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ABSTRACT

Deep learning methods are a great machine learning technique which is mostly used in artificial neural networks for pattern recognition. This project 

is to identify the Whales from under water Bioacoustics network using an efficient algorithm and data model, so that location of the whales can be 

send to the Ships travelling in the same region in order to avoid collision with the whale or disturbing their natural habitat as much as possible. This 

paper shows application of unsupervised machine learning techniques with help of deep belief network and manual feature extraction model for 

better results.
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INTRODUCTION

Detection of underwater creatures is not an explored area of science 

until now. So looking back, we found only few people who have tried to 

apply machine learning for detection or classification of marine animals.

Cornell university whale detection program [1, 2, 3, 4, 5]  provides 

extensive information about whale detection a and its importance The 

data used here is taken from Kaggle competition[6] of whale detection, 

sponsored by Cornell university. Mellinger and Clark [1] looked at a few 

techniques for perceiving bowhead whale calls. They proposed a system 

utilizing spectrogram relationship and contrasted this with three other 

systems, which utilized a hidden Markov model (HMM), a coordinated 

channel and a neural system, individually. The HMM system is similar to 

the one utilized by Weisburn et al. The data layer of the neural system was 

a [11,22] exhibit processed from the spectrogram. The shrouded layer 

contained four units, what’s more, the yield layer contained a solitary unit. 

Each of the system gave back a score which were contrasted with an edge 

for figuring out if a call was distinguished. The main data set was utilized 

for contrasting the spectrogram connection system with the strategy 

utilizing a HMM and the strategy utilizing a coordinated channel while the 

second Data set was utilized for looking at the spectrogram relationship 

system to the strategy utilizing a neural system and the technique utilizing 

a coordinated channel. Mellinger and Clark found that, the spectrogram 

relationship system performed imperceptibly superior to the technique 

utilizing a HMM, and that the system utilizing a neural system performed 

far better. In any case they additionally found that the neural system 

requires a moderately expansive data set for learning. Further they found 

that the match channel performed inadequately, and they inferred that 

the coordinated channel strategy is not suitable in light of the fact that the 

problem in the recordings were not Gaussian [12] disseminated, and the 

bowhead whale calls were excessively disparate from each other.

RELATED WORK

The objective of perceiving marine creature sounds has been 

implemented by a few people in the past utilizing different techniques:

 Brown and Smaragdis [11] ordered calls from executioner whales 

into seven distinctive call sorts. They explored the utilization of 

Gaussian mixture models (GMMs) and HMMs [25] where the HMMs 

had a GMM for every state. Their data comprised of 75 recorded calls 

which each contained one and one and only of the seven call sorts. 

As highlight information the mel-frequency cepstral coefficients 

(MFCCs) [27] and their transient subsidiaries were utilized. These 

were ascertained utilizing the project MELCPST from the Matlab [8] 

perceiving marine creature sounds is an issue that has incredible 

closeness to discourse acknowledgment.

 Data and Sturtivant [13] utilized HMMs to distinguish three distinct 

gatherings of dolphin shrieks. Their HMMs spoke to the form of the 

state of the dolphin shriek when drawn as a spectrogram. For each of 

their sound recordings, the part that contained a dolphin shriek was 

recognized in the preprocessing, and a spectrogram representation 

of this was developed. At that point from taking after calculation was 

connected on the spectrogram to discover the state of shriek sound. 

A HMM was educated for every shriek class. These were then utilized 

for characterizing future shrieks by figuring the probability that a 

recorded shriek has a place with every class.

 Roch et al. [29] utilized GMMs to decide the types of recorded dolphin 

shrieks. The recorded sign was part up into time allotments from which the cepstral coefficients were computed. These were then 
utilized as highlight information for the GMMs. A GMM was gained 

from the shrieks for each species. At the point when the species for a 

recorded shriek was resolved, the probability for each GMM speaking 

to the component information was ascertained. The dolphin that 

made the shriek was then expected to have a place with the animal 

categories whose GMM had given back the most elevated probability. 

The number of segments of the GMMs was 64, 128, 256, and 512. 

The best results were discovered utilizing GMMs with 256 blends.

