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Abstract: Solar photovoltaic (PV) systems are attracting a huge focus in the current energy scenario.
Various maximum power point tracking (MPPT) methods are used in solar PV systems in order to
achieve maximum power. In this article, a clear analysis of conventional MPPT techniques such as
variable step size perturb and observe (VSS-P&O), modified incremental conductance (MIC), fractional
open circuit voltage (FOCV) has been carried out. In addition, the soft computing MPPT techniques
such as fixed step size radial basis functional algorithm (FSS-RBFA), variable step size radial basis
functional algorithm (VSS-RBFA), adaptive fuzzy logic controller (AFLC), particle swarm optimization
(PSO), and cuckoo search (CS) MPPT techniques are presented along with their comparative analysis.
The comparative analysis is done under static and dynamic irradiation conditions by considering
algorithm complexity, tracking speed, oscillations at MPP, and sensing parameters. The single-diode
model PV panel and double-diode model PV panel are also compared in terms of fill factor (FF) and
maximum power extraction. Clear insight is presented supporting the suitability of MPPT techniques
for different types of converter configurations.

Keywords: double-diode model PV panel; duty cycle; high step-up boost converters; single diode
model PV panel; MPPT techniques

1. Introduction

Due to the depletion of fossil fuels and the increment in energy demand, a new era has begun
with a huge welcome for renewable energy sources (RESs) all over the world. RESs, such as solar,
tidal, and wind that are free from environmental pollution and with excess availability have become
important during recent years [1–3]. The worldwide concern about CO2 reduction has led to RES
deployment. A solar photovoltaic (PV) system has become a much more flexible RES due to its
availability everywhere on the earth [4]. The installation and operating costs of a PV system are
reduced to a greater extent due to the development of semiconductor manufacturing technology [5].

There are three types of PV cell technologies, i.e., mono, poly, and thin film [6]. The mono
and polycrystalline PV cells are designed using a microelectronic manufacturing technique and their
efficiencies, as per REC solar energy reviews, are 21.7% [7] and 17.8% [8], respectively. Thin film PV
cells are designed using CdTe, A-Si, and CuInse2 semiconductor materials with efficiencies ranging
from 15% to 15.8% [9]. Hence, most of the PV system designers are considering high-efficiency
monocrystalline silicon technology.

From the literature survey [10–13], many researchers have used different circuit topologies to
model the PV array at different atmospheric conditions. Some researchers have focused on single-diode
model PV panel modeling and some other researchers have preferred double-diode model PV panel
modeling based on their application. In this article, a single- and double-diode model PV panel-based
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comparative analysis was carried out in terms of fill factor (FF), maximum power extraction, and
efficiency. From the comparison results, a double-diode circuit PV panel was used to assess the
maximum power point tracking (MPPT) techniques for controlling the boost converter duty cycle.

Research areas in solar have included PV modeling, MPPT techniques, design of high step-up
DC-DC converter, duty cycle control, and efficiency improvement [14]. In this article, PV array
modeling, variable step size MPPT controller implementation, and design of high step-up boost
converters have been carried out. The main issue of PV power generation is its continuous output
power variation. In order to overcome this problem, a boost converter is interfaced to harvest the peak
power from a solar PV system. From the literature survey [14,15], the boost converter is interfaced
between the PV panel and the DC-load in order to improve the efficiency of a solar PV system.
In addition, it provides isolation between the PV power generation system and the load so that the PV
array operation is not affected by sudden changes in DC-loads and short circuit faults at the load side.

From the literature survey [16–18], different types of conventional DC-DC converters are available
to control PV voltage such as Boost [19], Buck-Boost [20], single ended primary inductance converter
(SEPIC) [18], and CUK [21]. The Boost converter is used to step up the DC voltage, but it does not have
overcurrent protection. In order to overcome this issue, a CUK converter is used in [22] to stabilize
the PV output voltage. The drawback of the CUK converter is high complexity of implementation
and also it requires two switches, two capacitors, and two inductors. The SEPIC voltage gain is high
when compared to boost and CUK converters. The problem of a SEPIC is high magnetic inrush current
and that it lacks short circuit faults current protection on the load side [23]. Therefore, most of the
conventional boost converters are not suitable for achieving constant output voltage, less current
ripples, as well as wide input (i/p) and output (o/p) operations. In this work, recently developed high
step-up DC-DC converters are presented, a switched capacitor boost converter (SCBC) [24] and a
stackable switching boost converter (SSBC) [25], and they are compared with a conventional boost
converter (CBC) [19].

There are so many conventional and evolutionary MPPT techniques illustrated in the literature
that are based on the technique of controlling the duty cycle and the output voltage of the boost
converter [26–28]. The overall publications of MPPT techniques, annually, are given in Figure 1.
As shown in Figure 1, it is observed that the number of publications, annually, has continued to
increase, which shows that most of the researchers have been working on the development of
different advanced MPPT techniques and it is the most popular aspect in solar power generation to
improve the performance of a PV system [29]. Among all the conventional techniques, fractional open
circuit voltage (FOCV) and fractional short circuit (FSC) current techniques have less complexity for
implementation [30]. However, these techniques suffer from MPP tracking that is inaccurate and are
suitable only for low power applications. Other conventional MPPT techniques such as perturb and
observe (P&O) [31], incremental conductance (IC) [32], hill climb (HC) [33], state flow [34], Kalman
filter [35], adaptive IC [36], ripple correlation (RC) [37], (dP/dI) variation of power with respect to
current or power/voltage (dP/dV) feedback control [38], slider controller [39] and incremental resistance
(INR) [40] are applicable for low, as well as high, power application where higher accuracy in MPP
tracking is needed.
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In the P&O MPPT method [31], the PV array output voltage is adjusted, and the respective
power variation is observed. In this P&O, the operating power point oscillates around the MPP that
can be handled through a propositional integral (PI) controller. The drawback is that this method
causes power loss at the time of a perturbation and it fails to track the MPP at diverse irradiation
and temperature conditions. In order to avoid the difficulties of P&O, while tracking the MPP with
rapid changes in atmospheric conditions, an incremental conductance (IC) technique is applied [32].
In addition, in IC, the oscillations across the MPP are much less as compared with P&O. However, the
major drawback of the IC technique is the complexity of its implementation.

The hill climbing method works similar to the P&O MPPT method to track MPP [33]. Here, voltage
is taken as a control variable, and hence by incrementing the PV voltage, the respective increment in
PV power can be observed when the operating point is on the left side of the MPP. If the operating
point is located on the right side of the MPP, the voltage is incremented to cause a decrement in power.
This process is repeated until the MPP is reached. The state flow MPPT method is easy to implement
with accuracy and speed of MPP tracking as compared with the P&O and IC MPPT techniques [34].
The dithering effect increases the signal-noise ratio in the linear state space region of the state flow
MPPT technique which can be overcome using the Kalman filter MPPT technique [35]. To track the
rapid changes of irradiances and to obtain maximum PV voltage that is nearly equal to the open-circuit
voltage (Voc) of PV, an adaptive IC MPPT technique is applied [36]. The major advantage of this
technique is its high intrinsic robustness and negligible uncertainties.

