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Hydraulic brake in automobile engineering is considered to be one of the important components.
Condition monitoring and fault diagnosis of such a component is very essential for safety of passengers,
vehicles and to minimize the unexpected maintenance time. Vibration based machine learning approach
for condition monitoring of hydraulic brake system is gaining momentum. Training and testing the
classifier are two important activities in the process of feature classification. This study proposes a
systematic statistical method called power analysis to find the minimum number of samples required to
train the classifier with statistical stability so as to get good classification accuracy. Descriptive statistical
features have been used and the more contributing features have been selected by using C4.5 decision
tree algorithm. The results of power analysis have also been verified using a decision tree algorithm

namely, C4.5.
Copyright © 2015, Karabuk University. Production and hosting by Elsevier B.V. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Statistical features

1. Introduction

The brake system is an essential component in an automobile to
promote the highest degree of safety for the persons inside the
vehicle and others moving on the road. Brake failure is crucial not
only for the driver and passengers but also for automobile manu-
facturers. Fault diagnosis is an important process in preventive
maintenance of hydraulic brakes. It avoids serious damage if defects
occur to the component during operation. Prevention is better than
cure. Early detection of the defects, therefore, is crucial to prevent
the system from malfunction that could cause damage to entire
system or accident. A fault diagnosis model can predict the condi-
tion of the system at any time and it avoids unexpected failures.

In this paper, only vibration signals of good and nine faulty
conditions of a hydraulic brake system were considered for fault
diagnosis. The characterization of the vibration signals was ach-
ieved by machine learning approach. The important two activities
in machine learning approach are training and testing the classifier.
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To model the fault diagnosis problem as a machine learning prob-
lem, a large number of vibration signals are required for each
condition considered for study. It may be possible to acquire any
number of vibration signals for good condition; however, it is very
difficult to acquire signals of different faulty conditions. Actually,
the signals are to be taken from the system where the fault occurred
naturally during operation. The difficulties involved in carrying out
this process forces the fault diagnosis engineer to make a
compromise. Taking many vibration signals from one specimen
having a typical intended fault is one level of compromise in
practice. Another level of compromise is that taking vibration sig-
nals from the system, where the required type of fault is simulated
onto it. To overcome these problems, one should know the number
of samples to be used for training to get good classification accu-
racy. Also, the signals can be acquired from the system where the
fault has occurred naturally, only if one knows the minimum
number of samples required to train the classifier to get good
classification accuracy. Indeed, any results obtained out of these
signals would be more practical and realistic in nature. Hence
knowledge about the optimum number of samples required for
building a model or training a classifier is very essential. In such
situations, a study on determination of minimum sample size is
highly desirable. Characteristics of the sample have a direct effect
on power. Highly diverse samples will require adjustments in
sample size. Adequate power is hard to achieve when results must
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be very accurate. Very high confidence levels require very large
samples. A study with insufficient power may lead the researcher to
abandon potentially useful samples. Power analysis is the best
method to avoid these serious errors.

In machine learning, a model built with large sample size would
be robust. During implementation, it becomes necessary to know
the number of samples required to build a classifier with statistical
stability. Many researchers have taken different approaches on
minimum sample size determination reported in the field of bio-
informatics and other clinical studies, to name a few, micro array
data [1], cDNA arrays [2] transcription level [3] etc. Based on these
works, data-driven hypotheses could be developed which in turn
furthers vibration signal analysis research. Though it has been re-
ported in [4,5] for fixing sample size to train the classifier for some
particular applications of vibration analysis, the same sample size
cannot be used for the present study. Hence, this paper focuses on
determination of sample size to build a robust classifier for fault
diagnosis. There are many ways available for determination of
sample size viz. for tests of continuous variables [6], for tests of
proportions [7], for time-to-event (survival) data [8], for receiver
operating curve (ROC) analysis [9], for logistic and Poisson regres-
sion [10], repeated measurements [11], precision [12], paired
samples [13], measurement of agreement [14], and power [15].
Studies were also carried out to discuss issues surrounding esti-
mating variance, sample size re-estimation based on interim data
[16], studies with planned interim analyses [17], and ethical issues
[18]. However, there are certain issues to be addressed in imple-
mentation of such techniques to have better statistical stability.

