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This study aims at investigating the dispersion process in an oscillatory flow of a layered liquid. The

liquid is considered as a three-layer liquid where the center region is the Casson liquid surrounded

by a Newtonian liquid layer flowing through a narrow pipe under the wall reaction. The perturbation

technique has been used for solving the momentum equations. In order to assist the analysis of solute

transport behavior, Aris-Barton’s method of moments has been utilized, where different molecular

diffusivities were assumed for different respective regions, yet to be constant. The effects of finite

yield stress, viscosity ratio, density ratio, peripheral layer thickness, and irreversible absorption at

the tube wall on dispersion are investigated in detail. In the cases of steady, unsteady, and combined

flow situations, dispersion coefficient is found to be diminished by absorption parameter, viscosity

ratio, and yield stress, respectively. In the case of a steady flow and unsteady convective diffusion

of a reactive solute, dispersion coefficient is independent of density ratio. For both the unsteady and

combined flows, density ratio provides a pulsatile behaviour of the dispersion process though an

increase in the density ratio may faster the dispersion process. Dispersion at early times is not affected

by absorption though a considerable effect is observed for large time. The presence of a peripheral

layer enhances the value of the dispersion coefficient and is higher than the single layer Casson liquid

flow. As strong as the non-Newtonian effect is considered, the dispersion process becomes slower.

Larger values of molecular diffusivity at different layers are the reason for less dispersion coefficient.

This study may be useful for understanding the dispersion process in the blood-like liquid flow analysis

for microcirculation. Published by AIP Publishing. https://doi.org/10.1063/1.5001962

I. INTRODUCTION

In a solute transport process, dispersion is one of the

mechanisms which is utilized as an efficient means to accom-

plish dilution or mixing. Due to its wide applications in the

field of chemical engineering, physiological fluid dynamics,

environmental sciences, biomedical engineering, etc., it has

been extensively studied for the past six decades. Transport

under the effects of wall reactions has long been drawing

attention as it is important to many industrial and physiolog-

ical situations, e.g., chromatography, absorption of gases in

airways, electrophoresis, human arteries, flow through frac-

tures, etc. The classical work of dispersion has been started

by Taylor,47 theoretically and experimentally. Aris5 extended

Taylor’s theory and developed an approach called “method

of moments” to analyze the asymptotic behaviour of second

order moment about the mean. These two models apply only

at long times. Gill and Sankarasubramanian20 and Barton8
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used elegant all-time approaches to study the dispersion of

passive solutes in Newtonian fluid flows. A numerical study

was performed by Ananthakrishnan et al.3 to solve the convec-

tive diffusion equation by the standard finite difference method

and showed that the Taylor-Aris dispersion theory can be

applied only for a sufficiently large value of the dimensionless

time.

Mathematical studies on solute dispersion have largely

been discussed in both the Newtonian23–25,27,33,34 and non-

Newtonian1,35–37,44,46 environments, subject to steady and

unsteady flows through a straight and curved tube or chan-

nel or annulus with or without chemical reactions. There are

published studies7,26,31,42 in the literature dealing with the

application of dispersion to a catheterized artery. In modern

days, dispersion in non-Newtonian fluids is being widely fol-

lowed for various applications. The assumption of a passive

solute and the Newtonian description for the solvent may be

too restrictive. Studies on the Casson fluid with respect to low

yield stress can be well appreciated10,13,28 to characterize the

blood flow analysis under the consideration of haematocrits,

anticoagulants, temperature, etc. In blood flow, the yield stress

considerably affects the rate of dispersion of the fluid.17 When

the blood flows through small blood vessels, the presence of

a peripheral layer of plasma (Newtonian liquid) and a core

region of suspension of all the erythrocytes as a non-Newtonian

liquid has been found, which was experimentally shown by
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Bugliarello and Sevilla11 and Cokelet.14 Thus, for a practical

portrayal of the blood stream, it is more appropriate to regard

the blood as a two-liquid (or three-layer liquid) model com-

prising all the erythrocytes thought to be the Casson liquid

and a peripheral layer of plasma as a Newtonian liquid. In

the recent work of Debnath et al.18 and Rana and Murthy,38

the dispersion process through a three-layer liquid continuum

has been studied under the steady and unsteady nature of

liquid spreading. The present study considers the following

features:

(1) a three-layer liquid of a Casson-Newtonian contin-

uum has been considered, (2) the periodic pressure gradient

is the reason of flow pulsation, (3) the solute is supposed to

undergo a first-order reaction (irreversible absorption) into the

boundary of a pipe, (4) in contrast to the published studies in

this direction, the present study has investigated the parametric

effect of molecular diffusivity at different liquid layers which

has helped one to project the importance of viscosity ratio and

density ratio in hydrodynamic dispersion.

In a layered liquid flow, density and viscosity ratios are

responsible for the dynamics of the interaction.9,21,39 These

studies suggest that effects of viscosity and density ratios

are more significant than those of the previously recognized

works in the computational and experimental studies of a mul-

tiphase flow. The plug flow within the Casson region is very

important because the significant advantage of transporting

particulate materials in a plug form is of low energy consump-

tion, low particles attrition, and low pipe erosion.45 The main

objective of the present study is to understand the physical

mechanism of contaminant mixing and to provide a theoret-

ical framework to interpret the spreading of a contaminant

in a pulsatile blood-like liquid flow with an irreversible wall

reaction.

II. MATHEMATICAL FORMULATION

A uni-directional, unsteady laminar, axi-symmetric, fully

developed flow of an incompressible, three-layer liquid

through a circular pipe of radius R is considered (Fig. 1).

The core region of radius Ro (≤R) is supposed to be a non-

Newtonian liquid surrounded by the Newtonian liquid layer.

A cylindrical coordinate system is considered where the axial

and radial coordinates are represented by z and r, the over

bar represents the dimensional quantities. The non-Newtonian

behaviour of the liquid is described by the Casson liquid in

Ref. 6. On account of enough axial covering of the tube,

and for low Reynolds number flow, it can be shown that the

radial velocity is negligibly small and can be disregarded,

FIG. 1. Schematic diagram of the setup under consideration.

TABLE I. Liquid properties assigned for Casson and Newtonian liquids.

Physical quantity Symbol for Casson liquid Symbol for Newtonian liquid

Density ρc ρn

Shear stress τc τn

Velocity uc un

Viscosity µc µn

thus a fully developed flow is considered only in the axial

direction. The pressure gradient at any z is given by

− ∂p

∂z
= A0 + A1 sin(ωpt), (1)

where A0 is a steady component of pressure gradient, A1

is an amplitude of fluctuating component, ωp = 2πfp, where

f p is the pulse frequency, t is the time, and p is the

pressure.