The switching states of the boost converter create voltage and current ripples in a PV system.
As a result, the PV array generates ripple power [37]. In RC control, the PV power ripples are used
to control and extract the maximum power of a solar PV system. The time derivative of voltage and
current components in the RC control consists of mutual relationships that make the power gradient
zero. Hence, the operating point of the PV system reaches the true MPP. In [38], the slope of dP/dV
or dP/dI is calculated from the I-V (Current against Voltage) characteristics of solar PV system and is
given as the feedback to the boost converter through a microcontroller to track the MPP. According to
the slope of the sign (+ or −), the boost converter duty value either increases or decreases until the
operating point reaches the true MPP. In the slider MPPT technique, the switching function of the
boost converter is derived from the I-V and P-V (Power against Voltage) characteristics [39,40]. If the
switching function consists of a positive sign, then the MPP of the PV system is considered to be on the
left side of the PV curve otherwise it is assumed to be on the right side.

At present, most of the authors have focused on soft computing or evolutionary MPPT techniques
to solve the issues of conventional MPPT techniques [41–43]. The main features of evolutionary
algorithms are nonlinear handling capability, broaden search space, and intelligible expertise. All of
the soft computing and biological algorithms are used to optimize the nonlinear behavior of the PV
system. The evolutionary algorithms have included neural network (NN) [44], fuzzy logic controller
(FLC) [45], artificial neuro fuzzy interface system (ANFIS) [46], cuckoo search [47] and particle swarm
optimization (PSO) [48], etc.
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The ANN (Artificial Neural Network) method is used in [44] to reduce the steady-state oscillations
at the MPP during dynamic irradiation conditions. In article [49], the PV voltage and current or
sun irradiation and temperature, or any of the two combinations of data, are used to train the NN.
The learning process of ANN has been done by updating the weights. The weight updating is carried
out using the backpropagation Levenberg Marquardt method. The performance of ANN is analyzed
using the mean square error method and the obtained mean square error of NN to track the MPP at
epoch 738 which is 0.010516. The major drawback of the ANN method is that it requires lots of data
when the architecture has multiple layers. In article [50], the multilayer perceptron (MLP) type of
network is used in the NN to track the MPP. The MLP consist of an input layer, output layer, and
hidden layer. In the input layer, one neuron is assigned as sun irradiations and another is assigned as
sun temperature in order to extract the maximum power from a solar PV system. The training is done
using the standard degradation method and the activation function is sigmoidal.

Article [51] explains that the fuzzy MPPT technique is the most popular technique to track MPP
and it does not require any mathematical equation computations to solve the nonlinearity issues.
In addition, it works for both precise and imprecise input functions as compared with the ANN
systems. The drawbacks of the fuzzy technique are that it cannot be altered once the rules are finalized
and the selection of membership function purely depends on the knowledge of the user. Without the
proper knowledge, the tracking of MPP in fuzzy technique is inaccurate. In order to overcome the
drawbacks of the fuzzy technique, in [52], an adaptive fuzzy logic controller (AFLC) based MPPT
technique is used to track the MPP. The adaptive neuro fuzzy inference system (ANFIS) is used in solar
PV systems in order to overcome the drawbacks of ANN and fuzzy. The attractive features of ANFIS
are fast learning capacity, proficiency of adaptation, and that it does not require an expert knowledge
person [53].

In this article, a comprehensive comparative analysis has been carried out on the recently
developed MPPT techniques such as VSS-P&O [54], modified incremental conductance (MIC) [55],
FOCV [56], fixed step size radial basis functional algorithm (FSS-RBFA) [57], variable step size
radial basis functional algorithm (VSS-RBFA) [58], AFLC [52], PSO [59], and cuckoo search (CS) [60].
The schematic of a PV-fed MPPT controlled boost converter power generation system is illustrated in
Figure 2. The rest of this article is organized as follows: In Section 2, the mathematical modeling of
the single- and double-diode circuit PV array is presented along with its comparative performance
characteristics. In Section 3, the necessity of MPPT technique is explained under different irradiation
and load conditions. The explanation about different MPPT techniques and analysis of high step-up
DC-DC converters are detailed in Sections 4 and 5, respectively. The simulated static and dynamic
irradiation conditions performance results of PV-fed high step-up boost converters are explained in
Section 6. The comparative analysis of MPPT techniques is illustrated in Section 7.
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2. Mathematical Modeling of PV Panel

The single-diode PV panel is designed by considering open circuit voltage Voc, short circuit current,
Isc, maximum peak voltage, Vmpp, and current, Impp, at the MPP of the I-V curve [61]. The double-diode
PV panel can be modeled by considering two more additional parameters as compared with a
single-diode model which are reverse saturation current, I0, and ideality factor, a, [62]. A few more
parameters are also required to model the single- and double-diode models’ PV panels that can be
determined by applying different optimization techniques. The equivalent circuits of single-diode
circuit PV cell and double-diode circuit PV cell are shown in Figure 3a,b and its comparative analysis
has been done using the experimental data of Sun Power systems California [63].Energies 2020, 13, x 5 of 27 
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From the single-diode circuit PV cell, the output current (Ii) is derived as,

Ii = Iph_iNpp_i − I0_iNpp_i

exp


Vi + IRs_i

(
Nss_i
Npp_i

)
a ∗Vt_i ∗Nss_i

− 1

−
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(
Nss_i
Npp_i

)
Rp ∗

(
Nss_i
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) (1)

Similar to the single-diode circuit PV cell, the double circuit output current (Ij) is derived as,

I j = Iph− jNpp_ j − I01 jNpp j

exp


V j + IRs j

( Nssj
Nppj

)
a1 ∗Vt1 j ∗Nss j

− 1

− Ix (2)

Ix = I02_ jNpp_ j

exp


V j + IRs_ j

(
Nss_ j
Npp_ j

)
a2 ∗Vt2_ j ∗Nss_ j

− 1

−
V j + IRs_ j

(
Nss_ j
Npp_ j

)
Rp_ j ∗

(
Nss_ j
Npp_ j

) (3)

Iphi, j =
(
Iph_STC + kI∆T

)
∗

Gi, j

GSTCi, j
(4)

where ∆T and ki, j are the change of temperature and current coefficient of the PV panel. The index
terms, i and j, indicate the classification of single-diode circuit and double-diode circuit PV module
parameters. The nominal irradiance (GSTCi, j) and temperature (Tn) of a solar PV system are 1000 W/m2

and 25 ◦C. From Equation (4), we can say that the photovoltaic current is directly proportional to
the ratio of instant irradiation with respect to the irradiation at standard test conditions. Whenever
the solar irradiations reduce gradually, the PV output voltage decreases because there is a direct
proportionality between irradiation and PV power which is given in Figure 4a,b.