 Weisburn et al. [34] researched two distinct routines for recognizing 

bowhead whale brings in sound recordings which were recorded 

in the arctic. Other than bowhead calls they contained commotion, 

and, potentially impedances made by different creatures, or by ice 

that was breaking. The two distinct routines, that they utilized, were 

a HMM and a coordinated channel. The component information for 

the HMM was the three biggest crests in the recurrence range for 

every time period. The Gee had 18 states, and for each of these it 

had a Gaussian conveyance [28] over the component information. 

The coordinated channel was resolved from 40 recordings that 

contained just whale calls and no impedances. These recordings were 

likewise used to take in the HMM. Keeping in mind the end goal to 

recognize whale calls in the recorded signs, they figured a score and 

contrasted it with an edge. For the HMM the score was the probability 

found by the Viterbi calculation, and for the coordinated channel it 

was the connection between the sign and the channel. Weisburn 

et al. found that their HMM technique performed superior to the 

technique utilizing a coordinated channel, however both strategies 

distinguished a high partition wrongly.
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For both issues we are attempting to characterize sound signs by 

the source which produced them. Therefore it is the specific source, 

that we are attempting to perceive, which recognizes the issues. For 

discourse acknowledgment we realize that the source is a human 

vocal tract, and we are attempting to perceive the setting of this vocal 

tract. For the issue tended to by this venture, the source could have 

been a right whale which radiated an up-call. Else it could likewise 

some other source e.g., other marine creatures. For both issues we 

must concentrate highlight information which convey data about the 

procedure that produced the sign, and from this learn models which 

catch the procedure that produced the sign. Discourse acknowledgment 

is an issue that has been widely examined in the past [24,26,30], 

and due to its comparability to our issue it is sensible to research 

how techniques for discourse acknowledgment can be connected to 

perceiving up calls. Roch et al. [29] and Brown and Smaragdis [11] 

utilized a methodology exceptionally like the one that was proposed for 

discourse acknowledgment by Rabiner in 1989 [26]. They too utilized 

the Cepstral coefficients which are utilized frequently as a part of 

discourse acknowledgment on the grounds that it conveys much data 

about the vocal tract [23] tool kit Voicebox [7]. Testing was performed 

utilizing the forget one technique where each recording from the data 

set thusly was grouped while the remaining were utilized for learning 

the models. To quantify execution the rate understanding was utilized. 

The GMMs [9,10] were learned with 1-6 segments and 8-30 highlights. 

The best result was 92% understanding which was acquired utilizing 

GMMs with two segments and 30 highlights. The HMMs was scholarly 

with 5-17 states, 1-4 parts, and 8-42 highlights. The best results 

were 95% ascension, which was acquired utilizing HMMs with 24-30 

highlights, 13-17 states, and one segment.

APPROACH

All the methods mentioned above follows a feature extraction by a 

manual process. However, after invention of deep learning techniques 

in machine learning it is possible to ask the machine to identify patterns 

and feature with proper training. Neural systems are effective example 

classifiers which have been utilized as a part of various order and 

capacity guess undertakings. They are exceedingly nonlinear classifiers 

not just since they have nonlinear actuation units additionally in light of 

the fact that of the layer-wise structure stacked in a steady progression. 

Such a structure empowers the neural networks (NNs) to take in the 

mind boggling info yield connections of numerous grouping issues, for 

example, acoustic occasion grouping.

Our main focus here is to extract as many features as possible. The 

major disadvantage of analyzing audio files is that they contain lots of 

noise. Therefore a more prudent approach is to convert the audio files 

to Fig. files i.e., fast Fourier transformation, then use sliding window 

method to extract multiple features. Manufactured neural systems are 

prepared in a regulated way with the back propagation calculation in 

which the arbitrarily instated system weights are balanced concurring 

to the inclination plunge standard to take in the info yield relations 

from marked information. Back propagation calculation performs 

viably for shallow systems, i.e. those that have 1 or 2 concealed layers, 

yet its execution decays when the number of layers increments. Various 

investigations appear that the calculation gets stuck in neighborhood 

optima effortlessly and falls flat to sum up legitimately for profound 

systems [13,14] (with a conceivable exemption of convolutional 

neural systems, which were observed to be less demanding to prepare 

notwithstanding for more profound architectures [15,16]). All in all, it is 

demonstrated that, when NN weights are arbitrarily instated, profound 

neural systems perform more regrettable than the shallow ones [13,17].