In machine learning approach, the vibration signals are typically
subjected to analyses such as hypothesis testing, classification [19],
regression and clustering that rely on statistical parameters to draw
conclusions [20—23]. However, these parameters could not be
reliably estimated with only a small number of vibration signals.
Since the statistical stability of conclusions largely depends on the
accuracy of parameters used, a certain minimum number of vi-
bration signals are required to ensure confidence in the sample
distribution and accuracy of parameter values. The objective of this
paper is to determine the minimum number of samples required to
separate the classes with statistical stability using F-test based
statistical power analysis.

1.1. Methodology

The methodology has been illustrated with the help of a typical
automobile hydraulic brake system. Fig. 1 shows the methodology
of the proposed study. Referring Fig. 1, the vibration signal under
different fault conditions were acquired from the brake setup.
Number of descriptive statistical features were extracted from the
vibration signal. Among them most important features were
selected using decision tree. The minimum number of samples
required for classification with statistical stability using F-test
based statistical power analysis. The minimum sample size is also
determined using an entropy based algorithm called ‘C4.5 decision
tree’. The results of power analysis are compared with that of C4.5
decision tree algorithm and sample size guidelines are presented
for the considered system at the conclusion section.

2. Experimental studies

Experimental study was carried out on a hydraulic brake system
setup shown in Fig. 2 [24]. A commercial passenger car's (Maruti
Swift) hydraulic brake system (shown in Fig. 2) was used to fabri-
cate the brake test setup. The test rig consists of drum and disc
brake coupled together by a shaft. The shaft is in turn run by a DC
motor (1HP) coupled to a belt drive system. DC motor consists of an
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Fig. 1. Flow chart — methodology.

inbuilt drive. A lever is placed at the top of the motor which is
connected to the accelerator pedal providing variable speeds up to
2500 rpm. If the accelerator pedal is pressed, the spring attached to
the lever is compressed. Hence the pulley shaft is connected with
the inbuilt drive. The power is transmitted from the drive to the
pulley. When the pedal is released, the pulley shaft gets detached
from the drive shaft through spring expansion. Brake pedal is
provided to the left side of the accelerator pedal. It is attached to the
piston in the master cylinder via a push rod. Master cylinder, the
most important part of hydraulic brake is provided with pistons to
move along the bore. Since hydraulic brakes are prominent brake
system in medium motor vehicle like cars, in order to experiment
with the components used in real world, branded vehicles (cars)
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Fig. 2. Brake fault diagnosis — experimental setup.
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parts were considered. The dimension of test rig is
80 cm x 80 cm x 40 cm.

Piezoelectric type accelerometer was used as transducer for
acquiring vibration signals. An uni-axial accelerometer of 50 g
range, 100 mV/g sensitivity, and resonant frequency around 40 Hz
was used. The DAQ system is NI USB 4432 model. The vibration
signals are acquired using data acquisition system with the sam-
pling frequency of 24 kHz. The sample length was assumed to be
1024 by using Nyquist sampling theorem. 55 samples for each
condition were taken from the hydraulic braking system.

Initially the test rig was assumed to be in good condition. (All
components were brand new). The frequently occurred nine most
important fault conditions were simulated for testing. They are, air
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in the brake fluid (AIR), brake oil spill on disc brake (BOS), drum
brake pad wear (DRPW), disc brake pad wear (even)-inner (DPWI),
disc brake pad wear (even)-inner and outer (DPWIO), disc brake
pad wear (uneven-inner) (UDPWI), disc brake pad wear (uneven)-
inner and outer (UDPWIO), reservoir leak (RL), drum brake me-
chanical fade (DRMF). The vibration signals were measured from
the hydraulic brake system working under constant braking
condition (original speed 667 rpm, brake load 67.7 N). From the
accelerometer, the vibration signals for different fault conditions
were taken with the following settings.