The governing equations of motion for the flow in axial

direction are given by

ρc

∂uc

∂t
= −∂p

∂z
− 1

r

∂(r τc)

∂r
, 0 ≤ r ≤ Ro, (2)

ρn

∂un

∂t
= −∂p

∂z
− 1

r

∂(r τn)

∂r
, Ro ≤ r ≤ R. (3)

The relation between shear stress and strain rate in the Casson

region Rc (=[0, Ro]) and Newtonian region Rn (=[Ro, R]) is

given by the following constitutive relations:

τ
1
2
c = τy

1
2 + (−µc

∂uc

∂r
)

1
2 if τc ≥ τy for Rp ≤ r ≤ Ro

∂uc

∂r
= 0 if τc ≤ τy for 0 ≤ r ≤ Rp

τn = −µn
∂un

∂r
if τy = 0 for Ro ≤ r ≤ R


,

(4)

with the boundary conditions

τc is finite and
∂uc

∂r
= 0 at r = 0

τc = τn and uc = un at r = Ro

un = 0 at r = R


, (5)

where τy is the yield stress and Rp is the plug core radius. In

relation (4), whenever τc ≤ τy, the velocity gradient will be

zero, as a consequence, a plug flow region will appear within

the Casson region. Table I represents the liquid properties with

their corresponding symbols.

III. CONVECTION-DIFFUSION EQUATION

Let us contemplate the transport and spreading of a chem-

ical species with the fluid flowing through a tube which is

supposed to be so dilute that the presence of the chemical

species will not affect the carrier flow. The species involve in

a kind of reaction (irreversible absorption) into the wall. The

transport equation that governs the concentration C(t, r, z) is

the unsteady convective diffusion equation and is given by

∂C

∂t
+ u(r, t)

∂C

∂z
=

D

r

∂

∂r
*,r
∂C

∂r
+- + D

∂2C

∂z2
, (6)
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where D is the constant molecular diffusivity chosen to be

different in the three regions Rp, Rc, and Rn. So we assume

D =


Dp in Rp

Dc in Rc

Dn in Rn


. (7)

The initial and boundary conditions for the transport Eq. (6)

are considered as

C(0, r, z) = C0B(r)ψ(z), (0 < r < R)

C0 =
M

πR
3

ψ(z) = R δ(z)

B(r) = 1


, (8)

∂C

∂r
= 0 at r = 0, (9)

∂C

∂r
+ β C = 0 at r = R. (10)

The initial solute distribution at t = 0 is considered by intro-

ducing the solute of mass M, where B(r) is a function of r,

and δ(z) is the Dirac delta function. The absorbing boundary

condition at the wall of the tube is represented by Eq. (10)

where β is the first-order reaction rate.

Using the following dimensionless quantities:

t =
Dn t

R
2 , r = r

R
, z =

Dnz

R
2
u0

, u0 =
R

2
A0

4µn
,

uc =
uc

u0
, un =

un

u0
, C = C

C0

, τc =
τc

µn(
u0

R
)
,

τn =
τn

µn(
u0

R
)
, R0 =

Ro

R
, Rp =

Rp

R
, τy =

τy

µn(
u0

R
)
,

β = β R, Pe =
u0R

Dn

, m =
µc

µn
, n =

ρc

ρn
,

D∗ = D

Dn

, Sc =
νn

Dn

, α2
=

R
2
ωp

νn
,



(11)

Eqs. (6)–(10) become

∂C

∂t
+ u(r, t)

∂C

∂z
=

D∗

r

∂

∂r

(

r
∂C

∂r

)

+
D∗

Pe2

∂2C

∂z2
, (12)

D∗ =


Dp in Rp

Dc in Rc

1 in Rn

 , (13)

along with initial and boundary conditions

C(0, r, z) = B(r)ψ(z), (0 < r < 1)

ψ(z) =
δ(z)
Pe

B(r) = 1


, (14)

∂C

∂r
= 0 at r = 0, (15)

∂C

∂r
= −βC at r = 1. (16)

Here C0 is the initial concentration of the slug input, u0 is

the time-averaged axial velocity, β is the absorption parame-

ter or first order reaction rate representing the rate of loss on

the wall. Pe is the Peclet number which measures the relative

characteristic time of the diffusion process
(

R2

Dn

)

to the convec-

tion process
(

R
u0

)

. Sc is the Schmidt number which is the ratio

of viscous diffusion to the molecular diffusion. The dimen-

sionless frequency parameter α is known as the Womersely

frequency parameter which is the ratio of transient inertial

force to viscous force. The radius of the cylinder containing

the solute to that of the entire tube is assumed as value one,

subsequently, the slug initially occupies the entire cross section

of the tube.

IV. VELOCITY DISTRIBUTION

The presence of non-linearity in the governing equations

and the constitutive equations that are coupled together pre-

vents one from getting an exact solution. Since the Schmidt

number (Sc) is very large [O(103)] in arterial blood flows,12 the

parameter ǫ
(

=
1
Sc

)

is very small. Thus, in the present study, we

solve the linear momentum equations by a regular perturbation

technique by considering ǫ as the perturbation parameter. The

velocity distributions in the three different layers are given by

(the details are provided in Appendix A)

ucp(r, t) =
p(t)

m

m(1 − R2
o) + R2

o

1 − ξ2
2 −

4
√

2

3
ξ

1
2

2

(

1 − ξ
3
2

2

)

+ ξ2 (1 − ξ2)}] +
ǫ p′(t)

16

[
n

m
Ro log(Ro) {8 m Ro

× (1 − R2
o) + R3

o
*,4 − 16

√

(2ξ2)

7
+-
 − R4

o + 4R2
o − 3

− 4R2
o (2 − R2

o) log(Ro) − 4n

m
R2

o(1 − R2
o)(1 − ξ2

2)

− n

m2
R4

o

3 − 32
√

2ξ2

3
*,

33

196
− ξ

2
2

4
+

4

49
ξ

7
2

2
+-

− 4ξ2
2 + ξ4

2

 +
16

3
√

2

n

m
R2

o(1 − R2
o)

(

1 − ξ
3
2

2

)

+
16R4

on√
2m2

√

ξ2


11

42
− ξ

1
2

2

2
√

2

3

(

5

21
− 1

3
ξ

3
2

2
+

2

21
ξ3

2

)

−1

3
ξ

3
2

2
+

1

14
ξ

7
2

2

}]
, 0 ≤ r ≤ Rp (17a)

uc(r, t) =
p(t)

m

m(1 − R2
o) + R2

o

{

1 − ξ2
1 −

4
√

2

3
ξ

1
2

2

×
(

1 − ξ
3
2

1

)

+ ξ2 (1 − ξ1)

}]
+
ǫ p′(t)

16

[
n

m
Ro log(Ro)

×
8 m Ro(1 − R2

o) + R3
o
*,4 − 16

√

(2ξ2)

