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Abstract This study investigates the effect of various parameters on the propagation of seismic

SH-waves in a magneto-elastic anisotropic crustal layer with corrugated boundary surfaces, lying

over a heterogeneous half-space. The shear elastic modulus and mass density of half-space are

the exponential functions of depth. Inclusion of the concept of corrugated irregularity with

magneto-elasticity in the anisotropic (Monoclinic) medium and heterogeneity in the half-space med-

ium brings a novelty to the existing literature related to the study of SH-wave. The expression of

general dispersion relation has been established in closed form by using suitable boundary condi-

tions. The effects of magneto-elastic coupling, heterogeneity, corrugation, undulatory and position

parameters on the phase velocity of SH-wave have been computed numerically and demonstrated

graphically. Moreover, different cases of free and common surface corrugations are studied which

serve as a focal theme of the study.

� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Regulation of seismic waves like propagation, reflection, trans-

mission and refraction through an elastic layered media (cou-

pled with different fields) is totally controlled by the properties

and divergent irregular contact surfaces of the layered media.

The study of seismic waves and their characteristics is often

carried out to identify the structure and dynamics of the

Earth’s interior as well as to detect the epicentre of earth-

quakes. The analysis of seismic wave propagation in some

complex media is also helpful in the exploration of natural

resources buried inside the Earth’s surface, e.g., oils, gases,

minerals, crystals, metals and other useful hydrocarbons. It

infers lot of information about the velocity of the wave, inward

peculiarities of the media and forms the core tool of geophys-

ical and earthquake sciences.

The magnetic and elastic properties of magneto-elastic

materials depend on each other. The Earth’s crust is made of

the great diversity of igneous, metamorphic and sedimentary

rocks. These rocks are capable to generate magnetic field due

to the presence of some ferromagnetic minerals like iron, nickel,
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cobalt, etc. Hence, these rocks can be considered as the

magneto-elastic body. The investigation into the SH-wave

propagation in magneto-elastic bodies is quite important for

the development of fundamental work on the mechanics of a

magnetic body. Moreover, it may be used in various areas of

science, engineering technology such as seismology, defec-

toscopy, geophysics, astrophysics and geo-tectonics. Keeping

in view the significance of seismic wave propagation in

magneto-elastic bodies, the considerable amount of investiga-

tions is carried out by several researchers. Notable among them

are Abd-Alla et al. (2016), Said (2016), Majhi et al. (2016),

Calas et al. (2008), Othman and Song (2006), Chattopadhyay

and Singh (2014), Song et al. (2006), Abo-Dahab et al.

(2015), Singh et al. (2016a) and Mahmoud (2016). Matinfar

et al. (2015) observed the interaction of electromagnetic wave

with electron using the variational iteration method.

It is well-known fact that the interface between any two

adjacent layers of the Earth is very complicated and irregular

in nature. These irregular interfaces may be in the shape of

corrugation (undulated), rectangular, parabolic or much com-

plicated and work as a catalyst in affecting the propagation

behaviour of SH-waves. Some notable references related to

the study of wave phenomena in/at irregular boundary

surfaces are Vishwakarma and Xu (2016a), Singh and

Lakshman (2016), Kundu and his co-workers (Kundu et al.,

2014, 2016a), Singh et al. (2016b), Tomar and Kaur (2007)

and Chatterjee et al. (2015).

The subject of wave propagation in a heterogeneous elastic

medium is of great interest since long because of continuous

change in the elastic properties of the material. These studies

were recorded in several treatises including Birch (1952) and

Bullen (1940). Subsequently, Vishwakarma and Xu (2016b),

Daros (2013), Zhou et al. (2014), Sahu et al. (2014) and

Kundu et al. (2016b) discussed for seismic waves in various

types of heterogeneous media.

The present study investigates the affected behaviour of

horizontally polarized shear wave (i.e. SH-wave) propagation

in an anisotropic crustal layer of finite thickness, lying over a

heterogeneous half-space. The boundary surfaces of consid-

ered structure are corrugated irregular. The crustal anisotropic

layer has been regarded as a perfect conductor. The shear

elastic modulus and mass density of the half-space have been

considered in terms of the exponential function of depth i.e.

l2 ¼ l0e
az and q2 ¼ q0e

bz, where a and b are heterogeneous

parameters. The effects of magneto-elastic coupling, upper free

surface corrugation, common surface corrugation, hetero-

geneities and some geometrical parameters (undulatory and

position) on the phase velocity of SH-wave against wave num-

ber have been shown by several graphs. This investigation for

the propagation of SH-waves may be of importance when such

types of waves are propagated on the Earth’s surface where

corrugated irregularity together with the magneto-elasticity,

anisotropy and heterogeneity are present.

