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1. Introduction

Fractional integral operators play an important part in the advancement of fractional calculus. We

start with the definitions of some known generalized fractional integral operators.

Definition 1. [1] Let f : [a, b]→ R be an integrable function. Also let g be an increasing and positive

function on (a, b], having a continuous derivative g′ on (a, b). The left-sided and right-sided fractional

integrals of a function f with respect to another function g on [a, b] of order µ where ℜ(µ) > 0 are

defined by:

µ
gIa+ f (x) =

1

Γ(µ)

∫ x

a

(g(x) − g(t))µ−1g′(t) f (t)dt, x > a (1.1)

and

µ
gIb− f (x) =

1

Γ(µ)

∫ b

x

(g(t) − g(x))µ−1g′(t) f (t)dt, x < b, (1.2)
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where Γ(.) is the gamma function.

Definition 2. [2] Let f : [a, b]→ R be an integrable function. Also let g be an increasing and positive

function on (a, b], having a continuous derivative g′ on (a, b). The left-sided and right-sided fractional

integrals of a function f with respect to another function g on [a, b] of order µwhere µ ∈ C, ℜ(µ), k > 0

are defined by:

µ
gIk

a+ f (x) =
1

kΓk(µ)

∫ x

a

(g(x) − g(t))
µ

k
−1g′(t) f (t)dt, x > a (1.3)

and

µ
gIk

b− f (x) =
1

kΓk(µ)

∫ b

x

(g(t) − g(x))
µ

k
−1g′(t) f (t)dt, x < b, (1.4)

where Γk(.) is k-gamma function [3] defined as follows:

Γk(x) =

∫ ∞

0

tx−1e−
tk

k dt, ℜ(x) > 0. (1.5)

The well known Mittag-Leffler function has been generalized/extended by many mathematicians,

one can see the references [4–7]. There are many fractional integral operators which have been defined

by using Mittag-Leffler functions in their kernels. A generalized fractional integral operator containing

an extended Mittag-Leffler function is defined as follows:

Definition 3. [8] Let ω, µ, α, l, γ, c ∈ C, ℜ(µ),ℜ(α),ℜ(l) > 0, ℜ(c) > ℜ(γ) > 0 with p ≥ 0, δ > 0

and 0 < k ≤ δ + ℜ(µ). Let f ∈ L1[a, b] and x ∈ [a, b]. Then the generalized fractional integral

operators ǫ
γ,δ,k,c

µ,α,l,ω,a+
f and ǫ

γ,δ,k,c

µ,α,l,ω,b−
f are defined by:

(

ǫ
γ,δ,k,c

µ,α,l,ω,a+
f
)

(x; p) =

∫ x

a

(x − t)α−1E
γ,δ,k,c

µ,α,l
(ω(x − t)µ; p) f (t)dt, (1.6)

and
(

ǫ
γ,δ,k,c

µ,α,l,ω,b−
f
)

(x; p) =

∫ b

x

(t − x)α−1E
γ,δ,k,c

µ,α,l
(ω(t − x)µ; p) f (t)dt, (1.7)

where

E
γ,δ,k,c

µ,α,l
(t; p) =

∞
∑

n=0

βp(γ + nk, c − γ)

β(γ, c − γ)

(c)nk

Γ(µn + α)

tn

(l)nδ

(1.8)

is the extended generalized Mittag-Leffler function and (c)nk is the Pochhammer symbol defined by:

(c)nk =
Γ(c+nk)

Γ(c)
.

Recently, Farid defined a unified integral operator as follows:

Definition 4. [9] Let f , g : [a, b] −→ R, 0 < a < b, be the functions such that f be positive and

f ∈ L1[a, b], and g be differentiable and strictly increasing. Also let
φ

x
be an increasing function on

[a,∞) and α, l, γ, c ∈ C, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ. Then for x ∈ [a, b] the left and right integral

operators are defined by:

(gF
φ,γ,δ,k,c

µ,α,l,a+
f )(x, ω; p) =

∫ x

a

Ky
x(E

γ,δ,k,c

µ,α,l
, g; φ) f (y)d(g(y)) (1.9)
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and

(gF
φ,γ,δ,k,c

µ,α,l,b−
f )(x, ω; p) =

∫ b

x

Kx
y (E

γ,δ,k,c

µ,α,l
, g; φ) f (y)d(g(y)), (1.10)

where K
y
x(E

γ,δ,k,c

µ,α,l
, g; φ) =

φ(g(x) − g(y))

g(x) − g(y)
E
γ,δ,k,c

µ,α,l
(ω(g(x) − g(y))µ; p).