7
+-
 − R4

o

+ 4R2
o − 3 − 4R2

o (2 − R2
o) log(Ro)

− (4n/m)R2
o(1 − R2

o)(1 − ξ2
1) − n

m2
R4

o

×
3 − 32

√

2ξ2

3
*,

33

196
− ξ

2
1

4
+

4

49
ξ

7
2

1
+-−4ξ2

1 + ξ4
1

}

+
16

3
√

2

n

m
R2

o(1 − R2
o)

(

1 − ξ
3
2

1

)

+
16R4

on√
2m2

√

ξ2

×


11

42
− ξ

1
2

2

2
√

2

3

(

5

21
− 1

3
ξ

3
2

1
+

2

21
ξ3

1

)

− 1

3
ξ

3
2

1
+

1

14
ξ

7
2

1

}]
, Rp ≤ r ≤ Ro (17b)
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un(r, t) = p(t)(1 − r2) +
ǫ p′(t)

16

[
n

m
Ro log(r)

{

8 m Ro(1 − R2
o)

+ R3
o
*,4 − 16

√

2ξ2

7
+-
 − r4 + 4r2 − 3 − 4R2

o

× (2 − R2
o)log(r)

]
. Ro ≤ r ≤ 1 (17c)

The velocity distributions of shear flow in the Casson and

Newtonian regions are given by uc and un, respectively.

The constant velocity ucp appears only in the plug flow

region having radius Rp =
τy

p(t)
(plug core radius), where

p(t) =
(

1 + e sin(α2 Sc t)
)

; e =
A1

A0
is the amplitude of

the fluctuating pressure component, α is the Womersely fre-

quency parameter, and Sc is the Schmidt number. The term

Ω (=α2 Sc t) is known as the phase angle of pressure pul-

sation. The quantity R0 (≤1) is the ratio of the central core

radius to normal pipe radius. Small values of Ro signify a

large peripheral layer region, where γ (=[1−Ro]) is known as

the peripheral layer thickness. If Ro = 1 or γ = 0, the model

will be a single-fluid Casson model. Here m is the viscosity

ratio, which indicates the influence of the Casson viscosity

(µc) compared to the Newtonian viscosity (µn) and n is the

density ratio indicating the influence of Casson density (ρc)

compared to the Newtonian density (ρn) within the layered

liquid regime.

V. ARIS-BARTON APPROACH

The pth moment of the distribution of the solute in the

direction of flow can be described by Aris-Barton8 as

C(p)(t, r) =

∫ +∞

−∞
zpC(t, r, z)dz. (18)

Using Eq. (18), the diffusion Eq. (12) subject to the initial and

boundary conditions (14)–(16) can be written as

∂C(p)

∂t
− D∗

r

∂

∂r

(

r
∂C(p)

∂r

)

= p u(r, t) C(p−1)

+
D∗

Pe2
p(p − 1)C(p−2), (19)

with

C(p)(0, r) =

{

1
Pe

for p = 0

0 for p > 0

∂C(p)

∂r
= 0 at r = 0,

∂C(p)

∂r
= −βC(p) at r = 1,


. (20)

The cross-sectional average of the pth moment of the distribu-

tion of the solute is given by

〈

C(p)(t)
〉

=

1

π

∫ 2π

0

dθ

∫ 1

0

rC(p)(t, r)dr, (21)

where 〈 . 〉 denotes the cross-sectional mean.

With this definition, Eq. (19) and the conditions given in

Eq. (20) become

d

dt

〈

C(p)
〉

+ 2βD∗C(p)(t, 1)

= p
〈

u(r, t)C(p−1)
〉

+
D∗

Pe2
p(p − 1)

〈

C(p−2)
〉

, (22)

with the initial condition

〈

C(p)(0)
〉

=

1

Pe
for p = 0

= 0 for p> 0. (23)

The pth order central moment about mean of the concentration

distribution can be defined as

µp(t) =
∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ r(z − zg)pCdrdθdz

∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ rCdrdθdz

, (24)

where

zg =

#
zCdv

#
Cdv

=

〈

C(1)
〉

〈

C(0)
〉

represents the “centroid” or “first moment” of the distribution

of the solute and 〈C(0)〉 is the total mass of the chemical species

in the flowing stream.

The expressions for central moments can be obtained from

Eq. (24) (see Appendix B) as

µ2(t)=
〈C(2)〉
〈C(0)〉 − z2

g,

µ3(t)=
〈C(3)〉
〈C(0)〉 − 3zgµ2 − z3

g,

µ4(t)=
〈C(4)〉
〈C(0)〉 − 4zgµ3 − 6z2

gµ2 − z4
g,



. (25)

The second central moment, µ2, represents the variance of

the distribution about the mean position whose rate of change

gives the dispersion coefficient. Following Aris,5 the apparent

dispersion coefficient, Da, can be expressed as

Da =
1

2

dµ2

dt
, (26)

where dispersion coefficient Da depends on wall absorption

parameter β, yield stress τy, peripheral layer thickness γ, vis-

cosity ratio m, density ratio n, amplitude of the fluctuating

pressure component e, Womersely frequency parameter α,

etc. The coefficients of skewness ν2 (=µ3/µ
3
2

2
) and kurtosis

ν3 (=µ4/µ
2
2
−3) are important factors for measuring the degree

of symmetry and peakedness of the concentration distribution,

respectively.

VI. FINITE DIFFERENCE OF THE UNSTEADY
CONVECTIVE DIFFUSION EQUATION
IN THE THREE-LAYER REGION TO OBTAIN
DISPERSION COEFFICIENT

To avoid the complexity of the analytical solution of

moment equations (for p > 1) subject to the initial and bound-

ary conditions, a standard finite difference method based on the

Crank-Nicolson implicit scheme has been adopted to solve the

set of integral moment equations. For this purpose, we divide

the whole width of the pipe into (M ☞ 1) equal parts having

length ∆r. The length and times are represented by the grid

points j and i, respectively, so that the general formulas are

rj = ( j − 1) × ∆r and ti = ∆t × (i − 1). Here, j = 1, M corre-

spond to the axis of the pipe (r = 0) and the wall (r = 1) of

the pipe, respectively, also as i = 1 corresponds to the initial
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time (t = 0), where ∆t and ∆r are the augmentations of t and

r, respectively. C(p) (i, j) indicates the value of C(p) at the

ith grid point along the t-axis and jth grid point along the r-

axis. The resulting finite difference formula leads to a system

of algebraic equation with a tri-diagonal coefficient matrix,

given by

PjC
(p)(i + 1, j + 1) + QjC

(p)(i + 1, j) + RjC
(p)(i + 1, j − 1) = Sj,

(27)

where Pj, Qj, Rj, and Sj are the matrix elements. The finite

difference form of the initial condition is

C(p)(1, j) = 1
Pe

, for p = 0

= 0, for p > 0
(28)

and that of boundary conditions are

C(p)(i + 1, 0) = C(p)(i + 1, 2), at the axis of pipe,

and

C(p)(i + 1, M + 1) = C(p)(i + 1, M − 1)

− 2∆r βC(p)(i + 1, M),

at the surface of the pipe wall.