A LabVIEW graphical program was used to store the signal in the
computer. The digital version of the signal was then processed to
extract different feature which contains information's that are
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Fig. 3. (a) Vibration signal — brake without any fault. (b) Vibration signal — air in the brake fluid. (c) Vibration signal — brake oil spill. (d) Vibration signal — disc brake pad wear
(even) — inner. (e) Vibration signal — disc brake pad wear (even) — inner & outer. (f) Vibration signal — disc brake pad wear (uneven) — inner. (g) Vibration signal — disc brake pad
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relevant to the considered fault conditions. Fig. 3(a)—(j) shows the
time domain signals taken from the brake setup. Once the faults
were simulated, the vibration signals were recorded and feature
extraction and feature selection was carried out using these vi-
bration signals [24].

3. Feature extraction and feature selection

The process of computing some specific measures that repre-
sent the vibration signals is called feature extraction. A fairly wide
set of statistical parameters are selected as the basis of the study.
They are mean, standard error, sample variance, kurtosis, skew-
ness, minimum, maximum, standard deviation, count, mode and
median. These parameters are called statistical features. The sta-
tistical parameters can be calculated using the formulas provided
in Table 1. The statistical information contained in the signals has
been extracted using a visual Basic soft tool with Microsoft Office
Excel. The statistical features given in Table 1 have been extracted
from the raw vibration signal using a statistical tool in Microsoft
Office Excel. The process of extracting statistical features was
described for bearing fault diagnosis by Sugumaran et al. [23].
Following the footsteps of Sugumaran et al. feature extraction was
carried out.

There are many techniques available for feature selection. The
commonly used techniques for selection of features are principal
component analysis (PCA), genetic algorithm (GA), and decision
tree (DT) [23]. In a study by Sugumaran et al. the use of a decision
tree to identify the best feature selection from a given set of sam-
ples for classification was illustrated [23]. The most important
feature will be placed on top of the decision tree and others will
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A statistical term that refers to the most frequently
occurring number found in a set of numbers. (i.e.) The
mode is the value that appears most often in a set of
data. In other words, it is the value that is most likely
to be sampled.
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4. (4.5 decision tree algorithm

Fault diagnosis can be viewed as a data mining problem where
one extracts information from the acquired data through a classi-
fication process. A predictive model for classification invokes the
idea of branches and trees identified through a logical process. Any
good classifier should have the following properties:

1) It should have good predictive accuracy; it is the ability of the
model to correctly predict the class label of new or previously
unseen data.

2) It should have good speed.

3) The computational cost involved in generating and using the
model should be as low as possible.

4) It should be robust; Robustness is the ability of the model to
make correct predictions given the noisy data or data with
missing values.

5) The level of understanding and insight that is provided by
classification model should be high enough.

It is reported that C4.5 model introduced by J.R. Quinlan satisfies
with the above criteria and hence the same is used in the present
study [25]. The classification is done through a decision tree with its
leaves representing the different fault conditions of the brake sys-
tem. Fig. 2 shows the decision tree obtained from C4.5 decision tree
algorithm. The sequential branching process ending up with the
leaves here is based on conditional probabilities associated with
individual features. Decision tree algorithm (C4.5) has two phases:
building and pruning. The building phase is also called as ‘growing
phase’ [26]. As is customary the samples are divided into two parts:
training set and testing set. Training set is used to train classifier
and testing set is used to test the validity of the classifier. 10-fold
cross-validation has been employed to evaluate classification
accuracy.

The training process of C4.5 using the samples with continuous-
valued attributes is as follows.

1) The tree starts as a single node representing the training
samples.

2) If the samples are all of the same class, then the node becomes a
leaf and is labeled with the class.

3) Otherwise, the algorithm discretises every attribute to select the
optimal threshold and uses the entropy-based measure called
information gain (discussed in Section 5.1) as heuristic for
selecting the attribute that will best separate the samples into
individual classes.