2. Governing equations

The Cartesian co-ordinate system has been considered in such

a way that x-axis is in the direction of wave propagation and

z-axis is vertically downwards. A magneto-elastic anisotropic

crustal layer, M1 : ½k1ðxÞ � h� 6 z 6 k2ðxÞ with corrugated

boundary surfaces is taken in such a way that it lying over a

heterogeneous half-space, M2 : k2ðxÞ 6 z 61. Here, h is the

thickness of magneto-elastic anisotropic crustal layer; k1ðxÞ
and k2ðxÞ are continuous and periodic functions of x indepen-

dent of y, representing the corrugated boundaries of free and

common surfaces as shown in Fig. 1. The appropriate Fourier

series expansion of these functions can be given as (Singh,

2011; Vishwakarma and Xu, 2016a)

kjðxÞ ¼
X

1

n¼1

ðk j
ne

inax þ k
j
�ne

�inaxÞ; j ¼ 1; 2: ð1Þ

here, k j
n and k j

�n are the coefficients of Fourier series expansion

of order n, such that

k j
�n ¼

aj

2
; for n ¼ 1

A
j
n�iB

j
n

2
; for n ¼ 2; 3; 4 . . .

(

; j ¼ 1; 2;

where A j
n and B j

n are the cosine and sine coefficients of Fourier

series expansion of order n. In view of above expressions of k j
n

and k j
�n, Eq. (1) leads to Tomar and Kaur (2007)

kjðxÞ¼ajcosðaxÞþ
X

1

n¼2

Aj
ncosðnaxÞþBj

n sinðnaxÞ
� �

; j¼1;2: ð2Þ

The corrugated upper and common boundary surfaces of

the concerned problem can be expressed by only one cosine

term k1 ¼ a1 cosðaxÞ and k2 ¼ a2 cosðaxÞ for the wavelength
2p
a
of corrugation, where a1 and a2 are amplitudes of the upper-

most and common corrugated surfaces and a is wave number

of corrugation.

2.1. SH-wave in magneto-elastic anisotropic layer

Let ~u is the displacement vector field for anisotropic magneto-

elastic layer whose components ui are u1; v1 and w1 in x; y and z

directions respectively. Therefore, equations of motion for an

anisotropic magneto-elastic layer in the presence of electro-

magnetic force (~J� ~B) that is Lorentz force are

sij;j þ ð~J� ~BÞi ¼ q1

@2ui

@t2
i; j ¼ 1; 2; 3; ð3Þ

here ð~J� ~BÞi are the components of force ð~J� ~BÞ in the ith direc-
tion, ~J is the electric current density, ~B is the magnetic induction

vector and q1 is mass density. The stress–strain relations for the

anisotropic material in xz-plane are Altenbach et al. (2004)

Fig. 1 Geometry of the problem,

302 P. Alam et al.



s11 ¼ C11e11 þ C12e22 þ C13e33 þ C15e13;

s22 ¼ C12e11 þ C22e22 þ C23e33 þ C25e13;

s33 ¼ C13e11 þ C23e22 þ C33e33 þ C35e13;

s23 ¼ C44e23 þ C46e12;

s13 ¼ C15e11 þ C25e22 þ C35e33 þ C55e13;

s12 ¼ C46e23 þ C66e12;

ð4Þ

where Cij ¼ Cjiði; j ¼ 1; 2; . . . ; 6Þ are elastic constants and

eij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �

.

For the propagation of SH-wave in xz-plane

v1 ¼ v1ðx; z; tÞ; u1 ¼ 0 ¼ w1 and
@

@y
� 0: ð5Þ

With the help of Eqs. (4) and (5), Eq. (3) becomes

@s12
@x

þ @s23
@z

þ ~J� ~B
� �

2
¼ q1

@2v1

@t2
; ð6Þ

where, s23 ¼ C44
@v1
@z

þ C46
@v1
@x

� �

and s12 ¼ C46
@v1
@z

þ C66
@v1
@x

� �

.

The well known Maxwell’s equations governing the electro-

magnetic field are Chattopadhyay and Singh (2014)

~r � ~B ¼ 0; ~r� ~E ¼ � @~B

@t
; ~r� ~H ¼ ~J; ð7Þ

with

~B ¼ le
~H; ~J ¼ r ~Eþ @~u

@t
� ~B

� 	

;

where ~E is the induced electric field, magnetic field ~H includes

both primary and induced magnetic fields, le is the induced

permeability and r is the conduction coefficient.