For suitable settings of functions φ, g and certain values of parameters included in Mittag-Leffler

function (1.8), interesting consequences can be obtained which are comprised in the upcoming two

remarks.

Remark 1. (i) Let φ(x) =
xβ/kΓ(β)

kΓk(β)
, k > 0, β > k and p = ω = 0, in unified integral operators (1.9) and

(1.10). Then generalized Riemann-Liouville fractional integral operators (1.3) and (1.4) are obtained.

(ii) For k = 1, (1.3) and (1.4) fractional integrals coincide with (1.1) and (1.2) fractional integrals,

which further produce the following fractional and conformable integrals:

(1). By taking g as identity function, (1.3) and (1.4) fractional integrals coincide with k-fractional

Riemann-Liouville fractional integrals defined by Mubeen et al. in [10].

(2). For k = 1, along with g as identity function, (1.3) and (1.4) fractional integrals coincide with

Riemann-Liouville fractional integrals [1].

(3). For k = 1 and g(x) = xρ

ρ
, ρ > 0, (1.3) and (1.4) produce fractional integrals defined by Chen et al.

in [11].

(4). For k = 1 and g(x) = xτ+s

τ+s
, (1.3) and (1.4) produce generalized conformable fractional integrals

defined by Khan et al. in [12].

(5). If we take g(x) =
(x−a)s

s
, s > 0 in (1.3) and g(x) = −

(b−x)s

s
, s > 0 in (1.4), then conformable

(k, s)-fractional integrals are achieved as defined by Habib et al. in [13].

(6). If we take g(x) = x1+s

1+s
, then conformable fractional integrals are achieved as defined by Sarikaya

et al. in [14].

(7). If we take g(x) =
(x−a)s

s
, s > 0 in (1.3) and g(x) = −

(b−x)s

s
, s > 0 in (1.4) with k = 1, then

conformable fractional integrals are achieved as defined by Jarad et al. in [15].

(8). If we take p = ω = 0 and φ(t) = Γ(µ)t
µ

k E
σ,k

ρ,λ
(ω(t)ρ) in (1.9) and (1.10), then generalized k-fractional

integral operators defined by Tunc et al. in [16].

(9). If we take k = 1 and φ(t) = Γ(µ)
exp(−At)

µ
, A =

1 − µ

µ
, µ > 0 in (1.3) and (1.4), then generalized

fractional integral operators with exponential kernel is obtained [17].

Remark 2. Let φ(x) = xβ and g(x) = x, β > 0, in unified integral operators (1.9) and (1.10). Then

fractional integral operators (1.6) and (1.7) are obtained, which along with different settings of

k, δ, l, c, γ in generalized Mittag-Leffler function give the following integral operators:

(1). By setting p = 0, fractional integral operators (1.6) and (1.7) reduce to the fractional integral

operators defined by Salim-Faraj in [18].

(2). By setting l = δ = 1, fractional integral operators (1.6) and (1.7) reduce to the fractional integral

operators defined by Rahman et al. in [6].

(3). By setting p = 0 and l = δ = 1, fractional integral operators (1.6) and (1.7) reduce to the

fractional integral operators defined by Srivastava-Tomovski in [19].

(4). By setting p = 0 and l = δ = k = 1, fractional integral operators (1.6) and (1.7) reduce to the

fractional integral operators defined by Prabhakar in [7].
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(5). By setting p = ω = 0, fractional integral operators (1.6) and (1.7) reduce to the left-sided and

right-sided Riemann-Liouville fractional integrals.

(6). By setting p = ω = 0 in fractional integral operators (1.9) and (1.10) we get
1

Γ(µ)
(F
φ,g

a+
f )(x) = (gF

φ,γ,δ,k,c

µ,α,l,a+
f )(x, 0; 0) and

1

Γ(µ)
(F
φ,g

b−
f )(x) = (gF

φ,γ,δ,k,c

µ,α,l,b−
f )(x, 0; 0) where (F

φ,g

a+
f )(x) and

(F
φ,g

b−
f )(x) are defined in [20].

To derive the results of this paper we need to recall convex functions. Convex functions have

significant job in numerous areas of mathematics. They are particularly useful in the study of

optimization problems where they are recognized by various advantageous properties.

