapping algorithm based on the number of 
unmatched users and common neighbors. In addition, it uses 
two control parameters to fine tune the algorithm performance. 
Actually, the ER random graph model is only mathematically 
meaningful and impractical in OSNs. Even the quantification is 
effective under the assumption of identified seeds, it is 
impractical for real-world de-anonymization attacks. 

III. PROBLEM STATEMENT AND FORMULATION 

A. Problem Statement 
To better understand the de-anonymization problem across 

OSNs, we take Figure 1 as an example. Suppose an attacker 
owns an auxiliary graph Gs, which could be used to 
de-anonymize the target graph Gt. The node pairs linked by the 
dotted line is the goal of solution. Once obtaining the mapping 
relationships between these nodes, we can get according node 
information. In short, our goal is to find the node pairs across 
social networks accurately and effectively.   

We are facing following challenges for finding node pairs 
across large social networks. First of all, it is difficult to 
partition the large graph into subgraphs. Second, it is 
challenging to match similar subgraphs across social networks. 
Third, it is difficult to compute the similarity of the nodes 
across graphs, and it is challenging to automatically classify the 
node pairs. Besides all above challenges, it is challenging to 
parallel the proposed method efficiently. 
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Figure 1. An illustration of de-anonymizing social networks. Gs can be used 

to de-anonymize Gt
.  Gs and Gt

 are partitioned by thick dotted lines. The thin 
dotted lines between nodes in different networks (e.g., A-A’, B-B’, C-C’, D-D’, 
H-H’, K-K’) are matched pairs. The goal of de-anonymization is to find out the 
node pairs among different OSNs with desirable performance and accuracy. 

B. Problem Formulation 

The relationship between accounts across OSNs is same as 
the mapping relationship between vertices in social graphs. 
Details described in Definition 1. Table 1 shows the notations 
used in the paper. 

Definition 1: Given anonymized social network 
Gt=(Vt,Et ,Wt), Vt= {i|i is a node} represents the set of user 
accounts. Et= {la 

i,j|i, j∈Vt} indicates the social relationships 
between user accounts, Wt = { wt 

i,j|i, j∈Vt, la 
i,j∈Et, wt 

i,j is a real 
number} is the weight of edge in Et, and wt 

i,j = 1 if Gt is an 
unweighted graph. 

To de-anonymize Gt, we use an auxiliary graph 
Gs=(Vs,Es,Ws), which has overlapping users with Gt and can be 
constructed using multiple dataset sources, e.g., online social 
network, or various kinds of published data. 
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TABLE 1. SUMMARY OF THE NOTATIONS 
Notation Definition 
Gs=(Vs,Es) Auxiliary graph 
Gt=(Vt,Et) Anonymized (target) graph 
p∈Vs,q∈Vt Nodes of graph 
|Vs|=m, |Vt|=n Number of nodes in a graph 
w Weight of edge in a graph 
dv Degree of node v 
cv  Closeness centrality of node v 
bv Betweenness centrality of node v 
ev Eigenvector centrality of node v 
θ Similarity threshold of two matched node pairs  
δ(x, y) Information gain function of vector x and y 
SL  Set of left children in decision tree (unmatched pair) 
SR Set of right children in decision tree (matched pair) 
A Adjacency matrix of social network 
D Degree matrix of social network 
L Laplacian matrix of social network 
|V| The number of nodes in the graph 
|E| The number of edges in the graph 
  
Our goal is to accurately find the node mapping between the 

anonymous graph Gt and the auxiliary graph Gs. This mapping 
relationship can be described as σ : Gs→ Gt, for p∈ Vs, q∈ Vt , 
if p,q is a node pair, σ(p,q) = 1, otherwise σ(p,q) =0. How can 
we find the set of node pairs in large social networks? What 
kind of features can be used to compute the similarity of two 
nodes? How can we find an automatic method to identify the 
matched node pairs and unmatched pairs? We address above 
issues in below five steps, first, we partition the large sparse 
graph into subgraphs. Second, we find the similar subgraphs 
across graphs. Third, we build a model to match similar nodes 
across subgraphs. Fourth, we propose a method to measure 
node similarity based on network structure features. Finally, we 
find a proper strategy to match the nodes with an automatic 
method. We will detail our solution in next section. 

