
applied
sciences

Article

DGA Domain Name Classification Method Based on
Long Short-Term Memory with Attention Mechanism

Yanchen Qiao 1 , Bin Zhang 1,*, Weizhe Zhang 1,2, Arun Kumar Sangaiah 3 and Hualong Wu 1

1 Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen 518000, China;

qiaoych@pcl.ac.cn (Y.Q.); weizhe.zhang@pcl.ac.cn (W.Z.); hualong.wu@pcl.ac.cn (H.W.)
2 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150000, China
3 School of Computer Science and Engineering, VIT University, Vellore 632014, India; sarunkumar@vit.ac.in

* Correspondence: bin.zhang@pcl.ac.cn

Received: 15 September 2019; Accepted: 3 October 2019; Published: 9 October 2019
����������
�������

Abstract: Currently, many cyberattacks use the Domain Generation Algorithm (DGA) to generate

random domain names, so as to maintain communication with the Communication and Control (C&C)

server. Discovering DGA domain names in advance could help to detect attacks and response in time.

However, in recent years, the General Data Protection Regulation (GDPR) has been promulgated and

implemented, and the method of DGA classification based on the context information, such as the

WHOIS (the information about the registered users or assignees of the domain name), is no longer

applicable. At the same time, acquiring the DGA algorithm by reversing malware samples encounters

the problem of no malware samples for various reasons, such as fileless malware. We propose a

DGA domain name classification method based on Long Short-Term Memory (LSTM) with attention

mechanism. This method is oriented to the character sequence of the domain name, and it uses the

LSTM combined with attention mechanism to construct the DGA domain name classifier to achieve

the rapid classification of domain names. The experimental results show that the method has a good

classification result.

Keywords: security; DGA classification; attention mechanism; LSTM

1. Introduction

In recent years, cyberattacks have experienced explosive growth, which seriously threatens the

security of property data of internet users. The domain name is an important kind of infrastructure

for cyberattacks. It could be used to maintain a connection with the client to implement data return

and command delivery. To avoid the blacklist mechanism and prolong the attack time, the attacker

usually uses the DGA to generate new domain names. Domain Generation Algorithm (DGA) is an

algorithm used by cyberattackers to generate domain names periodically. The domain name generated

by DGA is usually called the DGA domain name. DGA domain names are not completely random.

Different attack organizations have different domain name generation algorithms for different attack

activities, so that the client can establish communication with the C&C server by using the domain

name generated by DGA. As the DGA domain name is generated periodically, the black and white list

does not necessarily exist, which affects the response time of the security organization to the attack

activity. Determining the attack of a malicious domain name can effectively determine the purpose

of the attack, the tools and malware used, etc., so as to ensure a rapid and effective response, greatly

reducing the damage caused by cyberattacks.

To detect attacks by detecting DGA domain names, security organizations typically perform reverse

analysis of malware samples. They identify DGA-related code and algorithms from malware samples

and quickly generate DGA domain names that will be used by the corresponding cyberattack. In turn,

Appl. Sci. 2019, 9, 4205; doi:10.3390/app9204205 www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 4205 2 of 14

the ability to detect the corresponding cyberattack is formed. In 2014, FireEye analyzed the DGA algorithm

of Srizbi malware. According to the DGA algorithm, hundreds of DGA domain names of Srizbi were

squatted, which effectively curbed the spread of Srizbi. The analysis of the DGA algorithm from malware

samples is a very difficult task and requires experienced reverse analysts who are particularly scarce.

At the same time, the attacker uses various means such as packing, encryption, and confusion to prevent

being reversed or increase the difficulty of the reverse, so as to increase the time that the DGA is analyzed,

thereby prolonging the survival time of the attack. In addition, new types of attacks, as well as fileless

malware, are often unable to obtain malware samples, resulting in the inability to reverse the DGA

algorithm used by the attack. Therefore, it is quite difficult to obtain the DGA algorithm from the malware

samples in reverse, and there are many unachievable factors in reality.

Security researchers can easily obtain WHOIS [1–6] information of domain names before the

GDPR is enacted. Then, according to the domain name’s context information, it can be determined

if it is a DGA domain name, whether it is generated by the same DGA algorithm, and whether the

attacker behind is the same. The WHOIS information of the domain name includes the registrant,

email address, mobile phone, address, and the like. To avoid being tracked, an attacker typically

uses fake information to register. However, to reduce costs, it is common to register multiple domain

names with the same registration information. Therefore, the association relationship among these

domain names can be determined according to the registration information. For example, Kaspersky’s

researcher GReAT [7] found the relationship among them through the WHOIS information of the

domain name and determined that these attacks were initiated by the Winnti attack organization.

However, for new domain names appearing in the network, it is difficult to obtain real-time judgments

from obtaining their WHOIS information to making associations based on WHOIS information. At the

same time, GDPR began to be enacted and implemented in 2018. After the implementation, it is

impossible to obtain the registration information of the domain name from the domain name registrar.

Security platforms such as VirusTotal no longer provide the WHOIS information of the domain name.

Therefore, DGA detection and classification by context information such as WHOIS of domain names

is no longer feasible.