4) A branch is created for each best discrete interval of the test
attribute, and the samples are partitioned accordingly.

5) The algorithm uses the same process recursively to form a de-
cision tree for the samples at each partition.

6) The recursive partitioning stops only when one of the following
conditions is true:

(a) All the samples for a given node belong to the same class or

(b) There are no remaining attributes on which the samples
may be further partitioned.

(c) There are no samples for the branch test attribute. In this
case, a leaf is created with the majority class in samples.

7) A pessimistic error pruning method is used to prune the grown
tree to improve its robustness and accuracy.

5. Determination of sample size

As discussed in earlier sections, determining minimum sample
size of vibration signals to train the classifier are very essential for a

categorization problem of different conditions for a machine using
vibration signals. In the present study, the eleven measures ob-
tained from vibration signals are served as features. These features
were used as representatives of the vibration signals instead of
using them directly. This has been done only to reduce the
dimension of the problem to a sizable number. Further dimen-
sionality reduction was carried out using C4.5 algorithm to elimi-
nate less contributing features from the feature set. The method
and procedure of performing the same using C4.5 algorithm is
explained in Section 5. In power analysis, the selected five features
along with their class label have been used as a data set. The
method of performing power analysis is discussed in Section 5.1.
The results obtained in this method were verified with the help of a
functional test using C4.5 algorithm. As C4.5 decision tree algo-
rithm can be used as a classifier with 10-fold cross-validation
method, the number of samples is decreased from 55 per class to
five per class. The results are presented and discussed in Section 6.

5.1. Power analysis

Sample size has a great influence in any experimental study,
because the result of an experiment is based on the sample size.
Power analysis has been used in many applications [4,5]. Per-
forming power analysis and sample size estimation is an important
aspect of experimental design, because without these calculations,
sample size may be too high or too low. If sample size is too low, the
experiment will lack the precision to provide reliable answers to
the questions that are investigated. If sample size is too large, time
and resources will be wasted, often for minimal gain. Power anal-
ysis has been used in many applications.

In power analysis, the test family has been chosen as F-test
under the statistical test MANOVA with repeated measures within
between interactions. It is based upon two measures of statistical
reliability, namely the confidence interval (1 — «) and power
(1 — B). As it is a hypothesis test, the test compares null hypothesis
(Ho) against the alternative hypothesis (H1). The null hypothesis is
assumed to be the means of the classes are the same whereas
alternative hypothesis H; is defined to be the means of classes are
not same while the confidence level of a test is the probability of
accepting null hypothesis, the power of a test is the probability of
accepting the alternative hypothesis [1]. Alternatively false posi-
tives, « (Type I error) is the probability of accepting alternative
hypothesis while false negatives, § (Type II error) is the probability
of accepting the null hypothesis.

The estimation of sample size in power analysis is done such
that the confidence and the power (statistical reliability measures)
in hypothesis test can reach predefined values. Typical analyses
may require the confidence of 95% and the power of 95%. The
confidence level and the power are calculated from the distribu-
tions of the null hypothesis and alternative hypothesis. Defining
these distributions depends on the statistical measures being used
in the hypothesis test. For a two class problem, the method and
procedure of computing hypothesis test using t-distribution is
explained in [1]. In case of multi-class problem (number of classes
greater than two), instead of T-statistic, the F-statistic measure
derived from Pillai's V formula [26] is used for the estimation of
sample size. Pillai's V is the trace of the matrix defined by the ratio
of between-group variance (B) to total variance (T). It is a statistical
measure often used in multivariate analysis of variance (MANOVA)
[26]. The Pillai's V trace is given by

h
V:trace(BT’l) :211‘11 (1)
i=
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where ; is the ith eigen value of W~'B in which W is the within-
group variance and h is the number of factors being considered in
MANOVA, defined by h = ¢ — 1. A high Pillai's V means a high
amount of separation between the samples of classes, with the
between-group variance being relatively large compared to the
total variance. The hypothesis test can be designed as follows using
F statistic transformed from Pillai's V.