IV. SCHEME DETAILS 
In this section, we describe our scheme in detail. We employ 

network structure to de-anonymize social network. First, we 
use the spectral segmentation method to partition large social 
graph into several small subgraphs and then we match similar 
partitioned subgraphs. Subsequently, the features of network 
nodes, such as node degree, clustering coefficient and 
eigenvector centrality are extracted from matched subgraphs, 
and these features are taken as the feature vectors of nodes. The 
matching of nodes between the anonymous network and the 
auxiliary network can be considered as a binary classification 
problem. If the node pair is matched, the class label is 1, 
otherwise, the class label is 0. Thereafter, we use the random 
forest classifier to classify matching nodes according to their 
feature vectors. The classification process is paralleled through 
many processors before outputting matched node pairs. The 
specific framework is shown in Figure 2. 

A. Degree Centrality 
Degree centrality’s intuition is that if a node has larger 

number of node neighbors, the node has greater influence [35]. 
Degree centrality measures the degree of the node's direct 
influence to its neighbors [36], which means the bigger the 
node degree, the more neighbors are influenced by the node. 
However, nodes with same degree in the networks with 

different sizes have different degree of influences. For the 
purpose of comparison, we normalize degree centrality of node 
vi in (1):  

max

( ) ikDC i
k

=                                     (1) 

where, i iji
k a= ∑ , and aij is the element of adjacency matrix 

A of social graph, n is the number of nodes in social graph, kmax 
is maximum node degree. In directed networks, in-degree and 
out-degree carries different meanings (in-degree means the 
popularity of a node, out-degree means the gregarious of a 
node). The in-degree and out-degree centrality can be measured 
separately according to different type of social networks. In 
large-scale social networks, the degree distribution follows 
power-law distribution. Individual popularity across different 
networks is similar, i.e., individuals in different networks have 
similar behaviors. We can utilize this feature to measure node 
features in social networks. 

B. Node’s Clustering Coefficient 
Clustering coefficient [37] measures the degrees of nodes 

that tend to cluster together in a social graph. The node’s 
clustering coefficient quantifies the closeness of its neighbors 
tending to form a complete graph. The local clustering 
coefficient ci for a vertex vi is given by the proportion of edges 
between the vertices within its neighbors divided by the number 
of edges of the complete graph constructed by the neighbors. In 
a directed graph, eij is distinct from eji, so for each neighbor Ni 
there are ki(ki-1) edges that exist in the complete graph 
constructed by its neighbors (ki is the number of neighbors of a  
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Figure 2. Framework of the proposed solution. The solution first partitions 

the graph into k subgraphs and then matches the similar subgraphs before 
training the forest classifier and classifying node pairs with k processors 
parallelly. 
vertex). Therefore, the node clustering coefficient in directed 
graphs is given as (2): 

|{ : , , } |
( 1)

jk j k i jk
i

i i

e v v N e E
C

k k
∈ ∈

=
−

            (2)                                                      
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For an undirected graph, ki(ki-1)/2 edges exist among the 
vertices within the neighbor’s complete graph. Thus, the local 
clustering coefficient for undirected graphs is measured 
according to (3): 

2 |{ : , , } |
( 1)

jk j k i jk
i

i i

e v v N e E
C

k k
∈ ∈

=
−

        (3)                                                            

Therefore, node’s clustering coefficient can be employed as 
node features for measuring node structure similarity. 