Definition 5. [21] A function f : I ⊆ R −→ R, where I is an interval in R is called convex if

f [λx + (1 − λ)y] ≤ λ f (x) + (1 − λ) f (y) (1.11)

for all x, y ∈ I and λ ∈ [0, 1].

Lemma 1. [21] Let f : I → R be convex and increasing function and let g : J → R, Rang(g) ⊆ I be

convex, then the composite function f ◦ g is convex on J.

Lemma 2. [22] Let f : [a, b] → R be a convex function. If f is symmetric about
a + b

2
, then the

following inequality holds:

f

(

a + b

2

)

≤ f (x), x ∈ [a, b]. (1.12)

The aim of this paper is to derive inequalities for unified integral operators by using convex

functions. These inequalities investigate further results for several known integral operators. In

Section 2, upper bounds of unified integral operators (1.9) and (1.10) are established by using

composite convex functions. Further by using an additional condition of symmetry, two sided

Hadamard type bounds are obtained. Moreover some bounds are studied by using convexity of | f ′|.

Some special cases are studied in Section 3.

2. Main results

In this section, bounds of integral operators (1.9) and (1.10) using composite convex functions are

established in Theorem 1. Also using Theorem 1, boundedness of left and right integral operators is

obtained. In Theorem 3 and Theorem 4, upper and lower bounds of sum of integral operators (1.9) and

(1.10) in the form of Hadamard inequality and some bounds of integral operators (1.9) and (1.10) are

established via composite convex functions respectively.

Theorem 1. Let f : [a, b]→ R be a convex function. Also let g : J → R, where Range(g) ⊆ [a, b] be a

differentiable and strictly increasing function, 0 < a < b. Let
φ

x
be an increasing function on [a, b] and

α, l, γ, c ∈ C, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ. Then for x ∈ [a, b] we have

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(x, ω; p) ≤ Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)(g(x) − g(a))

( f ◦ g)(x) + ( f ◦ g)(a)

2
(2.1)

and
(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(x, ω; p) ≤ Kx
b(E

γ,δ,k,c

µ,α,l
, g; φ)(g(b) − g(x))

( f ◦ g)(x) + ( f ◦ g)(b)

2
(2.2)
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hence

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(x, ω; p) +
(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(x, ω; p) (2.3)

≤ Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)(g(x) − g(a))

( f ◦ g)(x) + ( f ◦ g)(a)

2

+ Kx
b(E

γ,δ,k,c

µ,α,l
, g; φ)(g(b) − g(x))

( f ◦ g)(x) + ( f ◦ g)(b)

2
.

Proof. Under the assumptions of φ and g, we have

φ(g(x) − g(t))

g(x) − g(t)
≤
φ(g(x) − g(a))

g(x) − g(a)
t ∈ [a, x], x ∈ (a, b). (2.4)

Multiplying on both sides with E
γ,δ,k,c

µ,α,l
(ω(g(x) − g(t))µ; p)g′(t), the following inequality is yielded:

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ)g′(t) ≤

φ(g(x) − g(a))

g(x) − g(a)
E
γ,δ,k,c

µ,α,l
(ω(g(x) − g(t))µ; p)g′(t). (2.5)

Further by using E
γ,δ,k,c

µ,α,l
(ω(g(x) − g(t))µ; p) ≤ E

γ,δ,k,c

µ,α,l
(ω(g(x) − g(a))µ; p), the following inequality is

obtained:

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ)g′(t) ≤ Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)g′(t). (2.6)

Using convexity of f on the identity g(t) =
g(x)−g(t)

g(x)−g(a)
g(a) +

g(t)−g(a)

g(x)−g(a)
g(x) we have

f (g(t)) ≤
g(x) − g(t)

g(x) − g(a)
f (g(a)) +

g(t) − g(a)

g(x) − g(a)
f (g(x)). (2.7)

The following integral inequality can be obtained from (2.6) and (2.7):

∫ x

a

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ) f (g(t))d(g(t))

≤
f (g(a))

g(x) − g(a)
Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)

∫ x

a

(g(x) − g(t))d(g(t)) (2.8)

+
f (g(x))

g(x) − g(a)
Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)

∫ x

a

(g(t) − g(a))d(g(t)).