Therefore, we can only determine whether it is a DGA domain name and which type of DGA it

belongs to by analyzing the domain name string. There has been a lot of work based on the textual

characteristics of domain names. Yadav et al. [8] perform DGA detection using the distribution

characteristics of the characters and the 2-gram character set in the domain name. Antonakakis et al. [9]

use domain name length, character frequency, randomness, and other characteristics to unsupervised

clustering of domain names to achieve DGA domain name detection. The traditional machine learning

method has problems, such as feature extraction, relying on expert experience, which makes it

easy for an attacker to bypass. Aiming at the problems existing in the current DGA domain name

classification, this paper proposes a DGA domain name classification method based on LSTM with

attention mechanism through the research of DGA and DGA domain name. This method neither

needs to reverse the malware sample nor uses context information such as WHOIS of the domain

name, but only uses the character sequence of the domain name. For the character sequence of the

domain name, the LSTM algorithm combined with the attention mechanism is used to construct the

DGA domain name classifier, to achieve fast and accurate classification of the domain name.

The contributions of this paper mainly include two aspects:

1. We only use the character sequence of the domain name for DGA domain name classification to

further prove that the character sequence contains DGA features.

2. We combine LSTM with attention mechanisms and apply them to DGA domain name

classifications to prove that the weights of characters in DGA domain names are different.

The remainder of the present paper is organized as follows. In Section 2, we briefly present related

work to detect and classify DGA domains. In Section 3, we briefly describe the techniques used in our

approach. In Section 4, we describe the architecture of our approach. The experimental results are

presented in Section 5, and the summaries of the whole paper are presented in Section 6.

Appl. Sci. 2019, 9, 4205 3 of 14

2. Related Work

There has been a lot of work using the dynamic features of domain names, including whether it

could be resolved to IP, the geographical distribution of IPs, etc. for DGA detection and classification.

In 2010, Antonakakis et al. [10] established a dynamic domain name scoring system that uses three

types of features, including network-based features (such as historical IP number of domain names,

geographic distribution, AS domain, etc.), domain-based features (such as the length of a domain

name, character distribution, etc.), and evidence-based features (including whether it is associated

with a known malware family, whether it resolves to a malicious IP, etc.). In the actual environment

deployment test, the accuracy of the system is as high as 96.8%. In 2010, Yadav et al. [11] developed

a methodology to detect domain fluxes in DNS traffic by looking for patterns inherent to domain

names that were generated algorithmically, in contrast to those generated by humans. Moreover,

they applied the methodology to packet traces collected at a Tier-1 ISP and showed they could

automatically detect domain fluxing, as used by the Conficker botnet, with minimal false positives.

In 2011, Bilge et al. [4] proposed a malicious domain name detection technology based on the passive

domain name analysis method. They extracted 15 types of features from traffic, including domain

name lifetime, period similarity, number of accesses, number of IPs parsed, whether IP is shared by

other domain names, digital symbol ratio and length of longest meaningful substring, etc. Finally,

the classifier was constructed using the J48 decision tree algorithm. After verification by the actual

environment, the detection accuracy of this method is as high as 98%. In 2012, Antonakakis et al. [9]

presented a new technique to detect randomly generated domains without reversing. Their insight

was that most of the DGA-generated (random) domains that a bot queries would result in Nonexistent

Domain (NXDomain) responses, and that bots from the same botnet (with the same DGA algorithm)

would generate similar NXDomain traffic. Using a multi-month evaluation phase, they showed that

the system could achieve very high detection accuracy. In 2013, Krishnan et al. [12] proposed a method

for detecting attack activity using Sequential Hypothesis Testing. They believed that hosts that have

been infected by malware will exhibit a domain name scanning behavior. The majority of the scanned

domain names could not resolve the IP. This behavior was abnormal. This type of abnormal behavior

was detected first, then the domain name requested by the terminal was analyzed, and the malicious

domain name was determined using the Zipf filter.

As the dynamic analysis consumed more computational resources and took a long time,

many works only used the character and sequence features of the domain name for detection and

classification. In 2012, Yadav et al. [8] proposed a DGA domain name detection method. This work was

inspired by the observation that the difference in character distribution between the normal domain

name and the DGA domain name was quite large. They used the characters in the domain name

and the distribution characteristics of the 2-gram character set, and finally used the edit distance and

Jaccard distance [13] algorithm. The actual detection rate of the method was as high as 83.87%. In 2012,

Antonakakis et al. [9] proposed a method for determining DGA domain names from unresolved

domain names. They first used the characteristics of domain name length, character frequency,

randomness, and other characteristics to unsupervised clustering of domain names. Then, they used

the Markov-based classification model to determine the attack behind the domain name, and filtered

out the active domain name, which was the C&C domain name. In 2014, Bilge et al. [14] designed

a system, called EXPOSURE, to detect DGA domains in real-time, by applying 15 unique features

grouped in four categories. They conducted a controlled experiment with a large, real-world dataset

consisting of billions of DNS requests. The results showed that the system worked well in practice,

and that it was useful in automatically identifying a wide category of malicious domains and the

relationships between them. In 2014, Schiavoni et al. [15] built a DGA domain botnet tracking and

intelligence system. First, the character-based and IP-based features were used to identify the DGA

and non-DGA domain names, and then the DGA domain names were grouped to identify the botnet

to which they belonged; they were tested on more than 1 million domain names, and the detection

accuracy was as high as 94.8%. In 2016, Woodbridge et al. [16] presented a DGA classifier that

Appl. Sci. 2019, 9, 4205 4 of 14

leveraged long short-term memory (LSTM) networks for real-time prediction of DGAs without the

need for contextual information or manually created features. Experimental results showed that the

method was significantly better than all state-of-the-art techniques. In 2017, Yu et al. [17] proposed a

DGA domain name detection method based on deep learning. The CNN and LSTM algorithms were

used to construct the classification model. The accuracy rates were 72.89% and 74.05%, respectively.