C. Eigenvector Centrality 
Eigenvector centrality [38] is an important indicator for 

measuring the importance of a node in a social graph. Node 
degree believes surrounding neighbor nodes have equal 
importance, but in fact the importance of nodes is unequal and 
the influence of their neighbors should be considered. The 
eigenvector centrality value of the node could be high if its 
neighbor’s eigenvector centrality value is high. The eigenvector 
of a network is the vector of its adjacent matrix network 
corresponding to the largest eigenvalue. The importance of a 
node not only depends on the number of its neighbors (node 
degree) but also depends on the importance of its neighbors. 
The importance of the node vi is described in (4): 

1

1
( )

n

i ij j
j

EC i x a xλ −

=

= = ∑                     (4)                                                                  

where 1 2 3[x , x , x , , x ]T
nx = ⋅⋅⋅ . After several iterations, it 

will reach a steady state, which can be written as 1Axx λ −=  
and x is the eigenvector corresponding to the eigenvalue λ of 
matrix A. Eigenvector centrality emphasizes the surrounding 
environment of a node (the quantity and value of neighbors). 
The essence is that the importance score of a node is the sum of 
the importance scores of all its neighbors. The node can connect 
to many other important nodes to promote its importance. High 
node scores could be obtained by linking to a large number of 
low-value nodes or linking to a small number of high-value 
nodes. Eigenvector is a linear combination of nodes in a 
network, we can describe eigenvector with linear system of 
equations as it is a linear combination of all nodes in a network. 
The eigenvector corresponding to the maximum eigenvalue 
represents the importance of each node. Ranking based on 
network global features mainly considers the global 
information of a network. Although this is more accurate than 
other methods, it has high time complexity and does not work 
for large-scale networks. Therefore, we propose to divide large 
graph into small subgraphs. 

D. Graph Partition with the Spectral Method 
For large social networks, the cost of computational node’s 

clustering coefficient and eigenvector centrality are expensive. 
Therefore, we propose to partition the large social network into 
a number of small graphs and then process them parallelly. In a 
real large-scale network, connected component can be 
employed to partition it. In this paper, we use the spectrum 
partitioning algorithm to partition the social graph [39], the idea 
of which comes from the spectral partition. The spectrum of the 
matrix is its eigenvalue and corresponding eigenvector.   
   Given a graph G=(V, E) with adjacency matrix A, where an 
entry Aij  denotes an edge between node i and j, and degree 

matrix D is a diagonal matrix. Each diagonal entry of a row i, dii 
is the degree of node i. The Laplacian matrix L is defined as 
L=D-A. The ratio-cut partition for graph G is defined as a 
partition of v into disjoint U and W, minimizing the ratio of the 
number of edges across this cut to the number of pairs of 
vertices that support such edges. This ratio can be described as 
in (5): 

| ( ) ( ) |min( )
| | | |

E G U W
U W

∩ ×
⋅

                          (5)                                                                        

The graph partition in our solution follows three main steps: 
(1) For a given graph G = (V, E), the Laplacian matrix of the 

social graph can be calculated by L = D-A; 
(2) After the eigenvalue decomposition of the matrix L, the 

eigenvector matrix Q is constructed by taking the 
corresponding eigenvector of the k largest eigenvalues. 

(3) K-means clustering algorithm is used to cluster the 
element of the matrix Q, so that the similar vertices could be 
clustered together. 

Thus, a large social graph can be divided into several small 
subgraphs. The auxiliary graph and the anonymous graph are 
divided into subgraphs by the same method. Corresponding 
subgraphs can be matched according to the k largest 
eigenvalues, and the corresponding nodes could be matched 
according to the structural similarity of the nodes in the 
matching subgraphs. In order to achieve social network 
de-anonymization, we will use the random forest classifier to 
identify the possible candidate matching node pairs of two 
subgraphs. As a result, matching nodes are classified into one 
class and the unmatched nodes are classified into another class. 

E. Random Forest Classifier 
Random forest [40] employs a random method to build a 

forest, which is composed by a lot of decision trees, and the 
decision trees in the random forest are unrelated. When new 
data are input to the random forest, each of the decision tree 
judges which label should the data belong to separately and 
classify the data according to the vote of total number of labels.  