By using (1.9) of Definition 4 on left hand side and integrating by parts on right hand side, we get

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(x, ω; p) ≤ Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)(g(x) − g(a))

( f ◦ g)(x) + ( f ◦ g)(a)

2
. (2.9)

Now on the other hand for x ∈ (a, b) the following inequality holds true:

Kx
t (E

γ,δ,k,c

µ,α,l
, g; φ)g′(t) ≤

φ(g(b) − g(x))

g(b) − g(x)
E
γ,δ,k,c

µ,α,l
(ω(g(t) − g(x))µ; p)g′(t). (2.10)

Further by using E
γ,δ,k,c

µ,α,l
(ω(g(t) − g(x))µ; p) ≤ E

γ,δ,k,c

µ,α,l
(ω(g(b) − g(x))µ; p), the following inequality is

obtained:

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ)g′(t) ≤ Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)g′(t). (2.11)
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On the other hand using convexity of f on the identity g(t) =
g(t)−g(x)

g(b)−g(x)
g(b) +

g(b)−g(t)

g(b)−g(x)
g(x) we have

f (g(t)) ≤
g(t) − g(x)

g(b) − g(x)
f (g(b)) +

g(b) − g(t)

g(b) − g(x)
f (g(x)). (2.12)

The following integral inequality can be obtained by (2.11) and (2.12):

(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(x, ω; p) ≤ Kx
b(E

γ,δ,k,c

µ,α,l
, g; φ)(g(b) − g(x))

( f ◦ g)(x) + ( f ◦ g)(b)

2
. (2.13)

By adding (2.9) and (2.13), (2.3) can be achieved.

�

Theorem 2. Under the assumptions of Theorem 1, if f ◦ g ∈ L∞[a, b], then the following inequalities

hold:
∣

∣

∣

∣

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(x, ω; p)
∣

∣

∣

∣

≤ K‖ f ◦ g‖∞, (2.14)

and
∣

∣

∣

∣

(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(x, ω; p)
∣

∣

∣

∣

≤ K‖ f ◦ g‖∞, (2.15)

where K = (g(b) − g(a))Ka
b
(E
γ,δ,k,c

µ,α,l
, g; φ).

Proof. From (2.1) we have
∣

∣

∣

∣

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(x, ω; p)
∣

∣

∣

∣

≤ Ka
b(E

γ,δ,k,c

µ,α,l
, g; φ)φ(g(b) − g(a))‖ f ◦ g‖∞ (2.16)

that is (2.14) holds. Similarly, (2.2) gives (2.15). �

The following lemma is needful to prove the upcoming theorem.

Lemma 3. Let f : I → R be convex and increasing function and let g : J → R, Rang(g) ⊆ I be convex

and symmetric about
a + b

2
for a, b ∈ J. Then we have

( f ◦ g)

(

a + b

2

)

≤ ( f ◦ g)(x) (2.17)

for all x ∈ [a, b].

Proof. Since f and g are convex functions moreover f is increasing, therefore f ◦ g is convex. Also g

is symmetric about
a + b

2
so is f ◦ g. Hence applying Lemma 2 we get (2.17) �

The following theorem provides the Hadamard type estimation of integral operators (1.9) and (1.10).

Theorem 3. Under the assumptions of Theorem 1, and in addition if ( f ◦ g)(x) = f (a + g(b) − x), then

the following inequality holds:

( f ◦ g)

(

a + b

2

)

((

gF
φ,γ,δ,k,c

µ,α,l,b−
1
)

(a, ω; p) +
(

gF
φ,γ,δ,k,c

µ,α,l,a+
1
)

(b, ω; p)
)

≤
((

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(a, ω; p) +
(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(b, ω; p)
)

(2.18)

≤ (g(b) − g(a))Ka
b(E

γ,δ,k,c

µ,α,l
, g; φ) (( f ◦ g)(a) + ( f ◦ g)(b)) .
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Proof. For x ∈ (a, b), under the assumptions of φ and g the following inequality holds:

Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)g′(x) ≤ Ka

b(E
γ,δ,k,c

µ,α,l
, g; φ)g′(x). (2.19)

Using convexity of f on the identity g(x) =
g(x)−g(a)

g(b)−g(a)
g(b) +

g(b)−g(x)

g(b)−g(a)
g(a) we have

f (g(x)) ≤
g(x) − g(a)

g(b) − g(a)
f (g(b)) +

g(b) − g(x)

g(b) − g(a)
f (g(a)). (2.20)

The following integral inequality can be obtained from (2.19) and (2.20):

∫ b

a

Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ) f (g(x))d(g(x))

≤
f (g(b))

g(b) − g(a)
Ka

b(E
γ,δ,k,c

µ,α,l
, g; φ)

∫ b

a

(g(x) − g(a))d(g(x))

+
f (g(a))

g(b) − g(a)
Ka

b(E
γ,δ,k,c

µ,α,l
, g; φ)

∫ b

a

(g(b) − g(x))d(g(x)).