3. Theoretical Basis

3.1. Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) [18] with the characteristics of processing historical data and

modeling memory is an important branch of deep learning. From a biological perspective, RNN is

a simple simulation of the biological neural system ring link, which is suitable for tasks with time

series characteristics such as handwriting font recognition, speech recognition, and natural language

processing. The original RNN is composed of an input vector, x; a hidden layer state, s; an output

vector, h; a weight parameter, U, of the input sequence information; a weight parameter, W, of the

hidden layer state; a weight parameter, V, of the output sequence information; and the like.

St is calculated based on the hidden layer state st−1 at the previous time and the input xt at the

current time. Let the activation function of the hidden layer state be f , then the current hidden layer

state, st, is calculated as

st = f (Wst−1, Uxt) (1)

Assuming that the output activation function is g, the output is calculated as

ht = g(Vst) (2)

It can be seen from the formula that the hidden layer state st of the RNN has a memory function

for the sequence, and the sequence information can be retained by the hidden layer state. The DGA

domain name is a sequence of characters that is automatically constructed using algorithms. The DGA

domain name can be modeled using RNN for detection or classification.

3.2. Long Short-Term Memory (LSTM)

However, limited by structure, it is difficult for the original RNN to learn valid data in long-term

dependent sequence data. Inputs that are far from the current moment cannot contribute to the update

of the current time model parameters, the so-called gradient disappearance problem. The length of

the DGA domain name is usually very long. For example, the switch domain name of Wannacry is 41

characters long, and, in practice, DGA domain names longer than 70 are encountered often. The most

popular solution to the problem of RNN gradient disappearance is using the LSTM [19] structure

instead of using the sigmoid activation function in the original RNN.

The LSTM is a special artificial RNN architecture [19] used in the field of deep learning. LSTM

has proven to be more effective than traditional RNN models in dealing with long-term dependency

problems. LSTM and RNN are similar in timing, but the way to calculate the state of hidden layer

neurons is different. Each memory unit of the LSTM includes four main elements: input gate, forgetting

gate, output gate, and self-looping connected units. Thus, the output value is controlled between

0 and 1, responsible for describing how much is passed. At time t, xt represents the input; it is the

activation value of the input gate; it is the activation value of the input gate; ft is the activation value

of the forgetting gate; ot is the activation value of the output gate; ht and ht−1 are the outputs of the

memory cell at times t and t − 1, respectively; Ct and Ct−1 are the states of the memory cell at time t

and t − 1, respectively; and C′

t is the candidate state of the memory cell. Wi, Ui, Wc, Uc, W f , U f , Wo,

Uo, etc. are the weights of the corresponding gate in the main memory unit. bi, bc, b f , bo, etc. are the

offsets of the corresponding gates in the memory unit. σ in the figure is the activation function.

Appl. Sci. 2019, 9, 4205 5 of 14

The state of the memory cell at time t is as follows,

Ct = σ(Wixt + Uiht−1 + bi)× tan(Wcxt + Ucht−1 + bc)

+σ(W f xt + U f ht−1 + b f)× Ct−1

(3)

The output of the t-memory unit is

Ht = σ(Woxt + Uoht−1 + bo)× tan(Ct) (4)

This mechanism of the LSTM memory unit allows long-term storage and access to sequence

information, thereby reducing the problem of gradient disappearance. It is suitable for building DGA

domain name detection and classification models. Woodbridge et al. [16] used LSTM constructed DGA

domain name detection and classification model to obtain Good results.

3.3. Attention Mechanism

When we analyzed the DGA algorithm, we found that the attacker can control the domain name

generated by the DGA; that is, the domain name generated in one cycle cannot be duplicated with the

registered domain name of other person, but can hit the attacker to register the domain name, usually

adding some restrictions. For example, the Banjori domain name only transforms the first four letters,

and the part after the domain name is unchanged. Therefore, as long as the latter part is detected,

the domain name can basically be regarded as a DGA and does not need to pay attention to the entire

domain name. Therefore, this paper introduces the attention mechanism, which, in the classification

model, gives different attention to different parts of the input domain name, effectively improving the

classification effect of DGA domain names.

In recent years, attention mechanism has been widely used in various types of deep learning

tasks such as machine translation, image recognition, and speech recognition. Compared with simple

Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), better results have

been achieved. The use of self-attention in the BERT model [20] greatly enhances the effect of machine

translation. When human eyes view pictures, they quickly scan the global image to obtain the target

area that needs to be focused on, that is, the focus of attention, and then invest more attention resources

in this area to obtain the details of the target while suppressing other useless information. The attention

mechanism in deep learning is essentially similar to the human selective visual attention mechanism.