With a specific end goal to facilitate the preparation of profound systems, 

an unsupervised pre-preparing is directed layer by layer, to instate the 

system weights [18]. This insatiable, layer-wise unsupervised pre-

training depends on confined boltzmann machine (RBM) generative 

model. A calculation called contrastive dissimilarity (album) is 

connected to prepare a RBM. Compact disc calculation prepares the 

first layer in an unsupervised way, delivering a starting arrangement of 

coefficients for the first layer of a NN. At that point, the yield of the main 

layer is bolstered as information to the following, again introducing the 

relating layer in an unsupervised way. The scientific points of interest 

of the CD calculation, can be found in [19] and won’t be introduced in 

this work. In the wake of pre-training, neural systems are prepared in 

a directed way with group back propagation calculation in which the 

weight overhauls happen after various preparing tests is exhibited to 

the system (group size). This stride serves as an adjusting procedure of 

the neural system coefficients [20] that have gone with pre-training. In 

this work, the topology of the neural system (5 covered up layers each 

containing 70 neural units with sigmoid actuation capacities) is picked 

by approval set and the impact of varieties in system topology on the 

characterization exactness is not displayed. Preparing parameters for 

the neural systems, for example, learning rate, energy, bunch size and 

so forth as well as their topology are kept the same for the majority 

of the investigations. The bunch size for both unsupervised and 

directed parts is decided to be 100. The learning rate and force of back 

propagation [21] are chosen to be 0.5 and 1 individually. The number 

of ages for the unsupervised pre-training is altered to two. The basis for 

ceasing the directed preparing was in light of the approval set mistake. 

The preparation was ended at the point when the acceptance mistake 

began to build which is a sign of over fitting [35].

MODULES

There are three different modules:

A. The features extraction module, which will read the dataset and 

extract features based on deep NN. The extraction is done in two parts first using deep learning techniques and second extracting few 
features with help of Numpy and Sklearn python library functions.

B. Data analyzing and modeling module.

C. Re-evaluation and back propagation module (Fig. 1).

FEATURES USED

High frequency template

Apply horizontal contrast enhancement and look for strong vertical 

features in the Fig. cut out the lower frequencies.

Fig. 1: Complete architecture of the proposed model

a

b

Fig.  2:  (a  and  b)  Spectrogram  of  sound 

containing whale voice
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High frequency metrics

Calculate statistics of features at higher frequencies [31] This is 

designed to capture false alarms that occur at frequencies higher than 

typical whale calls.

Also sum across the frequencies to get an average temporal profile. Then 

return statistics of this profile. The false alarms have a sharper peak.

Time metrics

Calculate statistics for a range of frequency [32] slices.

Calculate centroid, width, skew, and total variation [33].

 let x=P[i,:], and t=time bins

 centroid=sum(x*t)/sum(x)

 width=sqrt(sum(x*(t-centroid)^2)/sum(x))

 skew=scipy.stats.skew

 total variation=sum(abs(x_i+1-x_i)).

All these three types of features are at first filtered against Sliding 

Window and various frequency or X, Y coordinate.

IDENTIFIED TOOLS

MatlabR2014, Python 3.4 both of these required for Reading the audio 

files and extracting the features. The data model can be built in any of 

these two. We have also used Sklearn and Numpy libraries for statistical 

calculations.

b

a

Fig. 3: Three dimensional spectrogram of a audio containing 

whale sound

Fig. 4: Spectrogram of sound without whale voice

Fig. 5: (a and b) Fast Fourier transform of a sound containing whale voice

491



Special Issue (April)

 Ghosh and Kumar 

Fig. 6: Fast Fourier transform of a sound which does not contain 

whale voice

Fig. 7: Sample with whale call (cropped)