Let ~H ¼ ðH1;H2;H3Þ and hi ¼ ðh1; h2; h3Þ; hi is the change

in the magnetic field. Then, the linearized Maxwell’s stress ten-

sor ðsijÞM due to the magnetic field is given by Chattopadhyay

and Singh (2014)

ðsijÞM ¼ le½Hihj þHjhi �Hkhkdij�: ð8Þ

In writing the above equations, we have neglected the dis-

placement current. Now, from Eq. (7) we get

r2 ~H

rle

¼ @ ~H

@t
� ~r� @~u

@t
� ~H

� 	

" #

: ð9Þ

In component form, Eq. (9) can be written as

@H1

@t
¼ 1

rle
r2H1;

@H2

@t
¼ 1

rle
r2H2 þ @

@x
H1

@v1
@t

� �

þ @
@z

H3
@v1
@t

� �� �

;

@H3

@t
¼ 1

rle
r2H2:

ð10Þ

Now for a perfectly conducting medium, i.e., when r ! 1,

Eq. (10) becomes

@H1

@t
¼ 0 ¼ @H3

@t
ð11Þ

and

@H2

@t
¼ @

@x
H1

@v1
@t

� 	

þ @

@z
H3

@v1
@t

� 	
 �

: ð12Þ

Thus, we conclude from Eq. (11) that there is no

perturbation in H1 and H3, but Eq. (12) shows there may be

perturbation in H2. Therefore, taking small perturbation h2
(say) in H2, we have

H1 ¼ H01;

H2 ¼ H02 þ h2;

H3 ¼ H03;

ð13Þ

where ðH01;H02;H03Þ are the components of initial magnetic

field ~H0 and initial value of h2 should be zero.

We can write ~H ¼ ðH0 cosU; 0;H0 sinUÞ, where H0 ¼ j ~H0j
and U is the angle at which the wave crosses the magnetic field.

Thus, we have

~H ¼ ðH0 cosU; h2;H0 sinUÞ: ð14Þ
Using Eq. (14) in Eq. (12), we obtain

@h2
@t

¼ @

@t
H0 cosU

@v1
@x

þH0 sinU
@v1
@z


 �

: ð15Þ

Integrating Eq. (15) with respect to t, we get

h2 ¼ H0 cosU
@v1
@x

þ sinU
@v1
@z


 �

: ð16Þ

With the help of Eq. (7), we have

~J� ~B ¼ le½ð~H � ~rÞ~H� 1

2
~rH2�: ð17Þ

In view of Eqs. (6) and (17) with the values of s12 and s23,

we obtain the equation of motion for the propagation of

SH-wave in anisotropic magneto-elastic medium as

M66

@2v1

@x2
þ 2M46

@2v1

@x@z
þM44

@2v1

@z2
¼ q1

@2v1

@t2
; ð18Þ

where M66¼C44
C66

C44
þmHcos

2
U

� �

; M46¼C44
C46

C44
þmHsinUcosU

� �

;

M44¼C44 1þmHsin
2
U

� �

and mH¼leH
2
0

C44
is the magneto-elastic

coupling parameter.

Let us take a harmonic solution of Eq. (18) as

v1 ¼ V1ðzÞeikðx�ctÞand substituting in Eq. (18), we get

d2V1ðzÞ
dz2

þ f1
dV1ðzÞ
dz

þ f2V1ðzÞ ¼ 0; ð19Þ

where f1 ¼ 2ikM46

M44
; f2 ¼ k2 c2

c2
1

� M66

M44

� �

; c1 ¼
ffiffiffiffiffiffi

M44

q1

q

and angular

frequency x ¼ kc; k is the wave number and c is the phase

velocity of SH-wave.

The solution of Eq. (19) is obtained as

v1ðzÞ ¼ e�
f1
2
z A cos pzþ B sin pzð Þeikðx�ctÞ; ð20Þ

where, A and B are arbitrary constants and p ¼
ffiffiffiffiffiffiffiffiffiffi

4f2�f2
1

p
2

.

2.2. SH-wave in heterogeneous half-space

We have considered following transformations for the shear

elastic modulus l2 and mass density q2 of the half-space

l2 ¼ l0e
az and q2 ¼ q0e

bz; ð21Þ

where, a and b are small positive real heterogeneous constants

having dimensions L�1.
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Let u2; v2 and w2 are the displacement components in x; y
and z directions respectively for the heterogeneous half-

space. Then for the propagation of SH-wave, we have

v2 ¼ v2ðx; z; tÞ; u2 ¼ 0 ¼ w2 and
@

@y
� 0: ð22Þ

The dynamical equations for the heterogeneous half-space

in the absence of any body forces are given by Biot (1965)

rij;j ¼ q2

@2vi

@t2
i; j ¼ 1; 2; 3; ð23Þ

where rij ¼ 2l2eij are the incremental stress components, vi
represents displacement component in the ith direction, i.e.,

u2; v2;w2 and eij ¼ 1
2

@vi
@xj

þ @vj
@xi

� �

.