The goal is to select information that is more critical to the current mission objectives from a variety of

information. There are a number of popular attention mechanisms, such as content-based attention [21],

attention based on (global/local) location [22], self-focused [23], etc. This paper refers to the global

attention [22] and uses a simpler attention mechanism to reduce computational performance.

The most important aspect of the global attention mechanism is the calculation of its position

weight, assuming H = [h1, h2, · · · , hm]T , where hi = [h1
i , h2

i , · · · , hn
i], then H is a matrix of m × n:

H =







h1
1 · · · hn

1
...

. . .
...

h1
m · · · hn

m






(5)

We need to calculate the position weight for hi; first, transpose H, then HT is a matrix of n × m:

HT =







h1
1 · · · h1

m
...

. . .
...

hn
1 · · · hn

m






(6)

Then, use the softmax function for each line of HT , the result is as follows,

Appl. Sci. 2019, 9, 4205 6 of 14

ST =













h1
1

∑
m
1 h1

j

· · ·
h1

m

∑
m
1 h1

j

...
. . .

...
hn

1

∑
m
1 hn

j
· · ·

hn
m

∑
m
1 hn

j













=







a1
1 · · · a1

m
...

. . .
...

an
1 · · · an

m






(7)

Then transpose ST to get the required weight matrix S and the attention matrix:

S =







a1
1 · · · an

1
...

. . .
...

a1
m · · · an

m






(8)

Finally, H is multiplied element-wise by S to achieve the attention mechanism:

H × S =







h1
1a1

1 · · · hn
1 an

1
...

. . .
...

h1
ma1

m · · · hn
man

m






(9)

The attention mechanism can be placed before the LSTM layer or behind the LSTM layer.

This paper demonstrates that the attention mechanism is better behind the LSTM layer. Therefore,

this paper puts the attention mechanism behind the LSTM layer.

4. Methodology

4.1. Overview

As can be seen in Figure 1, the method of this paper is composed of training and testing

phrases. In both training and testing phrases, the domain names of the train and test dataset must

be preprocessed. For each domain name, after DGA string extraction, padding, and embedding, it is

converted to a 54 × 128 matrix. Then, in the training phrase, the matrices of the train dataset are fed

into the deep learning network to generate a classification model. Finally, the matrices of the test

dataset are tested by the classification model. The specific description is as follows.

Figure 1. Overview of the Domain Generation Algorithm (DGA) Classification Method.

Appl. Sci. 2019, 9, 4205 7 of 14

4.2. DGA String Extraction

In general, to improve controllability and avoid being quickly blocked, most attackers will register

their second-level domain name. For example, “h7smcnrwlddsdn34fgv.info” is the DGA domain

name registered for the malicious code of Sality. However, registering a second-level domain name

has a certain cost. Moreover, even if forged information is used, traceable information, such as

IP, may be left, and there is a possibility of being traced by the source. At the same time, some

attacks use dynamic domain name services to generate third-level domain names to save attack

costs, such as “blackshadespro.no-ip.org”. The second-level domain name and third-level domain

name of the dynamic domain name service are not necessarily completely separated. Two types of

domain names may be used simultaneously in one attack or different attacks launched by the same

organization. In the domain name, this paper uses the string generated by DGA for detection and

classification, such as “h7smcnrwlddsdn34fgv” in “h7smcnrwlddsdn34fgv.info”, “blackshadespro” in

“blackshadespro.no-ip.org”, and so on. Therefore, we follow the following guidelines to extract the

DGA domain name string from the domain name.

1. If it is a second-level domain name, the second-level domain name part is extracted,

2. If it is a third-level domain name, first determine whether the second-level domain name is

the domain name of the dynamic domain name service, such as “no-ip.com”, “afraid.org”,

“duckdns.com”, “dnsdynamic.org”, “dyndns.net”, “dynu.com”, etc., if so, the third-level domain

name part is extracted.

3. If the second-level domain name in the third-level domain name is not the domain name of the

dynamic domain name service provider, the longest string is extracted.

4. Otherwise, extract the longest string.

4.3. Domain Name Padding

The length of the domain name is not fixed. Some works use the domain name length [9,10] as

one of the characteristics of the DGA domain name detection and classification. Table 1 shows the

lengths of 11 common DGA domain names. It can be seen from the table that the lengths of different

DGA domain names are usually different; however, the method proposed in this paper requires a fixed

length as input.

Table 1. Eleven types of DGA domain name length.

DGA Length Example

banjori 10 pdtmstring
corebot 23 a0c4e8sr70oluhsf3t1h1va

cryptolocker 8 rifxkpdx
dircrypt 10 xzdiobjady
kraken 8 iuhqhbmq
locky 17 qqeuxqbetndnsclkm

pykspa 9 folmecyca
qakbot 20 gutkdzfamdgsjbhpuoyb
ramdo 8 kuekesqm
ramnit 9 byqdmekgd
simda 23 jewumerydatyvyjolyvofoh

Usually, the longest length in the dataset is chosen as the fixed length, and then the short domain

name is padded. However, considering the scalability of the model, this paper makes statistics on

the length of the DGA domain name published on Bambenek Consulting [24]. The result is shown

in Figure 2; most DGA domain names are concentrated in the 10–20 interval, and the longest DGA

domain name is 44, which covers more possibilities and guarantees the performance of the method.