I01_ j = I02_ j = I01_i =
Isc_STC + Ki∆T

exp
(
(Voc_STC + Kv∆T)/

{ a1+a2
p

}
Vti, j

)
− 1

(5)
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where I01-i, I01-j, and I02-j are the reverse saturation currents of single-diode model PV panel and
double-diode circuit PV panel. From Equation (6), it can be seen that when the number of PV panel
series-connected cells are increased and its equivalent voltage of PV increases [58,64].

Vt_i = Vt1_j = Vt2_j =
Ns ∗KT

q
(6)

At MPP, the ratio of derivation photovoltaic power with respect to the derivate voltage is zero
which is given in Equation (7). (

∆ppv

∆v

)
V = VMPPT

= 0 (7)

The shunt resistance of the PV panel at short-circuited current is derived as [64],( ∆I
∆v

)
I = isc

= −
1

Rsho
(8)
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The single- and double-diode circuit models’ PV panel dynamic characteristics under different
irradiation conditions (1000, 800, 600, and 400 W/m2) are shown in Figure 4a,b. From Equation (4), it is
observed that the reverse saturation current of the PV panel depends on the operating temperature
of the PV system. The PV panel’s I-V and P-V characteristics at different temperature conditions are
shown in Figure 5a,b. From Figure 5a,b, it is observed that at static irradiation condition (1000 W/m2),
the MPP of the PV panel varies for each operating temperature (25, 35, 45, and 55 ◦C) condition.
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The ratio of maximum peak power with respect to the nominal power is called FF which is used
to measure the quality of the PV cell. The single-diode model PV panel and double-diode model
PV panel are compared by considering the parameters such as maximum power extraction, FF, and
efficiency. From Figure 4a,b, at 1000W/m2 the single- and double-diode PV panels’ FF and efficiencies
are 0.787, 17.69%, 0.765, and 17.26% respectively. Similarly, from Figure 5a,b, at 25 ◦C, the single- and
double-diode PV panels’ FF and efficiencies are 0.787, 17.69%, 0.782, and 17.2% respectively. Hence,
from the above observation, it is concluded that the fill factor and efficiency for a double-diode model is
slightly higher than the single-diode model PV panel. Consequently, we can say that the double-diode
circuit model PV panel extracts maximum peak power as compared with the single-diode model
PV panel.

3. Necessity of the MPPT Technique

To explain the importance of the MPPT technique, the simulated double-diode circuit model PV
panel current against voltage characteristics is given in Figure 6. From Figure 6, it is noticed that a
unique MPP exists on I-V and P-V curves for every irradiance condition and, conversely, it shifts for
different irradiance (1000, 800, 600, and 200 W/m2) conditions. To reduce the cost of PV systems it is
necessary to operate the PV power generation system at the MPP. The MPPT controllers are used for
continuous MPP tracking and these controllers form an integral part of the PV system [65].

The MPPT controller controls the equivalent resistance of the PV panel to move the operating
point closer to the true MPP. For the dynamic loads, different expertise MPPT techniques are applied to
vary the duty cycle of the boost converter. The function of MPP in the PV power generation system is
evaluated using I-V characteristics, and its load line is shown in Figure 6. If the PV panel is directly
connected to a load, the operating point at the resistive load is nothing but the slope of the load
line-1 (1/R), which is shown in Figure 6. From Figure 6, when resistance changes from 45 to 50 Ω, the
operating point moves from ”a” to ”b”. Similarly, the operating point varies from ”b” to ”b1 “ when
irradiance changes from 1000 to 800 W/m2. From Figure 6, it is seen that when the load resistance
changes from one level to another level, the corresponding MPP I-V characteristics vary. For the
real-time operating conditions, the load resistance and I-V characteristics are not constant. Therefore,
to alter the load resistance, a boost converter is placed in between the source and the load.
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4. Design and Analysis of MPPT Techniques

Different literature studies have illustrated that the PV panel absorbs 35% to 45% of incident
solar energy which is converted to electrical energy [66]. In order to improve the efficiency of the PV
power generation system, an MPPT is used to harvest the maximum PV power by finding Vmpp and
Impp at different atmospheric conditions [66,67]. In this article, the VSS-P&O, MIC, FOCV, FSS-RBFA,
VSS-RBFA, AFLC, PSO, and CS-based MPPT techniques are used to track MPP.

4.1. Variable Step Size Perturb and Observe MPPT Technique

Among all the MPPT technologies, the P&O is the most commonly used technique because of its
simplicity and accurate steady-state response but the drawback of this method is that it is applicable
only at steady-state operating conditions of a solar PV system [28]. In order to overcome the drawback
of conventional P&O, a variable step size P& O MPPT technique is used in article [54] to track MPP.
At the start, a large step size is used to improve the tracking speed and finally step size is reduced to
reduce the oscillations across the MPP. The operational flow chart of the VSS-P&O MPPT technique is
shown in Figure 7a.
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4.2. Modified IC MPPT Technique

In this MIC MPPT method, the continuous MPP tracking is done by comparing instantaneous
conductance with previous conductance. Here, the reference voltage, Vref, is used to operate the PV
panel closer to the MPP and when it reaches the VMPP point the variation in incremental conductance
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is stopped. The tracking speed of this method purely depends on the step change of incremental
conductance [55].

The MPP tracking speed can be improved by increasing the step size of conductance. In the MIC
method, for the first step change in the size of conductance, the operating point of PV panel is close
to the MPP and the second time it reaches the MPP of the solar PV system. In this way, the step size
continuously varies until achieving the MPP at dynamic irradiation conditions. To properly control
the DC-DC converter, the operating point of PV steadily matches with the load line interaction point of
the I-V curve and it is directly proportional to the ratio of open-circuit voltage (Voc) to the short circuit
current (Isc). The duty of a high step-up DC-DC converter is updated using Equation (9).

D(y) = D(y− 1) ±N ∗

∣∣∣∣∣∣ P(y) − P(y− 1)
V(y) −V(y− 1)

∣∣∣∣∣∣ (9)

where D is the duty cycle, y is the iteration value, N is the scaling factor, V(y) and P(y) are the PV panel
voltage and power, respectively. The operational flow chart of the MIC MPPT technique is shown in
Figure 7b.

4.3. Fractional Open Circuit Voltage (FOCV) MPPT Technique

In this technique, there is a direct relation between maximum voltage, VMPP, and open-circuit
voltage, Voc. The open-circuit voltage of the PV is measured by connecting an additional switch across
the PV output terminals. Evaluation of maximum peak voltage is taken from [56].

VMPP = kaVoc (10)

where ka is a proportionality parameter that is calculated from the nonlinear characteristics of the PV
panel. The proportionality constant is used to obtain the MPP of the PV panel and its value is between
0.72 to 0.76 for non-uniform irradiation conditions. Once the suitable value of ka is selected for the PV
panel, the maximum peak voltage of PV is calculated using Equation (10).