By using (1.9) of Definition 4 and integrating by parts we get

(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(a, ω; p) ≤ Ka
b(E

γ,δ,k,c

µ,α,l
, g; φ)(g(b) − g(a))

( f ◦ g)(a) + ( f ◦ g)(b)

2
. (2.21)

On the other hand for x ∈ (a, b) the following inequality holds true:

Kx
b(E

γ,δ,k,c

µ,α,l
, g; φ)g′(x) ≤ Ka

b(E
γ,δ,k,c

µ,α,l
, g; φ)g′(x). (2.22)

The following integral inequality can be obtained from (2.20) and (2.22):

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(b, ω; p) ≤ Ka
b(E

γ,δ,k,c

µ,α,l
, g; φ)(g(b) − g(a))

( f ◦ g)(a) + ( f ◦ g)(b)

2
. (2.23)

By adding (2.21 ) and (2.23), we have

(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(b, ω; p) +
(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(a, ω; p) (2.24)

≤ (g(b) − g(a))Ka
b(E

γ,δ,k,c

µ,α,l
, g; φ) (( f ◦ g)(a) + ( f ◦ g)(b)) . (2.25)

Multiplying both sides of (2.17) by g′(x)Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ), then integrating over [a, b] we get

( f ◦ g)

(

a + b

2

) ∫ b

a

Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)d(g(x)) ≤

∫ b

a

Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)( f ◦ g)(x)d(g(x)). (2.26)

By using (1.10) of Definition 4 we get

( f ◦ g)

(

a + b

2

)

(

gF
φ,γ,δ,k,c

µ,α,l,b−
1
)

(a, ω; p) ≤
(

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(a, ω; p). (2.27)
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Multiplying both sides of (2.17) by Kx
b
(E
γ,δ,k,c

µ,α,l
, g; φ)g′(x) and integrating over [a, b] we get

( f ◦ g)

(

a + b

2

)

(

gF
φ,γ,δ,k,c

µ,α,l,a+
1
)

(b, ω; p) ≤
(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(b, ω; p), (2.28)

by adding (2.27) and (2.28), the following inequality is obtained:

( f ◦ g)

(

a + b

2

)

((

gF
φ,γ,δ,k,c

µ,α,l,b−
1
)

(a, ω; p)+
(

gF
φ,γ,δ,k,c

µ,α,l,a+
1
)

(b, ω; p)
)

≤
((

gF
φ,γ,δ,k,c

µ,α,l,b−
f ◦ g

)

(a, ω; p) +
(

gF
φ,γ,δ,k,c

µ,α,l,a+
f ◦ g

)

(b, ω; p)
)

. (2.29)

Combining (2.24) and (2.29), inequality (2.18) can be achieved. �

Theorem 4. Let f : [a, b] → R be a differentiable function. If | f ′| is convex and also let g : J → R,

where Range(g) ⊆ [a, b] be a differentiable and strictly increasing function. Let
φ

x
be an increasing

function and α, l, γ, c ∈ C, p, µ, δ ≥ 0 and 0 < k ≤ δ + µ. Then for x ∈ (a, b) we have

∣

∣

∣

∣

(

gF
φ,γ,δ,k,c

µ,α,l,a+
( f ′ ◦ g)

)

(x, ω; p) +
(

gF
φ,γ,δ,k,c

µ,α,l,b−
( f ′ ◦ g)

)

(x, ω; p)
∣

∣

∣

∣

≤ Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ)(g(x) − g(a))

|( f ′ ◦ g)(x)| + |( f ′ ◦ g)(a)|

2
(2.30)

+ Kx
b(E

γ,δ,k,c

µ,α,l
, g; φ)(g(b) − g(x))

|( f ′ ◦ g)(x)| + |( f ′ ◦ g)(b)|

2
.