Appl. Sci. 2019, 9, 4205 8 of 14

Adding 10, we use 54 as the input length; all domain names are padded to 54. This paper uses the

symbol “*”, which is not allowed in the domain name, to complete the domain name.

Figure 2. DGA domain name length distribution.

4.4. Embedding

After each domain name is completed, the form is d = [a1, a2, · · · , a54], where the subscript of a

indicates the location. Using characters as words, each domain name can be thought of as a sentence

composed of characters. Next, using Word2Vec’s CBOW model, the word vector of all characters in

the domain name is calculated on the complete training set. In this paper, the dimension of the word

vector is set to 128, taking into account the number of element in ASCII is 128. The word vector of each

character can be expressed as Wa = [xa
1, xa

2, · · · , xa
128], where a represents the character in the domain

name. The word vectors are then organized in the order of the characters in the domain name so that

each domain name is converted to a 54 × 128 matrix, as follows,

Md =













Wa1

Wa2

...

Wa54













=







x
a1
1 · · · x

a1
128

...
. . .

...

x
a54
1 · · · x

a54
128






(10)

4.5. Deep Learning Network Structure

In this paper, we use the LSTM combined with the attention mechanism, as shown in Figure 3;

the functions of each layer are as follows,

1. INPUT: Input layer, the domain name is converted to a matrix of dimension 54 × 128 after the

length is padded and embedding, so the input dimension is 54 × 128.

2. LSTM: LSTM layer, sequence output, and output 54 × 128 feature vector.

3. ATTENTION: Attention mechanism, according to Section 3.3, and output 54 × 128 feature vector.

4. FC: Fully connected layer, which stretches the feature vector output by ATTENTION. Each pixel

represents a unit. The output feature is 6912 units using the fully connected layer operation, and

the probability of DROPOUT is set to 0.5.

5. OUTPUT: Output layer, this layer is fully connected with the FC layer; the output length is the

required number of classifications, which represents which classification the extracted features

belong to; and the classification function is Softmax.

Appl. Sci. 2019, 9, 4205 9 of 14

Figure 3. Design of Classification Network Structure Based on Attention Mechanism and LSTM.

The parameters in the network structure are as follows.

• Classifier: Based on the characteristics of DGA domains, we use Softmax classifier to judge which

type the domain belongs to. The essence of Softmax function is to map a K-dimensional arbitrary

real vector to another K-dimensional real vector, where the value of each element in the vector is

in the [0, 1] interval, as shown by Formula (11), where vj is the j element of the vector, and the

Softmax value of the element is so f tmax(vj),

so f tmax(vj) =
vj

∑
K
k=1 vk

(11)

• Loss function: When the model is trained, the loss is calculated according to the loss function,

and then back-propagation (BP) is used to adjust the parameter adjustment. In this paper, the

Categorical Cross-Entropy Loss function is used as the loss function of the model.

L(Y, Ŷ) = −∑
i

yi × log ŷi (12)

• Activation function: The formula of the ReLU activation function is as follows. This function can

satisfy the sparsity in bionics. It activates the units when the input value is higher than a certain

number, and can quickly converge in the stochastic gradient descent algorithm. The gradient of

the function is 0 or constant, which can alleviate the problem of gradient disappearance, thereby

improving the learning precision and speed of the neural network. Therefore, this paper uses

ReLU as the activation function in two convolutional layers and two fully connected layers.

relu(x) = max(0, x) (13)

At the same time, to prevent overfitting, a dropout layer is added to the network structure.

The dropout layer prevents overfitting by preventing the synergy of certain features. At each training,

Appl. Sci. 2019, 9, 4205 10 of 14

the units are randomly removed, allowing one unit to appear independent of the other, preventing

features from interdepending and reducing the transmission of erroneous information.

5. Experimental Evaluation

In this section, we first describe the dataset used in the experiments. Next, we present an

experiment to prove a certain capability of our method. Finally, we compare our method with previous

work in many respects.

5.1. DGA Data Set

The OSINT DGA feed from Bambenek Consulting [24] was collected as DGA domains. Then,

we filtered out the classes with more than 5000 for training, and finally there were a total of 765,091

DGA domains. At the same time, the first one million domain names of the Alexa [25] website were

collected as normal domains. Therefore, a dataset was generated, including normal domains and DGA

domains, with a total 1,675,404, as shown in Table 2.

Table 2. The details of the dataset.

DGA Amount

banjori 439,223
Post 66,000
tinba 65,603

ramnit 47,510
necurs 32,768
qakbot 20,000

murofet 14,260
pykspa 14,215
ranbyus 13,960
simda 13,681

shiotob/urlzone/bebloh 12,521
dyre 7998

Cryptolocker 6000
nymaim 6000

locky 5352
Alex 910,313

5.2. Experimental Results

This paper performed random sampling to generate sets for our evaluations. First, the sample set

was randomly divided into 10 parts on average, and one of them was taken as a test set. One of the

remaining nine samples was used as a verification set, and the remaining eight were used as a training

set. The ratio of the final training set, verification set, and test set is 8:1:1. After training, the test set

was used to test the classification model. The results of the experiment are shown in Table 3.