Ho: py=pp =p3... = ue; Hy
- Exists under the condition u; — pu;#0 (2)

(V/s)/(ph)
(1—=(V/s))/Is(N—=c—=p+s)]

Hy: F= ~F(ph,s(N—c—p+s)) (3)

e (V/5)/(ph) N e _
H1'F_(l—(V/s))/[s(N—c—p+s)] Flph,s(N—c—p+s), A=SA.N]
(4)
: Vcri
i

Where p and c are the number of variables and the number of
classes, respectively. s is defined by min(p, h). By using these
defined distributions of Hy and H;, the confidence level and the
power can be calculated for a given sample size and effect size. The
method used for multi-class problem is used here to estimate the
minimum sample size for statistical stability whereby the sample
size is increased until the calculated power reaches the predefined
threshold of (1 — §). However, here is a limitation that the value of p
cannot be larger than N — ¢ + s = N — 1. This analysis may produce a
misleading sample size estimate when the real data set is not
consistent with the assumption (normality and equal variance)
underlying the statistic used in power analysis. To check the effect
of possible violations of the assumptions on the estimated sample
size, the actual power and mean differences between classes are
compared to the predefined values. The actual values in both cases
studied were sufficiently large that we need not be worried about
the impact of data which does not perfectly match the normality or
equal variance assumptions.

critical F =1.53514

6. Results and discussion

In this study, vibration signals of a good and nine different faulty
conditions of a hydraulic brake system have been considered. The
statistical power analysis F-test was employed to find the minimum
number of samples required to train the classifier with statistical
stability so as to get good classification accuracy. A data set con-
sisting of 550 samples has been considered. The null hypothesis, Hy
was assumed to be the means of the classes are the same whereas
the alternate hypothesis H; was assumed to be the means of the
classes are not the same. In statistics, type I error « is rejecting null
hypothesis when it is true and type II error § is accepting null hy-
pothesis when it is false. The power of the statistical test is the
probability that the test will reject null hypothesis when it is false.
That is, probability of not committing type II error and therefore
power is denoted by (1 — ). At first, the power level (1 — () and the
confidence interval (1 — «) were assumed to be 99%. In this power
analysis test, the sample size has been obtained for the given power
level, a error probability, repetitions and number of groups. Further,
the sample size has been obtained for various power levels 95%,
90%, 85%, 80%, and 75% with « error probability 5%, 10%, 15%, 20%
and 25% respectively. The central and non-central distribution of
the data set in power analysis is shown in Fig. 4.

From the mean and covariance matrix of the given data set, the
effect size and the corresponding value of the Pillai's V parameter
were found to be 0.5876 and 1.0267 respectively. One can easily
measure the statistical stability of the data set using the value of
Pillai's V parameter. If Pillai's V value is greater than 0.5, then the
statistical stability will be more and the required number of sam-
ples to be trained will be minimum and vice-versa. Sample size has
been obtained as 51 for all ten classes for the predefined power
level (99%) and « error probability (1%) with this Pillai's V value.
Hence it reduces to 5 per class. That is, it is enough if one has 5
samples to train the classifier to get good classification accuracy
and to retain a power level of 99%. Also, one can find the required
sample size with the power levels nearer to 99% from Fig. 5. At this
point, it is more appropriate to ask about the number of samples
required if the test can accommodate less than 99% power level
namely, 95%, 90%, 85%, 80% and 75%. Fig. 6 shows the number of
samples required for the given « error probability and for various
power level from 75% to 95% in steps of 5%. It can also be plotted as
shown in Fig. 7. That is, the sample size as a function of power level
for various « error probability from 5% to 25% in steps of 5%. The
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Fig. 4. F-Tests — MANOVA: repeated measures.
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F tests - MANOVA: Repeated measures, within-between interaction
Effect size f(V) = 0.5876299, Number of groups = 10, Repetitions = 5, Effect size f = 0.58763
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Fig. 5. Total sample size as a function of « error probability for various power level.

sample size for different pairs of power level (1 — ) and « error
probability is also presented in Table 2.