Random forest works well on large-scale datasets. It is able 
to handle high-dimensional data and does not need feature 
selection. After training, it can tell what features are important. 
The training speed is fast in random forests. During the training 
process, it is possible to detect the mutual influence between 
features, and it is easy to implement the parallelization of the 
classifying process. Although each decision tree in the random 
forest is weak, the final result of the random classifier is 
powerful.  

Our de-anonymization model is expressed as a set of 
decision trees based on graph features, which uses random 
forest model to integrate the prediction result of each decision 
tree together. Thus, it leads to an overall performance 
improvement. We use bagging [41] and random node 
optimization methods [42] to train decision trees, and utilize x 
∈ vp and y ∈ vq as features to make the split decision function 
in the process of making decision trees. The split decision is 
defined as (6): 

 

          δ(x, y) = �
0        𝑖𝑖𝑖𝑖 𝑥𝑥 = 𝑦𝑦 = 0
𝑥𝑥∙𝑦𝑦

|𝑥𝑥||𝑦𝑦|
  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                        (6)                                                                    
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We calculate δ(vp[i], vq[j]) for each node feature pairs (vp, vq), 

where i, j ∈ {0, n − 1}. For every feature pair (vp[i], vq[j]), the 
decision tree gets δ(vp[i], vq[j]) and classifies the data to the left 
child or right child according to threshold τ. In the training 
process, every spilt node is given a threshold τ to classify (vp[i], 
vq[j]) for the maximum information gain. The average predicted 
results of the decision trees are the final result of a decision 
forest, which is defined in (7)： 

 
                p(c|v) = 1

𝑇𝑇
∑ 𝑝𝑝𝑡𝑡(c|v)𝑇𝑇
𝑡𝑡=1                        (7)       

                                                                         
Where p(c|v) is the prior probability of the feature vector of 

node v (degree, clustering coefficient, eigenvector), T is the 
number of the decision trees, and pt(c|v) is the prediction of the 
single decision trees. 

F. Node Matching Algorithm 
We use the random forest classifier to classify the labels of 
node pairs between anonymous and auxiliary graphs. Degree 
centrality, clustering coefficient and eigenvector composes the 
feature vector v[i]= [dv 

i , cv 
i , ev 

i ], and the classifier predicts the 
label of the node pairs according to their feature vectors. If the 
label is 1, it means the node pair is matched. If the label is 0, it 
means the node pair is unmatched. θ is a threshold for cosine 
similarity of two vectors. If two vectors’ cosine similarity is 
bigger than the threshold, the two vectors are more similar. The 
details of the proposed solution are described in Algorithm 1. 

 
TABLE 2 ALGORITHM OF DE-ANONYMIZATION 

Algorithm 1 Social Graph De-Anonymization with Random Forest Classifier 

Input: anonymous graph Gs(Vs, Es), auxiliary graph Gt(Vt, Et),|Vs|=m, |Vt|=n, 
SL is the set of classified to left child, SR the set of classified to left child, 
p∈V1,q∈V2.  
Output: a set of matched node pairs SR. 
1: for(i=0;i<m;i++)// initialize the feature vector of  node vp in Gs 
2:  calculate vp[i]= [dv 

i , cv 
i , ev 

i ]; 
3: for(j=0;j<n;j++)// initialize the feature vector of  node vq in Gt 
4:  calculate vq[j]= [dv 

j , cv 
j , ev 

j ]; 
5: for(i=0;i<m;i++) 
6:  for(j=0;j<n;i++) 
7:  while(p=breadfirstsearch(Gs)) 
8:   { 
9:    while(q=breadfirstsearch(Gt))  
10:    { 
11:    if (cossim(vp[i], vq[j])>θ)//compute the cosine similarity of feature vector  
12:       SR=SR∪(p,q); 
13:     else  
14:       SL=SL∪(p,q); 
15:     Vt = Vt -q;  
16:    } 
17:    Vs = Vs -p;  
18:   } 
19: return SR; 

V. EVALUATION 
In this section, we present datasets in part A, and describe the 

comparison method in part B. After that, we present our 
evaluation results in part C and give out some discussions in 
part D. 