It can be seen from Table 3 that the average precision rate is 95.05%, the average recall rate

is 95.14%, and the average F1 score is 95.48%. The accuracy rate is 95.14%, which is very high.

The confusion matrix for the LSTM multiclass classifier with attention mechanism is show in Figure 4.

Blocks in the figure represent the fraction of domains belonging to the DGA families on the vertical axis,

classified as DGA families on the horizontal axis, where 0 is depicted as white and 1 depicted as black.

As can be seen in Figure 4, a large number of Cryptolocker DGAs, Locky DGAs, and Necurs DGAs are

classified as Ramnit. We analyzed these DGAs and found that they are very similar. Remi Cohen [26]

pointed out that the Ramnit acquired parts of the Zeus code and became a banking trojan after the Zeus

source code leak. Limor Kessem [27] supposed that Necurs operators were linked to the very centrum

of Zeus elite in the early days, whereas Tom Spring [28] told us that the Locky ransomware roared

back to life via Necurs botnet. We could infer that there is some relationship among Cryptolocker,

Appl. Sci. 2019, 9, 4205 11 of 14

Locky, Necurs, and Ramnit; that is why some DGAs of Cryptolocker, Locky, and Necurs are classified

as Ramnit.

Table 3. Experimental results of our method.

Domain Type Precision Recall F1 Score Support

nymaim 0.3988 0.1115 0.1743 601
ranbyus 0.4672 0.8455 0.6018 1346
murofet 0.7641 0.7207 0.7418 1443
pykspa 0.8972 0.7207 0.7994 1393
locky 0.0000 0.0000 0.0000 574
shiotob 0.9751 0.9251 0.9494 1268
banjori 0.9998 1.0000 0.9999 43,808
necurs 0.6651 0.1722 0.2735 3241
Cryptolocker 0.1000 0.0018 0.0035 562
simda 0.9264 0.9669 0.9462 1418
dyre 1.0000 1.0000 1.0000 797
Post 0.9994 0.9998 0.9996 6644
tinba 0.9259 0.9920 0.9578 6498
qakbot 0.7862 0.5013 0.6122 1973
ramnit 0.4688 0.7525 0.5777 4856
Alex 0.9898 0.9956 0.9927 91,119

avg/total 0.9505 0.9514 0.9458 167,541

Figure 4. Confusion Matrix for the long short-term memory (LSTM) model with attention mechanism.

5.3. Work Comparison and Discussion

Yadav et al. [8] proposed a DGA domain name detection method. This work was inspired by the

observation that the difference in character distribution between the normal domain name and the

DGA domain name is quite large. They used the characters in the domain name and the distribution

characteristics of the 2-gram character set, and finally used the edit distance and Jaccard distance [13]

algorithm. Although Woodbridge et al. [16] proposed a method for DGA detection and classification

using LSTM algorithm in 2016, they only detected and classified the strings of domain names, and it

has been verified by experiments to have very good detection and classification effects. Compared

Appl. Sci. 2019, 9, 4205 12 of 14

with the method in this paper, the attention mechanism is lacking. We compare our method with

Yadav et al. [8] and Woodbridge et al. [16], and the results are shown in Table 4:

Table 4. Experimental results of Woodbridge et al. [16].

Yadav et al. [8] Woodbridge et al. [16] Our Method
Domain Type Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score Support

Alex 0.9612 0.9863 0.9736 0.9865 0.9970 0.9917 0.9956 0.9956 0.9927 91,119
banjori 0.9741 0.9889 0.9814 0.9998 1.0000 0.9999 1.0000 1.0000 0.9999 43,808
Cryptolocker 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0018 0.0018 0.0035 562
dyre 0.9820 1.0000 0.9909 0.9975 1.0000 0.9987 1.0000 1.0000 1.0000 797
locky 0.0294 0.0038 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 574
murofet 0.5139 0.4861 0.4996 0.7441 0.7477 0.7459 0.7207 0.7207 0.7418 1443
necurs 0.2609 0.0253 0.0461 0.6225 0.1725 0.2701 0.1722 0.1722 0.2735 3241
nymaim 0.1080 0.0409 0.0593 0.3621 0.1048 0.1626 0.1115 0.1115 0.1743 601
Post 0.9897 0.9913 0.9905 0.9995 1.0000 0.9998 0.9998 0.9998 0.9996 6644
pykspa 0.7253 0.5690 0.6377 0.9407 0.6827 0.7912 0.7207 0.7207 0.7994 1393
qakbot 0.7160 0.3483 0.4686 0.7970 0.4774 0.5971 0.5013 0.5013 0.6122 1973
ramnit 0.3541 0.5580 0.4333 0.4711 0.7360 0.5745 0.7525 0.7525 0.5777 4856
ranbyus 0.0000 0.0000 0.0000 0.4599 0.8522 0.5974 0.8455 0.8455 0.6018 1346
shiotob 0.9349 0.6584 0.7727 0.9873 0.9211 0.9531 0.9251 0.9251 0.9494 1268
simda 0.8203 0.6839 0.7459 0.9688 0.8533 0.9074 0.9669 0.9669 0.9462 1418
tinba 0.6709 0.8588 0.7533 0.9264 0.9912 0.9577 0.9920 0.9920 0.9578 6498

avg/total 0.8960 0.9127 0.9001 0.9482 0.9504 0.9445 0.9505 0.9514 0.9458 167,541

It can be seen from Table 4 that our method has a much higher precision, recall, and F1 score

compared with the work of Yadav et al. [8]. Compared with the work of Woodbridge et al. [16],

the improvement of the method is not obvious.