(29)

A MATLAB code has been developed to solve the tri-

diagonal coefficient matrix for Eqs. (27)–(29) by the Thomas

algorithm.4 The computation steps are as follows:

Step-1: The time dependent axial velocity u is computed first

from Eqs. (17a)–(17c).

Step-2: The concentration C(p) is then calculated from Eq. (19)

as the value of u(r, t) at each of the grid points are known from

step-1.

Step-3: Finally the value of 〈C(p)〉 is calculated from Eq. (21)

by Simpson’s one-third rule, using the values obtained from

step-1 and step-2 at the corresponding grid points.

Numerical calculations have been performed to discuss

individual dispersion processes due to absorption parame-

ter, yield stress, peripheral layer thickness, viscosity ratio,

density ratio, amplitude of fluctuating pressure component,

Womersely frequency parameter, and molecular diffusivity

at different layers. The present scheme is linearly stable for

any finite values of ∆t/(∆r)2, where a mesh size (∆t =

0.000 01,∆r = 1/(M − 1)) and M = 100, gives satisfactory

results for different values of parameters. In all the cases,

we have taken Sc = Pe = 103. By varying the time step

and grid spacings, we have assured a very good order of

accuracy of the results generated by the above-mentioned

spatial and temporal discretization parameters. Actually, the

smaller time interval is needed to trap the oscillatory nature

in the dispersion process. Sufficiently small spatial discretiza-

tion has been utilized in order to keep the accuracy of the

results.

VII. CALCULATION OF THE NON-GAUSSIAN MEAN
SOLUTE CONCENTRATION USING HERMITE
POLYNOMIALS

The behaviour of concentration distribution might also be

acquired from the information of the first four central moments

of the distribution. Utilizing these four moments, it is possi-

ble to approximate the mean axial concentration distribution

Cm(z, t) of tracers within the flow region with the assistance of

Hermite polynomial representation for non-Gaussian curves30

and is given by

Cm(z, t) =
〈

C(0)(t)
〉

e−η
2
∞
∑

n=0

an(t)Hn(η), (30)

where η = (z − zg)/
√

2µ2, zg =
〈C(1)〉
〈C(0)〉 and H i, the Hermite

polynomials, satisfy the recurrence relation with H0(η) = 1.0

as

Hi+1(η) = 2ηHi(η) − 2iHi−1(η), i = 0, 1, 2, . . . .

The coefficients ai’s are

a0 = 1/(2πµ2)1/2, a1 = a2 = 0,

a3 = 21/2a0ν2/24, a4 = a0ν3/96.

Therefore, given the statistical parameters in Eq. (25), the con-

centration distribution can be estimated from Eq. (30) at any

given location in the axial direction and time.

VIII. RESULTS AND DISCUSSION

In order to study the solute dispersion in the laminar flow

of a layered liquid with wall reaction, a pulsatile nature of the

Poiseuille flow is considered due to its versatile applications

in physiological fluid dynamics. Inline with the discussions

outlaid in Sec. I, the importance of the effect of the peripheral

layer in blood flow, the values of yield stress and peripheral

layer thickness assume a pivotal significance. In contrast to

existing studies in this direction, the present study has investi-

gated the parametric effect of molecular diffusivity at different

liquid layers which has helped one to project the importance

of viscosity and density ratios in the present paradigm of the

study. In order to establish the desired parametric effect in

both qualitatively and quantitatively, the ranges of the val-

ues of parameters considered in the study are provided in

Table II.

The variations of the velocity distribution due to non-

Newtonian flow characteristic parameter or yield stress τy,

viscosity ratio m, density ratio n, and peripheral layer thick-

ness γ are shown in Fig. 2, when phase angles Ω are 3π
4

and 5π
4

, respectively. Figures 2(a) and 2(b) show that veloc-

ity is decreased with the increment of both τy and m whereas,

a non-uniform behaviour is experienced for n which can be

seen from Fig. 2(c). Figure 2(d) clearly shows that velocity is

TABLE II. Values of parameter relevant to physiologically blood flows of

human circulatory system.

Parameter Range of value

τy, yield stress16,35 0 – 0.1

γ, peripheral layer thickness41,43 0 – 0.2

α, Womersely frequency parameter35 0.05 – 0.5

e, fluctuating pressure component32,41 0 – 1

m, viscosity ratio43 1 – 2

n, density ratio29 1 – 1.09
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FIG. 2. Profiles of the unsteady component of velocity for different values of (a) yield stress τy, (b) viscosity ratio m, (c) density ratio n, and (d) peripheral layer

thickness γ, when the phase angle of pressure pulsation is Ω = 3π
4

and 5π
4

.

FIG. 3. Variation of dispersion coefficient Da with time t for different values of yield stress τy, when β = 0.01, α = 0.5, e = 0.5, and Sc = 1000. (a) For small

times; (b) for large times (curved lines with circles are the results of the work of Rana and Murthy35).

decreased by small γ. A similar kind of behaviour is observed

by Sankar and Lee,41 the resistance to the flow for the two-

fluid model is considerably less than that of the single-fluid

model.

To solve the integral moment equations, a MATLAB

code has been prepared based on the standard finite dif-

ference Crank-Nicolson implicit scheme. The accuracy of

the numerical scheme has been justified from the following

cases:

Case-I: In order to compare the results of dispersion

obtained in the present study with those established by

Rana and Murthy,35 the parameters under a periodic pressure

gradient has been characterized by the same values of γ = 0,

Dp = Dc = 1, m = n = 1, and β = 0.01, etc. Figures 3(a)

and 3(b) show the temporal variation of the dispersion coef-

ficient with yield stress τy. As is evident from the results

obtained, the model trend completely concurs qualitatively and

quantitatively with that obtained in the study of Rana and

Murthy.35 (see Fig. 3 totally coincides with Fig. 11 in

Ref. 35).