Proof. Using convexity of | f ′| on the identity g(t) =
g(x)−g(t)

g(x)−g(a)
g(a) +

g(t)−g(a)

g(x)−g(a)
g(x) x ∈ (a, b)

we have

| f ′(g(t))| ≤
g(x) − g(t)

g(x) − g(a)
| f ′(g(a))| +

g(t) − g(a)

g(x) − g(a)
| f ′(g(x))|. (2.31)

From which we can write

−

(

g(x) − g(t)

g(x) − g(a)
| f ′(g(a))| +

g(t) − g(a)

g(x) − g(a)
| f ′(g(x))|

)

≤ f ′(g(t)) (2.32)

≤

(

g(x) − g(t)

g(x) − g(a)
| f ′(g(a))| +

g(t) − g(a)

g(x) − g(a)
| f ′(g(x))|

)

,

we consider the right hand side inequality of the above inequality i.e.,

f ′(g(t)) ≤

(

g(x) − g(t)

g(x) − g(a)
| f ′(g(a))| +

g(t) − g(a)

g(x) − g(a)
| f ′(g(x))|

)

. (2.33)

Further the following inequality holds true:

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ)g′(t) ≤ Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)g′(t). (2.34)

The following integral inequality can be obtained from (2.33) and (2.34):

∫ x

a

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ) f ′(g(t))d(g(t))
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≤
| f ′(g(a))|

g(x) − g(a)
Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)

∫ x

a

(g(x) − g(t))d(g(t))

+
| f ′(g(x))|

g(x) − g(a)
Ka

x (E
γ,δ,k,c

µ,α,l
, g; φ)

∫ x

a

(g(t) − g(x))d(g(t))

which gives
(

gF
φ,γ,δ,k,c

µ,α,l,a+
( f ′ ◦ g)

)

(x, ω; p) ≤ Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ) (2.35)

× (g(x) − g(a))
|( f ′ ◦ g)(x)| + |( f ′ ◦ g)(a)|

2
.

If we consider the left hand side inequality from the inequality (2.32) and proceed as we did for the

right hand side inequality we have
(

gF
φ,γ,δ,k,c

µ,α,l,a+
( f ′ ◦ g)

)

(x, ω; p) ≥ −Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ) (2.36)

× (g(x) − g(a))
|( f ′ ◦ g)(x)| + |( f ′ ◦ g)(a)|

2
.

Combining (2.35) and (2.36), the following inequality is obtained:
∣

∣

∣

∣

(

gF
φ,γ,δ,k,c

µ,α,l,a+
( f ′ ◦ g)

)

(x, ω; p)
∣

∣

∣

∣

≤ Ka
x (E

γ,δ,k,c

µ,α,l
, g; φ) (2.37)

× (g(x) − g(a))
|( f ′ ◦ g)(x)| + |( f ′ ◦ g)(a)|

2
.

On the other hand using convexity of | f ′(t)| on the identity g(t) =
g(t)−g(x)

g(b)−g(x)
g(b) +

g(b)−g(t)

g(b)−g(x)
g(x)

we have

| f ′(g(t))| ≤
g(t) − g(x)

g(b) − g(x)
| f ′(g(b))| +

g(b) − g(t)

g(b) − g(x)
| f ′(g(x))|. (2.38)

Further the following inequality holds true:

Kt
x(E

γ,δ,k,c

µ,α,l
, g; φ)g′(t) ≤ Kx

b(E
γ,δ,k,c

µ,α,l
, g; φ)g′(t). (2.39)

The following integral inequality can be obtained from (2.38) and (2.39):
∣

∣

∣

∣

(

gF
φ,γ,δ,k,c

µ,α,l,b−
( f ′ ◦ g)

)

(x, ω; p)
∣

∣

∣

∣

≤ Kx
b(E

γ,δ,k,c

µ,α,l
, g; φ) (2.40)

× (g(b) − g(x))
|( f ′ ◦ g)(x)| + |( f ′ ◦ g)(b)|

2
.

Combining (2.37) and (2.40), inequality (2.30) can be achieved. �

3. Some special cases

By putting specific functions φ and g in Theorem 1, following results are obtained for some of the

fractional and conformable integral operators:

Corollary 1. If we put φ(t) = tτ , τ ≥ 1 and g(x) = I(x) = x in (2.3), then following inequality holds:
(

ǫ
γ,δ,k,c

µ,τ,l,ω,a+
f
)

(x, ω; p) +
(

ǫ
γ,δ,k,c

µ,τ,l,ω,b−
f
)

(x, ω; p) ≤ E
γ,δ,k,c

µ,τ,l
(ω(x − a)µ; p)(x − a)τ (3.1)

×
f (x) + f (a)

2
+ E

γ,δ,k,c

µ,τ,l
(ω(b − x)µ; p)(b − x)τ

f (x) + f (b)

2
.