Therefore, we conducted a 10-fold cross-validation experiment to compare the method of

Woodbridge et al. [16] with our method. The sample set was divided into 10 parts on average, and one

of them was taken as a test set each time. One of the remaining nine samples was used as a verification

set, and the remaining eight were used as a training set. The ratio of the final training set, verification

set, and test set is 8:1:1. Each experiment was carried out for 20 epochs of training. After training,

the test set was used to test the classification model. The results of 10 experiments are shown in Figure 5.

As can be seen in Figure 5, the precision of our method is superior than Woodbridge’s method [16] in

each experiment. This proves that the weights of different characters in different positions in the DGA

domain name are different, and the attention mechanism is necessary for DGA classification.

Figure 5. Comparison of the precision of our method and Woodbridge’s method.

Appl. Sci. 2019, 9, 4205 13 of 14

6. Conclusions

At present, there are many problems in DGA domain name classification. For example, it is

difficult to obtain DGA algorithm by reversing malware samples, and the WHOIS information caused

by the implementation of GDPR can no longer be easily obtained. Based on the research of DGA

algorithm and DGA domain name, we propose a DGA domain name classification method based on

LSTM with attention mechanism. This method no longer reverses the malware sample, nor does it

use context information such as WHOIS of the domain name, and only uses the character sequence of

the domain name. For the character sequence of the domain name, each domain name is converted

into a matrix of fixed dimensions by padding and embedding. Then it use the LSTM with attention

mechanism algorithm to construct the DGA domain name classification model to achieve fast and

accurate classification of domain names. The experimental results show that combining the attention

mechanism with the LSTM can effectively classify DGA domain names. Therefore, the DGA domain

name is associated with the network attack, and the response time of the attack incident is shortened.

The method takes into account the weights of different characters in different positions in the DGA

domain name and has higher classification accuracy than the simple LSTM algorithm.

Author Contributions: Conceptualization, Y.Q. and B.Z.; methodology, Y.Q.; software, Y.Q.; validation, Y.Q.;
formal analysis, W.Z.; investigation, Y.Q. and H.W.; resources, B.Z.; data curation, Y.Q. and H.W.; writing—original
draft preparation, Y.Q.; writing—review and editing, B.Z. and A.K.S.; visualization, H.W.; supervision, B.Z. and
W.Z.; project administration, W.Z. and B.Z.; funding acquisition, B.Z. and W.Z.

Funding: This work is supported by the Key Research and Development Program for Guangdong Province,
2019B010136001, and the Peng Cheng Laboratory Project of Guangdong Province, PCL2018KP004 and
PCL2018KP005.

Acknowledgments: We gratefully acknowledge the helpful comments and suggestions of the reviewers
and editors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McGrath, D.K.; Gupta, M. Behind Phishing: An Examination of Phisher Modi Operandi. In Proceedings

of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats, San Francisco, CA, USA,

15 April 2008; USENIX Association: Berkeley, CA, USA, 2008; pp. 4:1–4:8.

2. Ma, J.; Saul, L.K.; Savage, S.; Voelker, G.M. Beyond Blacklists: Learning to Detect Malicious Web

Sites from Suspicious URLs. In Proceedings of the 15th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; ACM: New York, NY, USA, 2009;

pp. 1245–1254. [CrossRef]

3. Felegyhazi, M.; Kreibich, C.; Paxson, V. On the Potential of Proactive Domain Blacklisting. In Proceedings of

the 3rd USENIX Conference on Large-scale Exploits and Emergent Threats: Botnets, Spyware, Worms, and

More, San Jose, CA, USA, 17 April 2010; USENIX Association: Berkeley, CA, USA, 2010; p. 6.

4. Bilge, L.; Kirda, E.; Kruegel, C.; Balduzzi, M. EXPOSURE: Finding Malicious Domains Using Passive DNS

Analysis. In Proceedings of the 18th Network and Distributed System Security Symposium, San Diego, CA,

USA, 6 February 2011; Internet Society: Reston, VA, USA, 2011; pp.1–17.

5. Canali, D.; Cova, M.; Vigna, G.; Kruegel, C. Prophiler: A Fast Filter for the Large-scale Detection of Malicious

Web Pages. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28

March–1 April 2011; ACM: New York, NY, USA, 2011; pp. 197–206. [CrossRef]

6. Zhang, J.; Saha, S.; Gu, G.; Lee, S.; Mellia, M. Systematic Mining of Associated Server Herds for Malware

Campaign Discovery. In Proceedings of the 2015 IEEE 35th International Conference on Distributed

Computing Systems, Columbus, OH, USA, 29 June–2 July 2015; pp. 630–641. [CrossRef]

7. GReAT. Winnti. More than Just a Game. 2013. Available online: https://securelist.com/analysis/internal-

threats-reports/37029/winnti-more-than-just-a-game/ (accessed on 27 June 2019).