Case-II: In order to validate the present model with the

results established in the study of Dash et al.,17 the simulation

parameters of Dp, Dc, m, and n bearing their individual sig-

nificance have been kept at unity and γ = 0, etc. To this end,

FIG. 4. Variation of dispersion coefficient (192×Da) with t for various values

of plug radius (Rp) (curved lines with circles are the results of the work of

Dash et al.17).
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FIG. 5. For steady flow, time assessment of dispersion coefficient for fixed e = 0, Dp = Dc = 1, (a) variation of absorption parameter (β) when m = 1.4, τy = 0.04,

and γ = 0.06; (b) variation of yield stress (τy) when m = 1.4, β = 2, and γ = 0.06; (c) variation of viscosity ratio (m) when τy = 0.04, β = 2, and γ = 0.06;

(d) variation of peripheral layer thickness (γ) when m = 1.4, τy = 0.04, and β = 2.

the response of the model, outlaid in Fig. 4, displays complete

agreement with the work of Dash et al.17 in the absence of

catalytic wall reaction, i.e., β = 0 [see Fig. 4 totally coincides

with Fig. 2(a) in Ref. 17].

From the above cases (Figs. 3 and 4), it is noticeable that

as the non-Newtonian effect or plug flow radius increases,

both the amplitude of fluctuations and the magnitude of the

dispersion coefficient decrease for all time. Higher values

of non-Newtonian parameter lead to the increase of flow

resistance, strictly diminishing the value of the dispersion

coefficient. In both the cases of steady or unsteady flows,

initially, dispersion coefficient is the increasing function of

time whereas after a fixed value of time, Da becomes constant

or uniform.

FIG. 6. For unsteady flow, time assessment of dispersion coefficient for fixed γ = 0.06, e = 0.3, α = 0.2, Dp = Dc = 1, at small time interval; (a) variation of

absorption parameter (β) when m = 1.4, n = 1.07, and τy = 0.04; (b) variation of yield stress (τy) when m = 1.4, n = 1.07, and β = 2; (c) variation of viscosity

ratio (m) when n = 1.07, τy = 0.04, and β = 2; (d) variation of density ratio (n) when m = 1.4, τy = 0.04, and β = 2.
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FIG. 7. Same as Fig. 6 but at large time.

Variation of dispersion coefficient Da with respect to time

t is shown in Fig. 5 for steady flow with different values of the

absorption parameter β, yield stress τy, viscosity ratio m, and

peripheral layer thickness γ, respectively. A wide range of time

is considered to track the asymptotic approach of the disper-

sion coefficient. Profile in Fig. 5(a) represents the behaviour

of Da for various values of β where the increase in β leads

to the decrease in Da. Initially, it is found that the magni-

tude of Da increases with time for every values of β, though

after a large time, Da reaches to constant values 6.461× 10−3,

5.257 × 10−3, and 3.532 × 10−3 for β = 0.1, 2, and 5 when

t = 0.5441, 0.3959, and 0.213, respectively. Hence, the time

required for steady state is decreased with wall absorption.

The physical perception about the decrement of Da with

increasing β leads to an increase in the quantity of moles of

reactive material undergoing chemical reaction or absorption

resulting a change in the concentration distribution across the

tube with the simultaneous consequence of a drop in dispersion

coefficient. Figure 5(b) is drawn to emphasize the effect of

τy on Da in order to highlight the pivotal significance of

low shear rate applicable to blood flow through small blood

vessels in the presence of a peripheral layer. It is observed

FIG. 8. For combined flow, time assessment of dispersion coefficient in a three-layer liquid flow in a small time interval. Others description are as in Fig. 6.
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FIG. 9. Same as Fig. 8 but at large time.

that the dispersion coefficient decreases with the increase in

yield stress, as the increase in the non-Newtonian parameter

decreases the velocity of the liquid. Viscosity ratio m is the

ratio of Casson viscosity µc to Newtonian viscosity µn; and

density ratio n is defined as the ratio of Casson density ρc to

Newtonian density ρn. The main advantage of using m and

n on the study of dispersion is that it directly discloses how

strong is the influence of µc and ρc compared with µn and

ρn. For a steady flow, dispersion coefficient Da is indepen-

dent of density ratio n which can also be concluded from Eqs.

(17a)–(17c) for e = 0. The time evaluation of dispersion coef-

ficient Da under the effect of m has been projected in Fig. 5(c).

As can be inferred from Fig. 5(c), we can observe that Da

increases with time t for a short period beyond which it attains

a steady state. Again, as m increases, the magnitude of Da

decreases. This happens in light of the fact that the increment

of m causes a decrease in velocity distribution. From Fig. 5(d),

one can easily observe that the increase in the peripheral layer

FIG. 10. Variation of dispersion coefficient Da with absorption rate β for a

fixed time t = 0.5, when γ = 0.06, e = 0, τy = 0.04, m = 1.4.

thickness leads to a significant augmentation of dispersion

coefficient.

When the flow is purely oscillatory, time variation of dis-

persion coefficients is shown in Fig. 6, and in Fig. 7, for

small and large time, respectively. During small as well as

large time, Figs. 6(a) and 7(a) show that the dispersion coeffi-

cient decreases with the increase in the absorption parameter

β which is associated with the irreversible reaction on the

tube wall. A similar kind of behaviour of dispersion under

absorption has been followed and reasoned by Mazumder

and Das.25 The rheology of blood is strongly influenced by

yield stress τy which imparts various qualities to a fluid as

indicated by McDonald.28 According to Krishnan et al.,22 the

yield stress values for normal human blood is between 0.01

and 0.06 dyn/cm2. Figures 6(b) and 7(b) show that yield stress

inhabits the dispersion process for all time. The reason of such

behaviour is due to weak stream produced by high yield stress

FIG. 11. Variation of dispersion coefficient with viscosity ratio m for a fixed

time t = 0.5, when γ = 0.06, e = 0, τy = 0.04, β = 2.
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FIG. 12. For combined flow, time assessment of dispersion coefficient with the variation of amplitude of the fluctuating pressure component e when β = 2,

m = 1.4, n = 1.07, τy = 0.04, γ = 0.06, α = 0.2, Dp = Dc = 1; (a) for small times; (b) for large times.

at the carrier flow. It can be seen from Fig. 6(c) that, like the

case of steady flow, dispersion coefficient shows a decreasing

trend with the increase in the viscosity ratio m. The behaviour

of the dispersion coefficient is not uniform with respect to

the density ratio n, which has been captured in Fig. 6(d). The

variation of Da with respect to both m and n follows same indi-

vidual trends for the large times also, which are supported by

Figs. 7(c) and 7(d). For all time, results show that the disper-

sion process becomes faster with the density ratio. The reason

behind this augmentation could be the density improvement

in the Casson layer due to the increment of the density ratio.

For combined flow, variation of dispersion coefficient

at small and large times is shown in Figs. 8 and 9, respec-

tively. The arrangement of the figures is same as the previous

figures. It can be easily detected from Figs. 8(a) and 9(a)

that, for all time, the asymptotic values of Da diminish as

the absorption rate becomes faster. Initially the dispersion

coefficient increases periodically with wavy nature, though

after a critical time it reaches non-transient state. It is notice-

able that, when the time is large, somewhat similar qualitative

effects of the absorption parameter on the dispersion coef-

ficient can be seen from Fig. 9(a), except that the response

of the dispersion coefficient seems to be more sensitive at

large time, i.e., at large time, effects are more pronounced.