4.4. Fixed Step Size RBFA Based MPPT Technique

From the literature survey [57], the fixed step size RBFA based NN structure is used in the MPPT
controller design to reduce the system cost and size. The NN is an information processing system and
it consists of highly interconnected neurons in the form of layers. In this FSS-RBFA technique, three
layers are used which are shown in Figure 8. The first layer consist of two neurons and the second
layer has twenty neurons. The optimum number of neurons in the output layer is one. In the second
layer, the neurons are selected based on the empirical process. The error values of PV voltage (dV) and
power (dP) are the inputs to the first layer. The output of NN is a normalized duty cycle which is either
zero or one. The adjustment of the duty cycle is mainly dependent on the sign of dP/dV. The working
behavior of the technique is shown in Table 1.
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Table 1. Working behavior of the fixed step size radial basis functional algorithm (RBFA) based
MPPT technique.

dVPV dPPV dPPV/dVPV Change of Duty Cycle

−1 −1 +1 d (j) = d (j − 1) + Step
+1 −1 −1 d (j) = d (j − 1) − Step
−1 +1 −1 d (j) = d (j − 1) − Step
+1 +1 +1 d (j) = d (j − 1) + Step

4.5. Variable Step Size RBFA Based NN MPPT Technique

As discussed previously, the fixed step size RBFA based NN technique gives a good performance.
However, the drawbacks of this method are less convergence speed, high steady-state oscillations,
and less accuracy for MPP tracking at dynamic irradiation conditions. When the step size is high,
the tracking speed of the MPP is high but the drawback is the occurrence of excessive oscillations
across the MPP. While the step size is less, the oscillations are reduced but the tracking speed reduces
gradually. In order to overcome the dilemma of this condition, a variable step size RBFA based NN
MPPT technique is used in [58] to extract the maximum power of a solar PV system at dynamic
irradiation conditions.

The training of the RBFA has been done in two stages. In the first stage, the unsupervised learning
methodology is used to define the basic factors of the input layer and, in the second stage, the output
layer weights are updated. In this RBFA-based NN, there are three layers which are the input, hidden,
and output layers, as shown in Figure 8. The instantons PV output voltage and power parameters are
the inputs to the VSS-RBFA-based NN MPPT controller which generate the switching pulses to the
DC-DC converter. The tracking speed of this MPPT controller depends mainly on the interconnection
of weights and the selection of step size. In this method, the duty cycle is updated using Equation (11).

D( j) = D( j− 1) ± (Step + N·dP) (11)

where D (j) and D (j − 1) are the duty values at the instant of j and j − 1. The scaling factor, N, is used to
adjust the step size of the controller and dP is the variation of PV power.

4.6. Adaptive Fuzzy Logic MPPT Controller

The major drawback of fuzzy is that the rules cannot be updated within the time and expert
knowledge is required for the parameter initialization. In order to overcome these drawbacks, an
adaptive fuzzy is proposed in [52] to track the MPP, thereby transferring the maximum power from
the PV system to the load. The features of the adaptive fuzzy controller are good performance
and fast response as compared with P&O and fuzzy controllers. In addition, the adaptive fuzzy
itself changes the parameters of fuzzy in order to improve the overall system response. The block
diagram of the AFLC is shown in Figure 9a and it consists of two major parts which are the FLC
and a learning mechanism. The knowledge-based fuzzy system consists of three parts which are
fuzzification, inference engine, and defuzzification. The position of fuzzy sets and its corresponding
membership functions are shown in Figure 9b. The value of error (e) and change of error (∆e) are
standardized by utilizing the scaling factor. The scaling factor range is chosen in between the range of
negative one to one. The error and change of error parameters are derived from the maximum power
of the solar PV system follows as,

e(i) =
P(i) − P(i− 1)
V(i) −V(i− 1)

; ∆e(k) = e(k) − e(k− 1) (12)

The AFLC rules are shown in Table 2. In AFLC, the pulse width modulator takes real values to
generate the switching pulses to the boost converter. Hence, in the defuzzification process, a height
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method is used to convert linguistic variables to real values. The rules involved in defuzzification are
followed as shown in (13).

dx =
C(1)W1 + C(2)W2 + C(3)W3 + C(4)W4 + · · · . . . . . . . . . . . .+ C(n)Wn

W1 + W2 + W3 + W4 + · · · . . . . . . . . . . . . . . . . . .+ Wn
(13)

where dx is changing in output and Wn is the height and maximum output of rule, n.
A learning mechanism is used in the AFLC to learn the rapid change of environmental conditions.

According to that, the fuzzy controller parameters are adjusted to operate the operating point of PV at
the optimum point. The learning of fuzzy has been done using two methods which are inverse fuzzy
system and knowledge-based modifier. In the inverse fuzzy system, the knowledge-based modifier
and change of error values are used to modify the FLC parameters in order to optimize the system
performance. The learning process of AFLC is given in Table 3.Energies 2020, 13, x 11 of 27 
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Table 2. Rule-based AFLC for MPPT tracking.

Change in Error (∆e)

Error (e) NB NS Z PS PB

PB NB NB NB ZB ZB
PS NS NS NS Z Z
Z PS Z Z Z NS

NS Z Z PS PS PS
NB Z Z PB PB PB

Table 3. Learning process of AFLC.

Inverse Fuzzy System Knowledge-Based Modifier

Error (e) Change of Error (∆e) Membership Peak Value Scaling Factor

−σ < e(n) < σ −σ < ∆e(n) < σ c(n) e(n) = e(n)·ε3
e(n) > σ ∆e(n) > σ c(n) + ε1 Unchanged
e(n) > σ ∆e(n) < −σ c(n) ∆e(n) = e(n)·ε3

e(n) < −σ −σ < ∆e(n) < σ c(n) − ε2 Unchanged
e(n) < −σ ∆e(n) < −σ c(n) − ε1 Unchanged

σ, minimum error and c(n), maximum peak value
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4.7. PSO-Based MPPT Technique

In the PSO technique, there are multiple cooperative agents and each agent is considered as one
particle. At the first iteration, all the particles move randomly with a velocity, V. After computing the
number of iterations, all the particles move towards the main object [55]. The cooperative particles
exchange their information in their searching process to obtain the best optimum duty cycle of boost
converter [59]. The particle’s velocity and position are obtained using Equations (14) and (15).