8. Yadav, S.; Reddy, A.K.K.; Reddy, A.L.N.; Ranjan, S. Detecting Algorithmically Generated Domain-Flux

Attacks With DNS Traffic Analysis. IEEE/ACM Trans. Netw. 2012, 20, 1663–1677. [CrossRef]

Appl. Sci. 2019, 9, 4205 14 of 14

9. Antonakakis, M.; Perdisci, R.; Nadji, Y.; Vasiloglou, N.; Abu-Nimeh, S.; Lee, W.; Dagon, D. From Throw-away

Traffic to Bots: Detecting the Rise of DGA-based Malware. In Proceedings of the 21st USENIX Conference

on Security Symposium, Bellevue, WA, USA, 8–10 August 2012; USENIX Association: Berkeley, CA, USA,

2012; p. 24.

10. Antonakakis, M.; Perdisci, R.; Dagon, D.; Lee, W.; Feamster, N. Building a Dynamic Reputation System for

DNS. In Proceedings of the 19th USENIX Conference on Security, Washington, DC, USA, 11–13 August 2010;

USENIX Association: Berkeley, CA, USA, 2010; p. 18.

11. Yadav, S.; Reddy, A.K.K.; Reddy, A.N.; Ranjan, S. Detecting Algorithmically Generated Malicious Domain

Names. In Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement, Melbourne,

Australia, 1–3 November 2010; ACM: New York, NY, USA, 2010; pp. 48–61. [CrossRef]

12. Krishnan, S.; Taylor, T.; Monrose, F.; McHugh, J. Crossing the threshold: Detecting network malfeasance via

sequential hypothesis testing. In Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), Budapest, Hungary, 24–27 June 2013; pp. 1–12. [CrossRef]

13. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1988.

14. Bilge, L.; Sen, S.; Balzarotti, D.; Kirda, E.; Kruegel, C. Exposure: A Passive DNS Analysis Service to Detect

and Report Malicious Domains. ACM Trans. Inf. Syst. Secur. 2014, 16, 14:1–14:28. [CrossRef]

15. Schiavoni, S.; Maggi, F.; Cavallaro, L.; Zanero, S. Phoenix: DGA-Based Botnet Tracking and Intelligence.

In Detection of Intrusions and Malware, and Vulnerability Assessment; Dietrich, S., Ed.; Springer International

Publishing: Cham, Switzerland, 2014; pp. 192–211.

16. Woodbridge, J.; Anderson, H.S.; Ahuja, A.; Grant, D. Predicting Domain Generation Algorithms with Long

Short-Term Memory Networks. arXiv 2016, arXiv:1611.00791.

17. Yu, B.; Gray, D.L.; Pan, J.; Cock, M.D.; Nascimento, A.C.A. Inline DGA Detection with Deep Networks. In

Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans,

LA, USA, 18–21 November 2017; pp. 683–692. [CrossRef]

18. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533–536. [CrossRef]

19. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

[PubMed]

20. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention

Is All You Need. arXiv 2017, arXiv:1706.03762.

21. Graves, A.; Wayne, G.; Danihelka, I. Neural Turing Machines. arXiv 2014, arXiv:1410.5401.

22. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation.

arXiv Preprint 2015, arXiv:1508.04025.

23. Cheng, J.; Li, D.; Lapata, M. Long Short-Term Memory-Networks for Machine Reading. arXiv 2016,

arXiv:1601.06733.

24. Bambenek, J. OSINT Feeds from Bambenek Consulting. 2019. Available online: http://osint.bambenekconsulting.

com/feeds/ (accessed on 10 September 2019).

25. Alex. Keyword Research, Competitive Analysis, & Website Ranking | Alexa. 2019. Available online:

https://www.alexa.com/ (accessed on 10 September 2019).

26. Cohen, R. Banking Trojans: A Reference Guide to the Malware Family Tree. 2019. Available

online: https://www.f5.com/labs/articles/education/banking-trojans-a-reference-guide-to-the-malware-

family-tree (accessed on 3 September 2019).

27. Kessem, L. The Necurs Botnet: A Pandora’s Box of Malicious Spam. 2017. Available online: https:

//securityintelligence.com/the-necurs-botnet-a-pandoras-box-of-malicious-spam/ (accessed on 3 September 2019).

28. Spring, T. Locky Ransomware Roars Back to Life Via Necurs Botnet. 2017. Available online: https://threatpost.

com/locky-ransomware-roars-back-to-life-via-necurs-botnet/125156/ (accessed on 3 September 2019).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Related Work
	Theoretical Basis
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Attention Mechanism

	Methodology
	Overview
	DGA String Extraction
	Domain Name Padding
	Embedding
	Deep Learning Network Structure

	Experimental Evaluation
	DGA Data Set
	Experimental Results
	Work Comparison and Discussion

	Conclusions
	References