The decrease in the dispersion coefficient with the increase

in the irreversible reaction parameter is based on sound phys-

ical ground which has already been discussed in the above

paragraph. The effect of yield stress τy on dispersion coef-

ficient Da for a combined flow situation has been shown in

Fig. 8(b) such that an increase in the non-Newtonian param-

eter leads to a decrease in the magnitude of Da. More vivid

effects of τy can be noticed in Fig. 9(b), though the quali-

tative nature of the dispersion coefficient remains the same

as in initial time [Fig. 8(b)]. Nagarani and Sebastian32 also

obtained the same nature of the dispersion coefficient when

yield stress τy was significant. The increase in the viscosity

ratio also reduces the magnitude of the dispersion coefficient.

Figure 8(c) shows that initially Da is found to increase with

time but after a fixed time, the fluctuation becomes more sta-

ble and finally reaches to a non-transient state [see Fig. 9(c)].

It has already been discussed that for the case of steady flow,

Da is independent of density ratio n. Figures 8(d) and 9(d)

show the temporal variation of Da with respect to n. An

increase in density ratio makes a variable impact on the dis-

persion coefficient for small as well as large time intervals. As

the density ratio increases, the relative axial velocity between

the liquid layer increases or decreases depending on the phase

angles. It should be mentioned here that the fall and growth

of the dispersion coefficient with the variation of the parame-

ters should not be taken as ultimate. The situation may differ

depending on the strength of the reactions, span of time, fre-

quency of pressure pulsation, etc. This fact can be partially

realized later from Figs. 10–13.

For a steady flow situation, the relation of dispersion

coefficient Da with the irreversible reaction parameter β and

viscosity ratio m for a fixed instant of time is, respectively,

shown in Figs. 10 and 11. From Fig. 10, it is found that up to a

certain small value of β, dispersion coefficient increases with

it and after that critical value, dispersion coefficient shows a

steep decrease with β and finally reaches to its asymptotic

value when absorption is so high at the pipe boundary. So

for weak boundary absorption, dispersion coefficient is in fact

enhanced, i.e., the absorption parameter has an insignificant

effect during the initial stage, for that span of time which is

not sufficient for the absorption parameter to be fully acti-

vated. The result outlaid in Fig. 11 is the viscosity ratio effect

on dispersion for a fixed time t = 0.5. It is shown in the figure

that as the viscosity ratio increases, the value of the dispersion

coefficient goes downward and eventually reaches a steady

state position.

In Figs. 12 and 13, behaviour of Da has been observed

for different values of amplitude of the fluctuating pressure

component e and Womersely frequency parameter α. It can

be easily observed that, as e increases, both the amplitude

FIG. 13. For combined flow, time assessment of dispersion coefficient with

the variation of Womersely frequency parameter α when β = 2, m = 1.4,

n = 1.07, τy = 0.04, γ = 0.06, e = 0.3, and Dp = Dc = 1.
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FIG. 14. Axial distribution of mean concentration for combined flows with different values of (a) absorption rate β, (b) yield stress τy, (c) viscosity ratio m, and

(d) density ratio n at a fixed time, t = 0.25. Other descriptions are as in Fig. 6.

of fluctuations and the magnitude of Da increase though

the same are decreased due to high frequency parameter α.

A similar kind of conclusion has been noticed and reasoned

by Rana and Murthy35 in their single phase Casson model.

Under the consideration of both e and α, dispersion coeffi-

cient is increasing within the initial time interval; however,

after a critical time, the flow pulsations become uniform. It

should be noticed that the critical time of Da to reach the non-

transient stage is independent of e. From Fig. 13, it is seen that

large values of the frequency parameter helps one to reach the

non-transient state of Da in the earlier time since the increase

in the frequency parameter would decrease the period of

oscillations.

Figures 14 and 15 present the investigation of mean

concentration distribution across the axial distance for com-

bined nature of stream at dimensionless times t = 0.25 and

0.5, respectively. Due to constant depletion occurring at the

tube wall, the peak of the mean concentration decreases as

absorption parameter β increases, shown in Figs. 14(a) and

15(a). It may become flat for large absorption, thus the

FIG. 15. Same as Fig. 14 but at time t = 0.5.
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FIG. 16. For combined flow, time assessment of dispersion coefficient for various values of diffusivity when β = 2, m = 1.4, n = 1.07, τy = 0.04, γ = 0.06, e

= 0.3, α = 0.2. (a) and (b) for Dp = Dc = 1, Dp = 0.15; Dc = 0.70, (c) and (d) for fixed Dc = 0.70 and (e) and (f) for fixed Dp = 0.15.

dispersion coefficient may not have practical importance for

large absorption rate. While observing Figs. 14(b), 14(c),

15(b), and 15(c), it is found that as τy and m increase, the peak

of the mean concentration distribution also increases. From

Figs. 14(c) and 15(c), we have found that the mean of the

concentration distributions is 7.436, 8.637, and 9.826 at time

t = 0.25 and 2.821, 3.275, and 3.725 at time t = 0.5 when

m = 1.2, 1.4, and 1.6, respectively. This indicates that the solute

occupies increasingly greater portions of the cross-sectional

area as m increases since the solute disperses through the low

viscosity Newtonian liquid at a higher speed compared to the

highly viscous Casson liquid. Like dispersion coefficient, axial

distribution of mean concentration distribution also shows

inhomogeneous behaviour with density ratio n. This fact can be

realized through Figs. 14(d) and 15(d) at time t = 0.25 and 0.5,

respectively.

FIG. 17. Time assessment of dispersion coefficient Da for various values of γ for the case Dp = Dc = 1, β = 2, m = 1.4, n = 1.07, e = 0.3, and α = 0.2. When

(i) τy = 0.04, γ = 0, 0.06, 0.1 and (ii) τy = 0, γ = 0 (circle line).
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FIG. 18. Axial distribution of mean concentration for combined flows when τy = 0.04, β = 2, m = 1.4, n = 1.07, e = 0.3, and α = 0.2; (a) peripheral layer

thickness when Dp = Dc = 1, and (b) diffusivity when γ = 0.06; at a fixed time, t = 0.5.

The molecular diffusivity or diffusion coefficient (D) is a

kinematic property of the fluid which implies that the mass

of the substance diffuses through a unit surface in a unit

time at a concentration gradient of unity. So, diffusion coeffi-

cient (D) represents the spreading process, the larger value of

D indicates the rapid spreading of the tracer curve whereas

smaller D implies slow spreading of the solute in the liq-

uid. Figure 16 shows the effect of various D on the apparent

dispersion coefficient Da. Figures are arranged in a man-

ner that every first and second figures of each row in Fig.