Va+1 = wVa
i + C1r1

(
Pbest_i − xa

i

)
+ C2r2

(
Gbest_i − xa

i

)
(14)

xa+1 = xa
i + Va+1

i (15)

where a indicates the number of iterations and x is a particle position. The acceleration parameters are
C1 and C2 and random variables are r1 and r2. The weight, w, is the inertial weight which is updated
continuously based on the number of iterations and Pbest_i is used to store the best particle position in
the first iteration and Gbest_i is the best particle position among all of the particles after completing “a”
number of iterations. The implementation flowchart of the PSO technique is given in Figure 10a.
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4.8. Cuckoo Search-Based MPPT Technique

The CS MPPT technique works based on three rules. First, each cuckoo should generate only one
egg and, second, the existed egg in the first iteration should be good quality, then, only it will go to the
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next step. Finally, the host nets are fixed values [60]. The levy function is used in CS to determine the
step size of each particle in each and every iteration. The mathematical derivation of Levy is derived as,

Lvy(βeta) = L−βeta ; 1 < βeta < 3 (16)

where L is the length of the step size and βeta is an operating constant. In practical, the βeta is considered
as either one or three. The optimizing flight size is α which is a fraction of discharged eggs, Pa.
The Levy function is used to update the cuckoos walk which is given in Equation (17).

yk+1
m = yk

m + α⊕ levy(βeta) (17)

where α = α0(ybest − yi), then, the modified levy function is derived as,

l = α0(ybest − yi) ⊕ levy(βeta) ≈ c

 u

v
1
βeta

·(ybest − yi) (18)

The parameters u and v are measured from the nonlinear distribution curves.

u ≈ n
(
0, ρ2

u

)
, v ≈ n

(
0, ρ2

v

)
(19)

where ρu =

 Γ(1+β)·sin
(
πβ
2

)
Γ
(

1+β
2

)
·β·2

β−1
2

 and ρv = 1. The flowchart of CSO is given in Figure 10b.

5. Analysis and Comparison of DC-DC Converters

From the literature survey [18–27], it is evident that there are different types of DC/DC converters
used in standalone and grid-connected PV systems to control the load voltage. However, in this article,
two high step-up DC-DC converters are discussed which are a SCBC and a SSBC at static and dynamic
irradiation conditions and their performance results are compared with CBC.

5.1. Conventional Boost Converter

The conventional boost converter (Figure 11) has been used extensively due to its high reliability
and flexibility as compared with other converters [19]. The boost converter operates in two modes of
operation which are a conduction mode and a blocking mode. In the conduction mode dTS, the switch,
Q, operates in forward biasing and the diode, D, operates with reverse biased condition. Hence, there
is no supply from the source, VP, to load. Similarly, when the switch is in blocking state (1 − D) · TS,
the diode, D, gets forward biased. Eventually, the energy stored in an inductor, L, is transferred to load.
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From Figure 11, the voltage balance equation across the input inductor L is derived as,

VT·dTS + ((VT −V0)·(1− d)TS = 0 (20)



Energies 2020, 13, 371 14 of 27

Similar to the inductor property, the average current flowing through the capacitor C is zero.

− i0dTS + ((IT − I0)·(1− d)TS = 0 (21)

By solving Equations (20) and (21), the output voltage and current of the boost converter are
derived as,

V0 =
VT

(1− d)
and, i0 = iT(1− d) (22)

5.2. Switched Capacitor Boost Converter

The equivalent resistance across PV terminals can be equalized with the load resistance by varying
the duty cycle of the SCBC, and this is shown in Figure 12. The SCBC operates in two modes of
operation which are a continuous conduction mode (CCM) and a discontinuous conduction mode
(DCM) [24]. The most preferable mode is the CCM because of its continuity of power supply to
the load.Energies 2020, 13, x 14 of 27 
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In CCM, when the switch, S, is ON, the capacitors, C1 and C2, start charging with the constant
charge rate and the inductor charging voltage, VL, is equal to the supply voltage, VPV. The diodes
Da, Db, and D2 operate in reverse biased condition, whereas D1 and D3 operate in forward biased
condition. The voltage across capacitors is calculated using Equation (23).

VPV = VL

VCa = VC1 + VC2

VCb = VCc

(23)

when the switch is OFF, the diodes Da and Db are forward biased and the inductor stored energy
transfers to the load through diode D3. The voltage across input inductor, L, and the output voltage of
the converter are derived as shown in Equation (24).

VL = VPV −VC1

VC1 = VC2

V0 = VCa + VCc + VL0

(24)

From Figure 12, at the steady-state operating condition, the inductor property is used to determine
the voltage gain of the SCBC. The voltage balance equation across the inductor, L, is derived as,

VPV·dTS + ((VPV −VC1)·(1− d)TS = 0 (25)

The capacitors C1 and C2 charge equally and discharges to the load through the capacitors Ca

and Cc. 
VC = VC1 = VC2 = VCb = VCc = 1

(1−D)
VPV

VCa = 2VC = 2
(1−D)

VPV

V0 = VC1 + VCb + VCc = 3VC = 3
(1−D)

VPV

(26)
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From Equations (22) and (26), the SCBC voltage gain is high as compared with the conventional
boost converter.

5.3. Stackable Switching Boost Converter

The topology of a SSBC is shown in Figure 13. It consists of the single switch (Q), two capacitors
(Ca, Cb), three inductors (La, Lb, and L0), and four diodes (da, db, dx, and dy) [25]. When the switch
(Q) is ON, the inductor current, iLa, flows through the diode, dx, and the capacitor Ca gets charged.
The stored capacitor and inductor voltages (VCa + VLa) are transferred to the load when the diode dx

gets reverse biased. The switching state of the SSBC is derived as,

Switch ON condition :


La

dia
dt = VPV

Ca
dVCa

dt = −iLb −
V0
R

Lb
dib
dt = VPV + VCa

Cb
dVCb

dt = −V0
R

(27)

when the switch is in OFF condition, the diode (da) is forward biased and the capacitor Ca starts
charging. The inductor (La) stored energy is transferred to the load with a slope of VCa/La. Similarly,
the inductor Lb discharges the energy with a slope of VCb/Lb. The switching state of the converter when
the switch is in OFF condition is given in Equation (28).

Switch OFF condition :


La

dia
dt = −VCa

Ca
dVCa

dt = −iLa −
V0
R

Lb
dib
dt = −VCb

Cb
dVCb

dt = iLb −
V0
R

(28)
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Figure 13. Stackable switching boost converter.

In both the conditions, the output voltage of the SSBC is the sum of input voltage (VPV), and the
output voltage across the capacitors (VCa, VCb). From Equations (27) and (28), the voltage gain of the
SSBC is derived as,

V0 = VPV + VCa + VCb =
VPV

(1− d)2 (29)

The comparison of the conventional boost converter, the SCBC, and the SSBC was done by
considering the parameters such as voltage gain, the voltage stress on switches, and the number of
switches used, etc. The comparison of the step-up DC-DC converters is given in Table 4.
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Table 4. Comparison of high step-up voltage DC-DC converters.