Fig. 9: Frequency distribution without a whale call

Fig. 10: Receiver operating characteristic curve

Rank Extracted feature Importance

1 maxH_0005501 0.0373

2 maxH_0001315 0.033032

3 maxH_0000151 0.021753

4 maxH_0003507 0.020955

5 max_0000151 0.019671

6 maxH_0006245 0.018837

7 max_0004355 0.017471

8 max_0001315 0.016203

9 maxH_0001347 0.015726

10 skewTime_0027 0.01521

11 bwTime_0001 0.014406

12 maxH_0006722 0.013614

13 maxH_0002307 0.012322

14 bwTime_0006 0.011176

15 max_0001347 0.011116

16 max_0005501 0.010813

17 yLocH_0004631 0.010806

18 max_0003507 0.010696

19 max_0006340 0.0106

20 maxH_0005360 0.010428

21 skewTime_0050 0.010049

22 centOops_0002 0.009445

23 max_0006245 0.009411

24 centOops_0006 0.00888

25 bwTime_0002 0.00886

26 bwTime_0034 0.008708

Rank Extracted feature Importance

27 skewTime_0031 0.008067

28 yLoc_0001315 0.00794

29 maxH_0004355 0.007474

30 maxH_0001236 0.007401

31 tvTime_0005 0.007322

32 bwTime_0000 0.007204

33 bwTime_0048 0.006806

34 max_0001236 0.006698

35 skewTime_0023 0.005678

36 tvTime_0000 0.005587

37 skewTime_0042 0.005575

38 skewTime_0011 0.005341

39 bwTime_0012 0.005291

40 maxH_0001312 0.005287

41 skewTime_0044 0.005073

42 yLoc_0000151 0.004998

43 skewTime_0022 0.004918

44 tvTime_0009 0.004874

45 max_0006722 0.004849

46 skewTime_0032 0.004485

47 bwTime_0049 0.00443

48 skewTime_0012 0.004246

49 centTime_0004 0.004014

50 bwTime_0037 0.004001

51 centOops_0005 0.003918

52 tvTime_0052 0.003822

Table 1: Top features based on execution Table 1: (Continued)

(Contd...) (Contd...)

Fig. 8: (a and b) Whale component frequency filter

ba
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RESULTS AND SCREENSHOTS

The frequency based filter on whale component analysis shows us 

the major difference between a sample containing whale voice and a 

sample not containing whale voice (Figs. 6-9). These initial analyses 

using fast fourier transform (FFT) made us understand the attributes 

of whale voices. Therefore, we decided to work on manual feature 

extraction based on frequency. The extracted features of high frequency 

template, high frequency metrics and time metrics has been sorted in 

order of importance towards the result accuracy in Table 1.

The receiver operating characteristic (ROC) analysis shows that we 

have achieved (AUC) area under curve of 0.9857831  analysis for our 

approach (Fig. 10).

CONCLUSION

The current work shows an efficient feature based highly accurate 

method of detection of whale voices from underwater captured audio 

files with more than 97% accuracy.

Rank Extracted feature Importance

53 skewTime_0047 0.003645

54 bwTime_0026 0.003631

55 max_0002307 0.003616

56 centOops_0033 0.003573

57 maxH_0000970 0.003555

58 tvTime_0007 0.003413

59 tvTime_0010 0.00311

60 skewTime_0046 0.003089

61 skewTime_0007 0.003062

62 bwTime_0010 0.00304

63 bwTime_0011 0.002961

64 bwTime_0014 0.00293

65 centOops_0003 0.002922

66 yLoc_0000126 0.002877

67 maxH_0000118 0.002854

68 bwTime_0050 0.002833

69 tvTime_0002 0.002726

70 max_0005360 0.002686

71 maxH_0004881 0.002636

72 maxH_0008948 0.002549

73 yLoc_0004355 0.002511

74 tvTime_0004 0.002484

75 centTime_0013 0.002473

76 tvTime_0001 0.002392

77 skewTime_0056 0.002365

78 tvTime_0011 0.002359

79 centTime_0003 0.002353

80 bwTime_0051 0.002277

81 centOops_0043 0.002263

82 tvTime_0006 0.002196

83 skewTime_0034 0.002189

84 centOops_0014 0.002144

85 bwTime_0038 0.002124

86 max_0004881 0.002055

87 centOops_0044 0.002035

88 centTime_0038 0.002028

89 xLocH_0004631 0.002001

90 centOops_0010 0.00198

91 skewTime_0037 0.001964

92 centOops_0001 0.001955

93 skewTime_0035 0.001849

94 centOops_0046 0.001826

95 maxH_0006340 0.001777

96 skewTime_0010 0.001758

97 tvTime_0008 0.001721

98 bwTime_0044 0.001702

99 xLoc_0000970 0.001698

100 yLoc_0008948 0.001677

Table 1: (Continued) FUTURE WORK

In near future the similar approach can be used for other applications 

as well like, detection of audio from deep space observations for 

intelligent species search, even it can be used in other image or audio 

detection problems. The current model works very well with audio 

files with less noise. Another improvement can be done on detection of 

required signal on noisy files.
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