16 show the observations for small and large time, respec-

tively, under identical situation. On the way of expectation,

Fig. 16 shows that larger values of diffusivity belonging to

the region Rc or plug region Rp result in the decrease in

the dispersion coefficient. The reason for this decrement is

due to the fast spreading of molar flux. Also it can be easily

observed from the figures that molecular diffusivities make

strong influence on the dispersion process at the developed

stage.

While observing the effect of peripheral layer variation on

the dispersion coefficient, a discernible impact has been found

in Fig. 17 for small as well as large time interval. Figures

17(a) and 17(b) depict that Da increases as the value of the

peripheral layer thickness γ increases. It is observed from the

present study that, for a purely Casson liquid flow (when γ = 0

and τy = 0.04), the magnitude of the dispersion coefficient

is less than the layered liquid flow (when γ = 0.1 or 0.06

and τy = 0.04). The physical explanation about such kind

of behaviour is that the larger value of γ makes the border

region for the Newtonian liquid; hence, the velocity of the

liquid increases resulting the higher convection and diffusion

rate. Hence, if the liquid is only Newtonian (when γ = 0 and

τy = 0), it has the higher value of dispersion coefficient than

the Casson and three-layer liquids, which can be seen from the

circle line in Fig. 17.

The axial distribution of mean concentration under

the variation of peripheral layer thickness and molecu-

lar diffusivity has been observed through the profiles pre-

sented in Figs. 18(a) and 18(b). Figure 18(a) shows that

smaller value of γ is the reason for higher peak length.

As evident from Fig. 18(b), stronger diffusivity makes

continuous spreading of the solute in the radial direc-

tion resulting in the decrease in the peak height of mean

concentration.

In a blood or blood-like liquid flow analysis, two-fluid

model is significant as compared to single phase fluid models

for small arteries. The two-phase models of core of suspended

erythrocytes and a cell-free layer surrounding the core is

among the good agreement for microvescular blood flow stud-

ies.19,43 The non-Newtonian Casson fluid model is much suit-

able to represent the effect of red blood cell aggregation15 and

the surrounding cell free layer (plasma layer) is represented

by the Newtonian fluid.40 Though red blood cells are essential

to deliver oxygen to the tissue, abnormally high levels can have

deadly consequences, which can be approximated by hemat-

ocrit percentage. An increase in hematocrit will decrease the

thickness of the cell free layer which in other way increase

the amount of red blood cells, as a result, blockage can occur

in the blood vessels. This condition may cause microvascular

disease,48 which is a further consequence of a disorder in blood

supply to heart muscles and interior of the brain.2 It can be con-

cluded from the above discussion that the solute dispersion

under the present model and its physiological consequences

are significant for microcirculation. Again, by the consider-

ation of some parameter values, the two-fluid model can be

reduced to single layer Newtonian and Casson fluid models

and hence the relative conclusions can be drawn for those mod-

els that have applications in the catheterized artery for large

vessels.

IX. CONCLUSION

The study is performed to investigate the transport pro-

cesses in terms of dispersion coefficient in a layered-liquid

flow through a tube having catalytic wall reaction. A three-

layer liquid flow is considered where the center liquid is the

Casson liquid and the Newtonian liquid is surrounding the cen-

tral liquid. It is already discussed that this kind of model can be

useful for the mathematical analysis of blood flow, in addition,

as the pulse presents in the carrier flow, the study has significant

implication. In contrast to existing literatures, the present work

follows the effect of viscosity and density ratios in the solute

transport process. As different molecular diffusivities are con-

sidered in different liquid layers, and peripheral layer effect

is measured during transport of materials, the present model

is more generalized and pronounced in this paradigm of the

study. The following general conclusions can be made from the

study.
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(a) In the case of a steady flow and unsteady convective dif-

fusion of reactive solute, dispersion coefficient is found

to decrease with absorption parameter, yield stress, and

viscosity ratio; however, it is independent of density

ratio.

(b) In the case of a purely unsteady and combined flow,

dispersion coefficient is decreased by absorption param-

eter, yield stress, and viscosity ratio. However a non-

uniform behaviour of the dispersion coefficient has been

observed for varying density ratio though it may increase

the speed of the dispersion.

(c) The peripheral layer enhances the value of the dispersion

coefficient and this result can be attributed to the large

value of the layer depth in comparison with that of the

Casson liquid.

(d) Stronger absorption results in a much flat trend of mean

concentration distribution and also the peak of the mean

concentration distribution rises when the yield stress and

viscosity ratio increase, whereas peak of the distribution

shows an inhomogeneous pattern with the increment of

density ratio.

(e) As diffusivity increases, dispersion coefficient decreases,

consequently peak of the mean concentration distribu-

tion also goes downward.

(f) Dispersion coefficient decreases with the increase in the

value of yield stress.

(g) At the initial time, dispersion coefficient is less affected

by absorption at the boundary though at the large time

the effect is pronounced.

(h) Initially viscosity ratio reduces the magnitude of the

dispersion coefficient but ultimately leads to a steady

value.

(i) The findings of the study are significantly important for

dispersion in blood-like liquid flow.

APPENDIX A: DERIVATION OF VELOCITY PROFILE
IN THE THREE-LAYER REGION USING REGULAR
PERTURBATION METHOD

The dimensionless momentum form of Eqs. (2)–(5) is

n ǫ
∂uc

∂t
= 4p(t) − 1

r

∂(r τc)

∂r
0 ≤ r ≤ Ro, (A1)

ǫ
∂un

∂t
= 4p(t) − 1

r

∂(r τn)

∂r
Ro ≤ r ≤ 1, (A2)

τ
1
2

c = τy
1
2 + (−m

∂uc

∂r
)

1
2 if τc ≥ τy for Rp ≤ r ≤ Ro

∂uc

∂r
= 0 if τc ≤ τy for 0 ≤ r ≤ Rp

τn = − ∂un

∂r
if τy = 0 for Ro ≤ r ≤ 1


,

(A3)

τc is finite and
∂uc

∂r
= 0 at r = 0,

τc = τn and uc = un at r = Ro,

un = 0 at r = 1,

 . (A4)

Here p(t) =
(

1 + e sin(α2 Sc t)
)

, ǫ = 1
Sc

is the inverse of

the Schmidt number. m and n are the viscosity and density

ratios.

To solve the boundary value problem for the time-periodic

fluid flow, we consider a regular perturbation solution of the

form considering ǫ is small,

uc(r, t) = u0c(r, t) + ǫ u1c(r, t) + · · · ,

un(r, t) = u0n(r, t) + ǫ u1n(r, t) + · · · ,

τc(r, t) = τ0c(r, t) + ǫ τ1c(r, t) + · · · ,

τn(r, t) = τ0n(r, t) + ǫ τ1n(r, t) + · · · .