Converter Diodes Voltage
Stress (VD) Inductors Voltage Gain Switches Capacitors Voltage

Stress (VS)
CBC [19] 1 V0/2 2 1/(1 − D) 1 2 V0/2

IDDBC [23] - V0/2 2 2/(1 − D) 4 2 V0/2
SCBC [24] 5 V0/3 2 3/(1 − D) 1 5 V0/3
SSBC [25] 4 V0/2 3 1/(1 − D)2 1 2 V0/3
CUK [29] 1 V0-Vc/2 2 D/(1 − D) 1 2 V0 − VL/2
TBBC [68] 2 V0/2 1 (1 + D)/(1 − D) 2 2 V0/2
ICBC [69] 6 V0/3 1 3/(1 − D) 1 6 V0/3

NHSDC [70] 3 V0/2 1 2/(1 − D) 1 3 V0/2

6. Discussion of Simulation Results

In this article, VSS-P&O, MIC, FOCV, FSS-RBFA, VSS-RBFA, AFLC, PSO, and CS MPPT techniques
are applied to the PV-fed boost converter to extract the peak power of a solar PV system. The performance
of the PV-fed boost converter system is analyzed at static (800 W/m2) and dynamic (800, 400, and
1000 W/m2) irradiation conditions. The operating switching frequency of DC-DC converters is 20 kHz
and their design parameters are shown in Table 5.

Table 5. Design parameters of a high step-up boost converters.

Converters I/P Inductors I/P Capacitors O/P Capacitors O/P Inductors

CBC [19] L = 100 mH Ci = 370 µF C = 300 µF L0 = 1000 mH
SCBC [24] L = 100 mH C1 = C2 = 470 µF Ca, b, c = 370 µF L0 = 10 mH
SSBC [25] La = Lb = 100 mH Ca = Cb = 100 µF C0 = 370 µF L0 = 90 mH

6.1. Static Irradiation Condition

At irradiance of 800 W/m2, the MPPT controller takes the instantaneous changes of PV voltage,
current, and power variables to extract and transfer the maximum power of a solar PV system. Here,
the recently developed MPPT techniques (VSS-P&O, MIC, AFLC, PSO, and CS) use only the PV voltage
and current parameters to determine the optimum duty cycle of the DC-DC converter. The FOCV MPPT
technique takes only open circuit voltage of PV to track the MPP. The FSS-RBFA and VSS-RBFA-based
MPPT techniques take the input parameters based on their application. But here, the change of PV
power and voltage variables are considered as inputs to adjust the duty of DC-DC converter based on
the change in irradiation conditions.

6.1.1. Conventional Boost Converter at 800 W/m2

The conventional boost converter is designed and simulated by considering the parameters given
in Table 5. The simulated duty cycle waveform using different MPPT techniques is given in Figure 14a.
From Figure 14a, the maximum duty of the conventional boost converter using the PSO-based MPPT
technique is 0.622 and its corresponding converter output power is 158.5 W. Similarly, the duty cycle of
the boost converter using CS MPPT technique is 0.59 and its corresponding converter output power is
161.73 W. From Figure 14b, it is observed that the output power of the boost converter is less while we
apply the VSS-P&O MPPT technique and its corresponding duty cycle at 800 W/m2 is 0.604. The PV
power extraction using FSS-RBFA and VSS-RBFA is 155.76 W, 156.5 W, respectively. Hence, from
the above observation, it is concluded that the CS MPPT technique is extracting maximum power as
compared with VSS-P&O, MIC, FSS-RBFA, VSS-RBFA, AFLC, and PSO-based MPPT techniques.
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Figure 14. (a) Duty cycle and (b) output power of a conventional boost converter (CBC) by applying
different MPPT techniques at 800 W/m2.

6.1.2. Switched Capacitor Boost Converter at 800 W/m2.

Similar to the CBC, the duty cycle waveforms of the SCBC by applying different MPPT techniques
is shown in Figure 15a, and its corresponding converter output power is shown in Figure 15b. From
Figure 15a, it is observed that the duty of the SCBC using the FOCV MPPT technique is 0.43 and its
corresponding converter output power is 170.5W, which is higher than that of the FSS-RBFA, MIC, and
VSS-P&O MPPT techniques. However, the drawback is high conduction loss. Moreover, the FOCV
MPPT method is an inaccurate method because of its approximation in MPP tracking. The output
power of the SCBC using PSO and CS MPPT techniques is 171.8 W and 172.2 W, respectively. From the
above observation, it is concluded that the SCBC gives a slightly higher output power by applying the
CS MPPT technique as compared with PSO and AFLC techniques. The drawback of the CS technique
is high steady-state oscillations. Hence, the PSO-based MPPT technique is used in the PV-fed SCBC
system to step-up the PV voltage.
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applying different MPPT techniques at 800W/m2.

6.1.3. Stackable Switching Boost Converter at 800 W/m2

From Figure 16a, the VSS-RBFA-based MPPT technique extracts the maximum PV power of
169.05 W and its corresponding duty is 0.6. The SSBC steps up the PV voltage using the AFLC MPPT
technique and it transfers the maximum power from the source to load of 167.98 W which is nearly
equal to the FOCV MPPT technique. The SSBC output power using the MIC MPPT technique is 166 W
and its corresponding duty cycle is 0.55. From Figure 16b, it can be observed that the CS MPPT is
extracting the maximum power but higher steady-state oscillations. In addition, it takes nearly 0.55 s
to come to a steady-state condition. As a result, the conduction losses in the system increase. Hence, it
is concluded that the VSS-RBFA-based MPPT technique is suitable for the SSBC application.
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Figure 16. (a) Duty cycle and (b) output power of a stackable switching boost converter (SSBC) by
applying different MPPT techniques at 800W/m2.

6.2. Dynamic Irradiation Condition

At dynamic irradiation conditions, the VSS-P&O, MIC, and FOCV MPPT techniques are compared
with FSS-RBFA, VSS-RBFA, AFLC, PSO, and CS MPPT techniques in terms of converter output voltage
and power. Here, at dynamic irradiation condition, the irradiations start increasing (0 to 0.6 section)
from 0 to 800 W/m2. At 0.6 s, the irradiations are stepped down from 800 W/m2 to 400 W/m2 up to
the time duration of 1.2 s. Finally, at 1.2 s, the irradiations are changing from 400 W/m2 to 1000 W/m,
which is shown in Figure 17a. The high step-up conventional boost converters, SCBC and SSBC, are
discussed at dynamic irradiation conditions in the next section.
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Figure 17. (a) Variable irradiation condition (0.8, 0.4, and 1 kW/m2); (b) duty cycle of CBC by applying
different MPPT techniques at (0.8, 0.4, and 1 kW/m2); and (c) output power of CBC by applying different
MPPT techniques at (0.8, 0.4, and 1 kW/m2).
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6.2.1. Conventional Boost Converter at (800, 400, and 1000 W/m2)

The duty cycle variation of the CBC is shown in Figure 17b. At starting (800W/m2), the obtained
power using the VSS-P&O MPPT technique is 148.44 W and it is reduced to 77 W when the irradiations
are reduced to 50%. At 1000 W/m2, the output power of the converter using the FOCV MPPT technique
is 197.5 W, which is higher than that of the MIC and VSS-P&O techniques. The output powers of the
converter, by applying different MPPT techniques under dynamic irradiation conditions, are shown in
Figure 17c and recorded in Table 6. From Figure 17c, it is observed that the CS-based converter output
power at 1000 W/m2 is 205.18 W which is higher than the VSS-P&O, MIC, VSS-RBFA, and AFLC MPPT
techniques but the drawbacks are high steady-state oscillations and that it takes high conversion time.
The drawbacks of the PSO MPPT technique are suppressed using the CS technique.