A. Datasets 
MAG: Microsoft academic graph data (MAG) is extracted 

from [43]. We use papers published in artificial intelligence, 
deep learning, data mining, social network analysis, database 
area which range from year 2000 to 2016 to construct the 
cooperation graph. The papers published in odd years construct 
the anonymous graph, and those published in even years 
construct the auxiliary graph. The graph contains information 
that related to author, paper and author’s cooperation.  

DBLP: The DBLP dataset is extracted from the DBLP 
website. Similar to the MAG dataset, we use papers published 
in odd years to construct the anonymous graph, and papers 
published in even years to construct the auxiliary graph. The 
papers are mainly in artificial intelligence, deep learning, data 
mining, social network analysis, and database areas and range 
from year 2000 to 2016.  

Mendeley：Mendeley [44] is a  reference management 
software that offers social network functions. We extract the 
author’s social relationships from social networks to construct 
the social graph. The graph built in January 2017 is an 
anonymous graph and the graph built in May 2017 is an 
auxiliary graph.  

Arnetminer：ArnetMiner [45] is an academic social network 
that offers expert finding and paper recommendation services. 
Similar to the Mendeley dataset, we use same method to build 
the anonymous graph and the auxiliary graph. 

MAG-Aminer：We employ MAG as an auxiliary graph to 
de-anonymize Aminer dataset. 

DBLP-Mendeley: Similar to MAG-Aminer, DBLP is used 
as the auxiliary graph to de-anonymize Mendeley dataset.  

Table 3 give the statistics of datasets. 
TABLE 3 STATISTICS OF DATASETS USED IN THE EXPERIMENT  

Statistics |V| |E| 
Aminer 121,135 163,478 

Mendeley 105,365 143,742 
MAG 95,479 136,125 
DBLP 90,182 127,353 

MAG-Aminer 85,141 114,631 
DBLP-Mendeley 82,962 104,336 

B. Comparison Methods 
We use true positive rate (TPR) and false positive rate (FPR) 

to evaluate the performance of proposed de-anonymization 
method. TPR measures the proportion of positives that are 
correctly identified in all matched node pairs. FPR is calculated 
as the ratio between the number of negative node pairs that 
wrongly categorized as positive to the total number of actual 
wrongly categorized as positive node pairs and matched 
node pairs. The receiver operating characteristic (ROC) curve 
is created by plotting TPR against FPR at various threshold 
settings. 

We compare the proposed method with below existing 
state-of-the-art methods for social networks de-anonymization.  

NS Method: This de-anonymization algorithm [20] is based 
only on network topologies. As a feedback-based attack 
method, it has self-enhanced learning ability and the identified 
nodes are added to the auxiliary information of the attacker, so 
that the auxiliary graph becomes larger. The method is robust 
even if the anonymous network and the auxiliary network have 
small overlaps. It works well in large social networks.  
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Random Forest: Sharad and Danezis [34] propose a 
generic automatic de-anonymization method for de-anonymiz- 
ing social networks. This method employs a machine learning 
method (random decision forest) to match pairs of different 
anonymous subgraphs for evaluating the effect of anonymous 
techniques quickly. Being an automated method, it achieves a 
higher classification of positive rate and lower negative rate. 

ADA: Ji et al. [46] design a joint similarity measure that 
takes into account the local and global topology features of the 
data as well as the information obtained from the auxiliary data, 
it also inherits useful information from the de-anonymization 
results. They propose a joint de-anonymization (DA) scheme, 
which ensures the accuracy of the de-anonymizing social graph 
data. They extended DA to an adaptive de-anonymize method 
(ADA) for resolving the de-anonymization problem where 
there are unknown overlaps between the auxiliary data and the 
anonymous data. By matching the two core subgraphs, ADA 
has achieved a high de-anonymizing accuracy and reduced the 
computational complexity. 