Sample size is not only the function of power level and « error
probability in power analysis but also a function of effect size. Effect
size measures play an important role in statistics. In statistics, an
effect size is a measure of the strength of the relationship between
two variables in a statistical population or a sample-based estimate
of that quantity. A set of experiments were carried out to find the
sample size as a function of effect size. Sample size as a function of
effect size for various « error probabilities and for various power
levels (1 — ) have been shown in Figs. 8 and 9 respectively. From
these figures, it is evident that the sample size decreases if either
the effect size increases or the « error probability increases. As ef-
fect size increases the total sample size decreases for a given power
level. As power level increases, the required sample size also

increases with increases in effect size. Finally, to study the influence
of effect size on « error probability, a set of experiments was carried
out for different power levels and the results are shown in Fig. 10.
As « error probability increases the effect size decreases. For a given
power level, the effect size decreases as « error probability
increases.

The results obtained using power analysis has been validated
through a functional test namely, C4.5 decision tree algorithm. Due
to easiness in training, general classification accuracy and compu-
tation complexity, C4.5 algorithm has been chosen amongst the
pool of classifiers. In this study, 55 samples from each class have
been considered and all the samples have been used for training the
classifier with 10-fold cross validation method. Here, the classifier's
job is a two phase process namely, feature selection and feature
classification. A decision tree (Fig. 11) has been generated using this

F tests - MANOVA: Repeated measures, within—between interaction
Number of groups = 10, Number of measurements = 5, Effect size f(V) = 0.58763

35

Total sample size
~nN w
w o
! | 1 | !

Power (1-B err prob)
= =0.95
=09

=0.85

—0— =10.75

o err prob

Fig. 6. Total sample size as a function of « error probability for various power level.
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F tests - MANOVA: Repeated measures, within-between interaction
Effect size f(V) = 0.5876299, Number of groups = 10, Repetitions = 5, Effect size f = 0.58763

| I
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Power (1-B err prob)
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= 0.04

—p— =0.05

Fig. 7. Total sample size as a function of power level for various « error probability.

Table 2
Power analysis test results.
Output parameter a=0.01, «=0051-=095 «=0.10,1-=090 «=0.151-=085 «a=020,1-5=080 a=0251-8=075
1-6=099
Non centrality 70.443015 48.343246 38.6746 31.76471 27.62471 26.24347
parameter A
Critical F 1.7509 1.5352 1.4278 1.3655 1.3141 1.2544
Denominator df 164 100 72 52 40 36
Total sample size 51 35 28 23 20 19
for 4 classes
Sample size per classes =5 =4 =3 = =2 =
Actual power 0.990305 0.9535217 0.915947 0.864861 0.831498 0.8447445

Power analysis test results with effect size f{V) = 0.5876299, number of groups = 10, repetitions = 5 with Pilli's V formula value = 1.0267052, numerator df = 36.0000.

Total sample size

F tests

- MANOVA: Repeated measures, within-between interaction

Number of groups = 10, Number of measurements = 5, Power (1-B err prob) = 0.95

I T T
0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Fig. 8. Total sample size as a function of effect size for various « error probability.
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F tests - MANOVA: Repeated measures, within-between interaction
Number of groups = 10, Number of measurements =5, « err prob = 0.05

Total sample size

Power (1-B err prob)

—— =005
=09
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—— =038

—o0— =075

I I I ! I L I L T I
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Effect size f(V)

T
0.35 0.4

Fig. 9. Total sample size as a function of effect size for various power level.