Table 6. Performance results of CBC at different irradiation conditions (0.8, 0.4, and 1 kW/m2).

MPPT
Method

Performance of Conventional Boost Converter at Different Irradiation Conditions

800 W/m2 (0 to 0.6 s) 400 W/m2 (0.6 to 1.2 s) 1000 W/m2 (1.2 to 1.8 s)

VPV
(V) Duty V0

(V)
P0

(W)
VPV
(V) Duty V0

(V)
P0

(W)
VPV
(V) Duty V0

(V) P0 (W)

VSS-P&O 34 0.604 86 148.44 17 0.711 59 77 38 0.59 94 196.31

MIC 34.3 0.601 86.1 150.7 17.5 0.7 59.6 77.8 39.2 0.58 95.31 197.48

FOCV 33.8 0.62 89 155 17 0.715 59.8 78 39.28 0.59 96 197.5

FSS-RBFA 33 0.627 87 155.76 17.4 0.719 62 79.53 40.1 0.586 96.8 198.78

VSS-RBFA 34.2 0.609 87.5 156.5 18.5 0.72 66.4 79.6 39.8 0.6 100.5 200.2

AFLC 34.8 0.614 90.32 158.2 24 0.64 68 80 45.3 0.56 105 201.8

PSO 34.71 0.622 92 158.5 24.8 0.66 73.7 82 47.07 0.64 132 204.40

CS 37.27 0.59 93.17 161.73 25.76 0.65 73.89 82.2 47.54 0.65 138 205.18

6.2.2. Switched Capacitor Boost Converter at (800, 400, and 1000 W/m2)

In this converter, at an irradiance of 400 W/m2
, the FOCV MPPT technique is extracting maximum

power of the PV system which is nearly equal to the 68.1 W with a duty cycle of 0.35 and this
power is increased to 198.5 W when irradiations increase to 1000 W/m2 (Figure 18b). The CS MPPT
technique-based SCBC transfers the maximum power of 206.29 W at 1000W/m2 which is higher than
the PSO MPPT technique, but the drawbacks are less MPPT tracking speed and higher steady-state
oscillations. Hence, the PSO-based MPPT technique is used for the SCBC to step up the PV voltage.
Moreover, its duty cycle is constant at different irradiation conditions, as shown in Figure 18a.
The analytical results of the SCBC, applying different MPPT techniques, are shown in Table 7.
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and (b) output power of SCBC by applying different MPPT techniques at (800, 40, and 1000 W/m2).

Table 7. Performance results of SCBC at different irradiation conditions (800, 400, and 1000 W/m2).

MPPT
Method

Performance of Switched Capacitor Boost Converter at Different Irradiation Conditions

800 W/m2 (0 to 0.6 s) 400 W/m2 (0.6 to 1.2 s) 1000 W/m2 (1.2 to 1.8 s)

VPV
(V) Duty V0

(V)
P0

(W)
VPV
(V) Duty V0

(V)
P0

(W)
VPV
(V) Duty V0

(V)
P0

(kW)

VSS-P&O 30.13 0.3 128.57 167.35 14.3 0.33 64.05 78.4 30.2 0.40 151 194.5

MIC 28.5 0.35 131.53 167.5 12.3 0.43 64.73 79.21 32.87 0.38 154.83 196.48

FOCV 27.18 0.43 142.27 170.5 14.3 0.35 68.1 79.4 31.8 0.4 159 198.5

FSS-RBFA 30.31 0.35 138.46 169.5 14.5 0.36 67.96 82.73 35.12 0.34 159.09 198.3

VSS-RBFA 27 0.45 147.27 170.8 14.8 0.35 68.3 85.9 34.89 0.35 161.03 198.9

AFLC 27.04 0.5 162.01 170.21 12.80 0.45 69.81 86.5 35.8 0.35 165.23 201.4

PSO 26.8 0.46 149.22 171.8 12.5 0.5 75.03 86.9 35.2 0.37 167.55 205.7

CS 29.5 0.45 158.43 172.2 12.5 0.515 77.31 87.5 35.28 0.315 153.28 206.29

6.2.3. Stackable Switching Boost Converter at (800, 400, and 1000 W/m2)

The operation of a SSBC is similar to a conventional and SCBC but the difference is stackable
switching. The operating duty cycle of the SSBC using the MIC MPPT technique is 0.62 which is higher
than that of all the other MPPT techniques (Figure 19a), and the extracted power of the PV using the
MIC technique is very low. The VSS-RBFA-based MPPT technique varies the duty cycle of the SSBC
to transfer the maximum power from the source to load. From Figure 19b, the CS, and PSO-based
MPPT techniques are applied to the converter to extract the maximum PV power. The drawbacks of
CS and PSO are high steady-state oscillations, large time to convergence, and high conduction losses.
The performance parameters of a SSBC at different irradiations are recorded in Table 8.
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Figure 19. (a) Duty cycle of a SSBC by applying different MPPT techniques at (0.8, 0.4, and 1 kW/m2)
and (b) output power of a SSBC by applying different MPPT techniques at (0.8, 0.4, and 1 kW/m2).

Table 8. Performance results of a SSBC at different irradiation conditions (0.8, 0.4, and 1 kW/m2).

MPPT
Method

Performance of Switched Capacitor Boost Converter at Different Irradiation Conditions

800 W/m2 (0 to 0.6 s) 400 W/m2 (0.6 to 1.2 s) 1000 W/m2 (1.2 to 1.8 s)

VPV
(V) Duty V0

(V)
P0

(W)
VPV
(V) Duty V0

(V)
P0

(kW)
VPV
(V) Duty V0

(V)
P0

(kW)

VSS-P&O 28.2 0.55 139.25 168.2 15.2 0.55 63.30 79.10 31.31 0.55 154.56 196

MIC 28.7 0.55 138.27 166 15.1 0.51 62.47 78.5 28.2 0.62 153.08 195.29

FOCV 28 0.57 151.43 168.7 13.81 0.55 64.19 81.23 31.2 0.55 153.08 196.22

FSS-RBFA 30.22 0.555 153.29 167.31 16.08 0.5 64.10 80.01 35.01 0.52 151.90 195.8

VSS-RBFA 30.42 0.60 154.3 169.05 17.9 0.48 65.82 82.91 35.92 0.525 155.12 200

AFLC 29.5 0.56 152.37 167.98 16.5 0.48 64.05 80.9 35.77 0.53 154.79 199.89

PSO 30.05 0.56 154.84 172.27 16.20 0.51 66.63 83.5 28.8 0.58 158.73 206.5

CS 29.01 0.57 156.84 172.93 17.63 0.54 66.78 83.9 32.5 0.549 159.78 208.27

7. Comparison of MPPT Techniques at Different Irradiation Conditions

In order to compare the conventional and soft computing MPPT techniques, the following five
parameters are considered: The number of sensors required to sense the PV parameters, the ability to
handle multiple MPP under partial shading condition, the tracking speed of the MPPT controllers,
and the implementation complexity. However, this is not a final comparison of the MPPT techniques
because different researchers have used different parameters for the comprehensive assessment of
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MPPT techniques at different irradiation and temperature conditions. In this study, different MPPT
techniques are compared under dynamic irradiation conditions.