Seed-and-Grow: Peng et al. [27] propose the 
Seed-and-Grow algorithm, which identifies users in 
anonymous graphs based on the graph structure. This algorithm 
first identifies a seed subgraph (which is pre-implanted by the 
attacker or by the user conspired), and then the attacker based 
on the existing user's social relationships to extend this seed 
subgraph. It has less assumptions than other methods, reduces 
the number of parameters and improves the recognition of 
validity and accuracy. 

DDM: Fabiana et al. [22] propose a degree-driven graph 
matching (DDM) method, which is a rigorous mathematical 
analysis method for social network de-anonymization that 
based on the important features of power distribution in 
complex networks. Using the original graph partition method, 
they prove that nodes with large degrees must be identified as 
prior knowledge in order to successfully identify social 
network user accounts. 

C. Experimental Results 
We implemented our algorithm in C++ language, which is 

conducted on a cluster with Intel Xeon E5-2620 V3 CPU, 
NVIDIA Tesla K80 GPU, Intel Xeon Phi 7120P, 128 GB main 
memory, 1T SSD, 6T SAS disk, and CentOS release 6.4. 
1) Analysis of Degree Distribution in Datasets 

 
 

Figure 3 Probability of scientist’s collaborators in four of the datasets 
studied in the experiment. 

We investigate the degree distribution of four datasets as 
shown in Figure 3. We can see that the degree of four datasets 
generally follows a heavy-tailed distribution, which is 
consistent with Newman's conclusion [47]. Thus, the degree 
distribution is an important feature of de-anonymizing social 
networks in our solution. 
2) Parallel Scalable 

Since our solution can be parallelized in node mapping in 
different subgraphs, we parallel our algorithm with 
multi-processors. We vary the number n of processors from 4 to 
20 for Aminer, Mendeley, MAG, DBLP, MAG-Aminer, and 
DBLP-Mendeley datasets. The algorithms generated up to 300 
patterns to be verified. As shown in Figure 4, our method scales 
well with the increase of processors.  The improvement is 3 
times when n increases from 4 to 20 for the Mendeley dataset. 
With 20 processors, our method takes 301, 270, 241, 199, 132, 
112 seconds on Aminer, Mendeley, MAG, DBLP, 
MAG-Aminer, and DBLP-Mendeley, respectively. Therefore, 
our solution is parallel scalable, and it is 3.7 times faster on 
average when n increases from 4 to 20 on real-world networks. 

 
Figure 4 The running time of our solution with different processors in 6 

datasets. 

3) Comparison to State-of-the-art Algorithm 
Figure 5 and figure 6 shows the ROC curves of the six 

algorithms on the Aminer and MAG data, from which we can 
clearly see that our method achieves the best performance. 
Figure 5 shows the performance of our solution for 
de-anonymizing the Aminer dataset. Under the false positive of 
0.7%, our algorithm can de-anonymize 84% graph nodes. The 
DDM, ADA, Seed-and-Grow, Random Forest, and NS 
methods can de-anonymize 67%, 62%, 55%, 47%, 37% user 
nodes, respectively. Even for very small false positive (0.5%), 
our method can still de-anonymize 81% of the nodes. Figure 6 
displays the ROC of our solution for de-anonymizing the MAG 
dataset. Under the false positive of 0.7%, our algorithm can 
de-anonymize 84% user nodes. The DDM, ADA, 
Seed-and-Grow, Random Forest, and NS methods can 
de-anonymize 69%, 56%, 53%, 44%, 29% user nodes, 
respectively. Even for very small false positive (0.5%), our 
method can still de-anonymize 82% of the nodes. 
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Figure 5. Receiver operating characteristic curve de-anonymizing with the 
Aminer dataset. 

4) De-anonymization Across Networks 
In this section, we compare our method to state-of-the-art 

methods with MAG-Aminer and DBLP-mendeley datasets. 
These two datasets are different from the other four datasets 
mentioned above. The two datasets come from different 
networks. They are not a snapshot of same network, and the 
network structures are different.  The AUC of the experiments 
are displayed in Figure 7. It is clear to see that our method 
achieves the best AUC from Figure 7. The AUC of our solution 
is 54% and 19% higher than NS and DDM, respectively. This 
result shows that our method works well across networks. 