AIMS Mathematics Volume 5, Issue 5, 4781–4792.



4790

Corollary 2. If we put φ(t) = tτ , τ ≥ 1 and g(x) = I(x) = x in (2.18), then following inequality holds:

f

(

a + b

2

)

((

ǫ
γ,δ,k,c

µ,τ,l,ω,a+
1
)

(b, ω; p) +
(

ǫ
γ,δ,k,c

µ,τ,l,ω,b−
1
)

(a, ω; p)
)

(3.2)

≤
(

ǫ
γ,δ,k,c

µ,τ,l,ω,a+
f
)

(b, ω; p) +
(

ǫ
γ,δ,k,c

µ,τ,l,ω,b−
f
)

(a, ω; p)

≤ (b − a)τE
γ,δ,k,c

µ,τ,l
(ω(b − a)µ; p)( f (a) + f (b)).

Corollary 3. If we put φ(t) = tτ , τ ≥ 1 and g(x) = I(x) = x in (2.30), then following inequality holds:

∣

∣

∣

∣

(

ǫ
γ,δ,k,c

µ,τ,l,ω,a+
f ′
)

(x, ω; p) +
(

ǫ
γ,δ,k,c

µ,τ,l,ω,b−
f ′
)

(x, ω; p)
∣

∣

∣

∣

≤ E
γ,δ,k,c

µ,τ,l
(ω(x − a)µ; p)(x − a)τ (3.3)

×
| f ′(x)| + | f ′(a)|

2
+ E

γ,δ,k,c

µ,τ,l
(ω(b − x)µ; p)(b − x)τ

| f ′(x)| + | f ′(b)|

2
.

Corollary 4. If we put φ(t) =
Γ(τ)t

τ
k

kΓk(τ)
, τ ≥ k, g(x) = I(x) = x and p = ω = 0 in (2.3), then following

inequality holds:

(τIk
a+ f )(x) + (τIk

b− f )(x) ≤
1

kΓk(τ)

(

(x − a)
τ
k

f (x) + f (a)

2
+ (b − x)

τ
k

f (b) + f (x)

2

)

. (3.4)

Remark 3. (i) If we put k = 1 in (3.4), then [22, Corollary 1] can be obtained.

(ii) If we put τ = 1 and x = a or x = b, then [22, Corollary 2] can be obtained.

(iii) If we put τ = 1 and x =
a + b

2
, then [22, Corollary 3] can be obtained.

Corollary 5. If we put φ(t) = Γ(τ)t
τ
k
+1 , τ ≥ 1, g(x) = I(x) = x and p = ω = 0 in (2.18), then following

inequality holds:

f

(

a + b

2

) (

1

τ + k

)

≤
Γk(τ + k)

2(b − a)
τ
k
+1

((τ+kIk
a+ f )(b) + (τ+kIk

b− f )(a)) (3.5)

≤
1

2k
( f (a) + f (b)).

Remark 4. (i) If we put k = 1 in (3.5), then [22, Corollary 6] can be obtained.

Corollary 6. If we put φ(t) = Γ(τ)t
τ
k
+1 , τ ≥ 1, g(x) = I(x) = x and p = ω = 0 in (2.30), then following

inequality holds:

∣

∣

∣

∣

Γk(τ + k)((τIk
a+ f )(x) + (τIk

b− f )(x)) −
(

(x − a)
τ
k f (a) + (b − x)

τ
k f (b)

)

∣

∣

∣

∣

(3.6)

≤
1

2

(

(x − a)
τ
k
+1 | f

′(x)| + | f ′(a)|

2
+ (b − x)

τ
k
+1 | f

′(b)| + | f ′(x)|

2

)

.

Remark 5. (i) If we put k = 1 in (3.6), then [22, Corollary 4] can be obtained.

(ii) If we put τ = 1 and x =
a + b

2
in (3.6), then [22, Corollary 5] can be obtained.
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4. Concluding remarks

This work elaborates bounds of several kinds of fractional and conformable integral operators in a

unified form. The bounds of some generalized fractional and conformable integral operators have been

deduced. It will be interesting for readers to verify that these results can produce bounds of fractional

and conformable integral operators defined in [6, 7, 10–13, 15–20].
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