7.1. Sensing Parameters

From the observation of the above results, the MIC, PSO, CS, and VSS-P&O MPPT techniques
required one voltage sensor and one current sensor. The FOCV technique required only one voltage
sensor. As a result, the cost of the FOCV MPPT controller is much less as compared with other MPPT
controllers. The FSS-RBFA, VSS-RBFA, and AFLC-based MPPT techniques used one differentiable
voltage sensor and one differentiable power sensor to sense the voltage error and power error.
The detailed analysis of the MPPT techniques at different irradiation conditions is given in Table 9.

Table 9. Comprehensive analysis of different conventional and soft computing MPPT techniques.

Parameters
Types of MPPT Techniques

VSS-P&O MIC FOCV AFLC FSS-RBFA VSS-RBFA PSO CS

Sensing
variables I, V I, V V Varies I, V Varies Varies Varies

Design
complexity Easy Medium Easy Medium Medium Medium Medium Medium

Tracking speed 0.28 s 0.25 s 0.2 s 0.185 s 0.2 s 0.18 s 0.15 s 0.13 s

Settling time 0.2 s 0.23 s 0.12 s 0.1 s 0.18 s 0.15 s 0.25 s 0.25 s

Operated duty
cycle 0.6 to 0.7 0.5 to 0.6 0.6 to 0.7 0.4 to 0.6 0.5 to 0.8 0.3 to 0.7 0.4 to 0.7 0.3 to 0.7

Oscillations at
MPP 2% 2.2% 3.5% 1.8% 1.85% 2% 2.5% 2.0%

Is it true MPP Yes Yes No Yes Yes Yes Yes Yes

PV panel
depends No No Yes No Yes Yes No No

Periodic
tuning No No Require No No No Require Require

Analog or
digital Both Digital Both Both Both Both Both Both

Error detection
accuracy Medium Medium Less Medium Medium High Medium High

Dynamic
response Medium Medium Less Medium Medium High Medium High

Non-linearity Medium Moderate Poor Good Good Good Good Good

Hardware
complexity Less Less Less Medium Medium Medium Medium Medium

Algorithm
complexity Medium Medium Less Medium Less Less Medium Medium

Efficiency Medium Medium Less Medium Medium High High High

Cost Less Medium High Less Less Less Medium Medium

7.2. Ability to Handle the Multiple MPP

In a static irradiation condition, there is only one MPP with I-V and P-V characteristics but it
varies based on the load operating conditions, which is explained in Section 3. In real-time operating
conditions, the solar PV system characteristics consist of multiple MPPs and one global MPP which
is required to extract the maximum power of a PV system. The tracking of MPP under dynamic
irradiation using conventional MPPT techniques is very difficult because it can track the local MPP
instead of the global MPP. In order to overcome this problem, the hybrid conventional MPPT techniques
are used in article [71] and [72] to track global MPP under partial shading conditions. Among all the
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soft computing techniques, FSS-RBFA, VSS-RBFA, AFLC, PSO, and CS-based MPPT techniques are
the most popular techniques to track MPP because their advantages are fewer oscillations across the
MPP and high tracking speed. The FOCV MPPT technique is not an accurate method because of its
approximation in MPP tracking.

7.3. Tracking Speed of MPP

In real time, the PV I-V and P-V characteristics vary continuously at diverse environmental
conditions. The tracking speed of different conventional MPPT techniques is less because of its fixed
step change in the duty cycle. In [73], the optimized P&O MPPT technique is used to track MPP with
the convergence time of 1.3 s. The advantage of this method is less oscillations across the MPP (less
than 3%). The HC MPPT technique is used in [74] to perturb the duty of boost converter. The tracking
speed of this method is 6 s and its incremental step size is 1.5%. However, in order to improve
the tracking speed of conventional methods a variable step size P&O MPPT technique is was used
to obtain the optimum duty cycle of the boost converter. The convergence speed of VSS-P&O at
800 W/m2 is 0.28 s and the oscillations across the MPP are less than 2%. From Figure 18b, at 800 W/m2,
the convergence speed of AFLC is 0.185 s, which is less than the MIC and FSS-RBFA-based MPPT
techniques. The convergence speed of PSO is 0.13 s which is less than the CS-based MPPT controller.

7.4. Implementation Complexity

From the literature survey, the implementation of conventional MPPT techniques is simple.
In addition, these methods required less memory. In [75], the authors used dSPACE 1104 software
with DSP to implement soft computing-based MPPT techniques. The implementation complexity of
VSS-P&O and FOCV was easy as compared with the MIC MPPT techniques and the implementation
complexity of PSO and CS was high as compared with FSS-RBFA and VSS-RBFA.

8. Conclusions

Using real-time data, the single- and double-diode models’ PV panels are compared successfully in
terms of maximum power extraction, FF, and efficiency. From the comparison results, the double-diode
model PV panel harvests maximum PV power with high efficiency as compared to a single-diode model
PV panel. The performance evaluation of all conventional and soft computing MPPT techniques was
carried out to achieve the optimum duty cycle of the boost converter. From the performance results, it is
inferred that the CS MPPT technique is suitable for conventional boost converter applications, and PSO
is suitable for SCBC applications at static and dynamic irradiation conditions. The VSS-RBFA-based
MPPT technique is suitable for a SSBC due to its high tracking speed and low steady-state oscillations.
From the comparison results of DC-DC converters, it is concluded that a SSBC gives high voltage gain,
less voltage stress on switches, and required a single switch for wide output voltage applications.
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Nomenclature

Symbols Parameters Values
PMPP PV power at maximum power point 220.17 W
VMPP PV current at maximum power point 41 V
IMPP PV voltage at maximum power point 5.37 A
Voc Open circuit voltage 48.6 V
Isc Short circuit current 5.75 A
Npp_i,j Parallel connected strings 1
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Nss_i,j Series connected modules per string 1
Ns_i,j Cells per module 72
Rs_i, j Series resistance 0.5 Ω
Rp_i.j Parallel resistance 103.36 Ω
I0-n Nominal diode saturation current 8.234 × 10−10 A
a1, a2 Diode ideality factors 1, 1.3
G Dynamic irradiation condition 0.8 k, 0.4 k and 1 kW/m2

Ki PV panel current coefficient 0.0035 A/deg.C
Kv PV panel voltage coefficient −0.1325 V/deg.C
q Electric charge 1.6 × 10−19 C
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