 

 
Figure 6. Receiver operating characteristic curve de-anonymization with the 

MAG dataset. 

 
5) Robustness Evaluation 

We examine the robustness of the proposed method by 
adding noisy data (delete or add edges to perturb the edge data). 
We can see the degree distribution follows power-law from the 
results of the experiment in part C of Section V. The 
Barabási-Albert(BA) [48] preferential attachment model 
describes this feature. Therefore, we use the BA model to add 
edges to simulate the noisy data in the dataset. Results are 
shown in Figure 8. 

 

 
Figure 7. AUC de-anonymizing in MAG-Aminer and DBLP-mendeley 

datasets with different methods 
 
In the experiment, we add noise to the anonymous graph and 

the auxiliary graph, respectively. In order to add p to the 
anonymous data, we randomly add (p/2)×|E| links of to the 
anonymous graph and delete the existing link for (p/2)×|E| (in 
this case a node may become an isolated node). We use the PA 
model to add edges. For example, in Figure 8, 20% noise means 
that we add 10% of edges and delete 10% of existing edges to 
the anonymous graph. We can see that the proposed 
de-anonymization scheme is robust to noisy data. Even if we 
change 25% links in the anonymous graph, we achieve AUC of 
80.2%, 80.9%, 80.6%, 80.1%, 81.7% on Aminer, Mendeley, 
MAG, DBLP, MAG-DBLP, and Aminer-Mendeley datasets, 
respectively. Note that when 25% links are changed, the 
structure of the anonymous graph is significantly changed. In 
practice, if the majority of the published anonymous graph’s 
structure is changed, the usefulness of data will be reduced 
dramatically. Therefore, the data publisher will not change the 
structure dramatically for data integrity. In summary, our 
solution is robust to the noisy data. 
 

 
Figure 8. The AUC of the proposed method with different noise rates 

D. Discussions 
Random forests are able to handle high-dimensional data and 

do not need to select features. Nonetheless, the random forest 
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classification will be overfitting to large noisy data. For 
attributes with different data values, more values imply greater 
impact on the random forest. Therefore, the random forest 
classification could not be credible in high-dimensional data. 

Classifier training and classification vary for different tasks. 
The algorithms (whether being anonymous algorithms or 
training algorithms) predict whether the test node matches the 
label, so it not only learns the features of the data, but also 
learns the features of anonymous methods. It simply assumes 
that the attack is invalid if the node degree is randomized based 
on the degree distribution of the node’s neighborhood. The 
success of classification is not based on the invariance of node 
degree but rely on the inconsistency of anonymous strategy. 
The strategy function can be learned and used to attack its 
anonymous schemes. Besides degree, clustering coefficient and 
eigenvector, we can also employ global features, such as 
betweenness centrality and closeness centrality, to match node 
pairs. Designing a more efficient graph partition method is the 
key to reduce time complexity. In addition, how to find a proper 
strategy to choose good auxiliary graph is another problem to 
be considered. 

VI. CONCLUSION 

In this paper, we propose a valid and robust solution to solve 
the social network de-anonymization problem. We transform 
the de-anonymization problem into machine learning 
classification problem and then solve the problem with random 
forest classifier. Structural features such as degree centrality, 
clustering coefficient and eigenvector are used to classify node 
pairs. To de-anonymize large-scale social graph, we partition 
large graph into subgraphs with spectral partition method. Our 
solution does not need any seed node pair in the whole 
de-anonymize process. The validity of the algorithm is verified 
on the real datasets. Noise data are added during the 
de-anonymize process, and the result shows that proposed 
algorithm has good robustness. We speculate that the use of 
node embedding and network structure embedding methods 
may be more suitable for training the random forest classifier, 
and we will do corresponding research in the future work. 
Additionally, user profile attribute may be a useful 
de-anonymization feature, which will be one of the key focus 
point in the future work. 
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