(A5)

Utilizing Eq. (A5) in Eqs. (A1)–(A4), we get

Zeroth order terms

∂

∂r
(rτ0c) = 4p(t)r, (A6)

− m
∂u0c

∂r
= τ0c + τy − 2τ

1
2

y τ
1
2

0c
, (A7)

∂

∂r
(rτ0n) = 4p(t)r, (A8)

τ0n = −∂u0n

∂r
. (A9)

First order terms

n
∂u0c

∂t
= −1

r

∂

∂r
(rτ1c), (A10)

− m
∂u1c

∂r
= τ1c

(

1 −
√

τy

τ0c

)

, (A11)

∂u0n

∂t
= −1

r

∂

∂r
(rτ1n), (A12)

τ1n = −∂u1n

∂r
. (A13)

The boundary conditions for solving Eqs. (A6)–(A13) are

τ0c and τ1c are finite and
∂u0c

∂r
= 0,

∂u1c

∂r
= 0 at r = 0,

τ0c = τ0n, τ1c = τ1n, u0c = u0n, u1c = u1n at r = Ro,

u0n = u1n = 0 at r = 1,

 .

(A14)

Solving the boundary value problem of Eqs. (A6)–(A14), we

get

τ0c = 2p(t) r, (A15)

u0c(r, t) =
p(t)

m

m(1 − R2
o) + R2

o

1 − ξ2
1

−4
√

2

3
ξ

1
2

2

(

1 − ξ
3
2

1

)

+ ξ2 (1 − ξ1)

 , Rp ≤ r ≤ Ro,

(A16)
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τ0n = 2p(t) r, (A17)

u0n(r, t) = p(t)(1 − r2), Ro ≤ r ≤ 1, (A18)

τ1c = −n p′(t)
m


r m

2
(1 − R2

o) + R2
o


r

2
− r3

4R2
o

− 2
√

2

3

√

τy

Ro p(t)
*,

r

2
− 2

7

r5/2

R
3/2
o

+-

 , (A19)

u1c(r, t) =
p′(t)
16


n

m
Ro log(Ro)

8 m Ro(1 − R2
o)

+ R3
o
*,4 − 16

√

(2ξ2)

7
+-
 − R4

o + 4R2
o − 3

− 4R2
o(2 − R2

o) log(Ro) − 4n

m
R2

o(1 − R2
o)(1 − ξ2

1)

− n

m2
R4

o

3 − 32
√

2ξ2

3
*,

33

196
− ξ

2
1

4
+

4

49
ξ

7
2

1
+-

− 4ξ2
1 + ξ4

1

 +
16

3
√

2

n

m
R2

o(1 − R2
o)

(

1 − ξ
3
2

1

)

+
16R4

on√
2m2

√

ξ2


11

42
− 2
√

2

3
ξ

1
2

2

(

5

21
− 1

3
ξ

3
2

1
+

2

21
ξ3

1

)

− 1

3
ξ

3
2

1
+

1

14
ξ

7
2

1


 , RP ≤ r ≤ Ro, (A20)

τ1n = −p′(t)


r

2
− r3

4
− R2

o

2r
+

R4
o

4r
+

nRo

mr


m

2
Ro (1 − R2

o)

+ R3
o
*.,

1

4
− 1

7

√

2τy

p(t)Ro

+/-

 , (A21)

u1n(r, t) =
p′(t)
16


n

m
Ro log(r)

8 m Ro(1 − R2
o)

+ R3
o
*,4 − 16

√

2ξ2

7
+-
 − r4 + 4r2 − 3

− 4R2
o(2 − R2

o) log(r)

 , Ro ≤ r ≤ 1. (A22)

The plug flow velocity counterparts uop and u1p can be obtained

by taking r = Rp in Eqs. (A16) and (A20)

u0p(r, t) =
p(t)

m

m(1 − R2
o) + R2

o

1 − ξ2
2 −

4
√

2

3
ξ

1
2

2

×
(

1 − ξ
3
2

2

)

+ ξ2 (1 − ξ2)

 , 0 ≤ r ≤ Rp (A23)

u1p(r, t) =
p′(t)
16


n

m
Ro log(Ro)

8 m Ro(1 − R2
o) + R3

o

× *,4 − 16
√

(2ξ2)

7
+-
 − R4

o + 4R2
o − 3 − 4R2

o

× (2 − R2
o) log(Ro) − 4n

m
R2

o(1 − R2
o)(1 − ξ2

2)

− n

m2
R4

o

3 − 32
√

2ξ2

3
*,

33

196
− ξ

2
2

4
+

4

49
ξ

7
2

2
+-

− 4ξ2
2 + ξ4

2

 +
16

3
√

2

n

m
R2

o(1 − R2
o)

(

1 − ξ
3
2

2

)

+
16R4

on√
2m2

√

ξ2


11

42
− 2
√

2

3
ξ

1
2

2

(

5

21
− 1

3
ξ

3
2

2

+
2

21
ξ3

2

)

− 1

3
ξ

3
2

2
+

1

14
ξ

7
2

2


 , 0 ≤ r ≤ Rp,

(A24)

where ξ1 =
r

Ro
and ξ2 =

Rp

Ro
. Using the two-term perturbation

series, we obtain the velocity distribution in the three layers in

the form documented in Eqs. (17a)–(17c).

APPENDIX B: DERIVATION OF CENTRAL MOMENTS

Using the values p = 2, 3, and 4 in Eq. (24) gives

µ2(t) =
∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ r(z − zg)2Cdrdθdz

∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ rCdrdθdz

, (B1)

µ3(t) =
∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ r(z − zg)3Cdrdθdz

∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ rCdrdθdz

, (B2)

µ4(t) =
∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ r(z − zg)4Cdrdθdz

∫ 1
0 ∫ 2π

0 ∫ +∞
−∞ rCdrdθdz

. (B3)

Utilizing Eqs. (18) and (21) in Eqs. (B1)–(B3) gives

µ2(t) =
〈C(2)〉 − 2zg〈C(1)〉 + z2

g〈C(0)〉
〈C(0)〉 , (B4)

µ3(t) =
〈C(3)〉 − 3zg〈C(2)〉 + 3z2

g〈C(1)〉 − z3
g〈C(0)〉

〈C(0)〉 , (B5)

µ4(t) =
〈C(4)〉 − 4zg〈C(3)〉 + 6z3

g〈C(2)〉 − 4z3
g〈C(1)〉 + z4

g〈C(0)〉
〈C(0)〉 .

(B6)

Since

zg =
∫ ∫ ∫ zCdv

∫ ∫ ∫ Cdv
=

〈C(1)〉
〈C(0)〉 ,

the above Eqs. (B4)–(B6) reduce to Eq. (25) of central

moments about mean.
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