classifier and the five top most features namely have been chosen
as the selected features for the further study. To examine the
variation in the classification accuracy due to the sample size, five
samples from each class have been reduced and the classification
accuracy has been noted. This process has been carried out till it
remains to have five samples in each class. These results have been
plotted and shown in Fig. 12. From Fig. 12, one can observe that the
classification accuracy goes down significantly when the sample
size is reduced to below five. Also, the classification accuracy in-
creases when the sample size increases. It shows that it is enough if
one has five samples per class to train the classifier so as to get good
classification accuracy. However, present study aims to find the
sample size for training the classifier with statistical stability.
Hence, mean absolute error and the root mean squared error as a
function of sample size have been considered and shown in Figs. 13
and 14 respectively. For comparing the results obtained in power

analysis and C4.5 decision tree algorithm, a representative value
corresponding to 5% of « error probability was taken from Table 2.
As per power analysis result, from Table 2, if one can accommodate
5% of « error probability and willing to accept 95% of power level,
then for given data set the minimum required sample size is 5. This
means, if 5 samples were used for training the classifier, the
maximum « error probability that likely to happen would be 5%.
This has to be validated with C4.5 algorithm results. From Fig. 13, it
is evident that the mean absolute error is below 10% (i.e. it did not
exceed 10%) for cases whose sample size is greater than or equal to
10. The corresponding root mean squared error is shown in Fig. 14.

In classification problem, the mean absolute error of the clas-
sifier is a measure of type I error (« error probability). Type I error is
an error due to misclassification of the classifier. The mean absolute
error is a measure of type one error in classification problem. In
general, type I error is rejecting a null hypothesis when it is true. «

F tests - MANOVA: Repeated measures, within-between interaction
Number of groups = 10, Number of measurements = 5, Total sample size = 35

0.55

0.5 —

Effect size f(V)

0.3 4
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—o— =08

—o0— =075
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0.15 0.2 0.25
o err prob

0.3 0.35 0.4

Fig. 10. Effect size as a function of « error probability for various power level.
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<=0.007447
<=-0.30986 >-0.30986
<=-0.020434 >-0. 020434 <=0.423773 >0.423773

Sample variance

Standard Error

<=0.002577

>0.007447

<=-1.006507 >-1.006507

<=-1. 134623 >-1.134623

>0.002577

<=139.762717 >139.762717 <=-1.882919 >-1.882919 <=-0.28078 > O 28078
|
IDRMF (58.0/3.0) | | DRPW (4.0) | | DRPW (50.0) | | AE (55.0) | UDPWI (53‘0)
<=0.008797  >0.008797
UDPWI (3.0/1.0)| | DPWI (54.0) |

Fig. 11. Decision tree.

error probability is a measure of type I error in hypothesis testing
and hence, the equivalence is obvious. From the above discussion,
the results of power analysis are true and the actual error did not
exceed the upper bound (5%) found in power analysis. A similar

Total sample size as a function of classification accuracy

150
S, 100 —————
=5 50
é : 0 ‘J T T T T T
10 20 30 40 50 60

n
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Fig. 12. Sample size as a function of classification accuracy.

Total sample size as a function of mean absolute error
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Fig. 13. Sample size as a function of mean absolute error.

exercise of validating the results at other points also assures the
validity of the power analysis test. Thus one can confidently use the
sample size suggested by power analysis for machine learning
approach to fault diagnosis of automobile hydraulic brake system.

7. Conclusion

In this study, an automobile hydraulic brake system has been
considered with a good and nine different faulty conditions. A
statistical method called power analysis has been used to find the
minimum sample size to train the classifier so as to get good
classification accuracy with statistical stability. The statistical fea-
tures have been used for finding the sample size. The sample size
for 99% power level has been obtained as five per class. Sample size
for various « error probability and power level are also presented in
Table 1. The results obtained using power analysis has been vali-
dated by using a functional test namely, C4.5 decision tree algo-
rithm. The results and the graphs presented in Section 6 will serve
as a guideline for fixing the sample size in fault diagnosis of an
automobile hydraulic brake system.

Total sample size as a function of root mean squared value
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Fig. 14. Sample size as a function of root mean squared value.
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