Using Eqs. (21) and (22) in (23), the only non-vanishing

equation of motion for propagation of SH-wave in heteroge-

neous half-space is obtained as

l0e
az @

2v2

@x2
þ al0e

az @v2
@z

þ l0e
az @

2v2

@z2
¼ q0e

bz @
2v2

@t2
: ð24Þ

Let us assume a harmonic wave solution of Eq. (24) as

v2 ¼ V2ðzÞeikðx�ctÞ and substituting in Eq. (24), we get

d2V2ðzÞ
dz2

þ a
dV2ðzÞ
dz

� k2 1� c2

c20

ebz

eaz

� 	

V2ðzÞ ¼ 0; ð25Þ

where c0 ¼
ffiffiffiffi

l0
q0

q

.

For simplification of Eq. (25), we take the following substi-

tution: V2ðzÞ ¼ wðzÞe�az
2 . Therefore Eq. (25) takes the form

d2wðzÞ
dz2

þ k2c2ð1þ bzÞ
c20ð1þ azÞ � k2 1þ a2

4k2

� 	
 �

wðzÞ ¼ 0: ð26Þ

Using some dimensionless quantities c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� bc2

ac2
0

þ a2

4k2

q

and

/ ¼ 2kc

a
ð1þ azÞ in Eq. (26), then Eq. (26) reduces to

d2wð/Þ
d/2

þ R

/
� 1

4

� 	

wð/Þ ¼ 0; ð27Þ

where R ¼ kc2ða�bÞ
2cc2

0
a2

.

Eq. (27) is the well known Whittaker equation (Whittaker

and Watson, 1990). The solution of Eq. (27) is given by

wð/Þ ¼ DWR;1
2
ð/Þ þ EW�R;1

2
ð�/Þ; ð28Þ

where D and E are arbitrary constants; WR;1
2
ð/Þ and

W�R;1
2
ð�/Þ are Whittaker’s functions.

Now keeping in view that limz!1V2ðzÞ ! 0, i.e.,

limz!1wð/Þ ! 0, the appropriate solution for the heteroge-

neous half-space may be taken as

v2 ¼ DWR;1
2
ð/Þe�az

2 eikðx�ctÞ: ð29Þ

Now using the asymptotic expansion of Whittaker’s func-

tion WR;1
2
ð/Þ and taking its solution up to a second term, the

Eq. (29) becomes

v2 ¼ D/e�
/
2 1þ ð1� RÞ

2
/


 �

e�
az
2 eikðx�ctÞ: ð30Þ

3. Boundary conditions

The boundary conditions are as follows:

3.1. Corrugated uppermost surface of the layer is traction free

s23 þ ðs23ÞM
� �

� k01 s12 þ ðs12ÞM
� �

¼ 0; at z ¼ k1ðxÞ � h;

after substituting the expressions of s12; s23; ðs12ÞM and ðs23ÞM
into the above equation, we get

M44

@v1
@z

þM46

@v1
@x

� 	

� k
0
1 M46

@v1
@z

þM66

@v1
@x

� 	

¼ 0:

3.2. Stresses are continuous at the common corrugated interface

of the layer and half-pace

s23 þ ðs23ÞM
� �

� k02 s12 þ ðs12ÞM
� �

¼ r23 � k02r21; at z¼ k2ðxÞ;

after substituting the expressions of s12; s23; ðs12ÞM; ðs23ÞM; r12

and r23 into the above equation, we obtain

M44

@v1
@z

þM46

@v1
@x

� 	

� k02 M46

@v1
@z

þM66

@v1
@x

� 	

¼ l0e
az @v2

@z
� k02

@u2
@x

� 	

:

3.3. Displacements are continuous at the common corrugated

interface of the layer and half-space

v1 ¼ v2; at z ¼ k2ðxÞ:

4. Dispersion relation

Using the solutions given in (20) and (30) into the aforemen-

tioned boundary conditions, we obtain following homoge-

neous algebraic system of equations for A;B and D.

A ikr2 � r1
f1

2

� 	

cospðk1 � hÞ � r1p sinpðk1 � hÞ

 �

þB ikr2 � r1
f1

2

� 	

sinpðk1 � hÞ þ r1 cospðk1 � hÞ

 �

¼ 0; ð31Þ

A iks2 � s1
f1

2

� 	

cos pk2 � s1p sin pk2


 �

þ B iks2 � s1
f1

2

� 	

sin pk2 þ s1p cos pk2


 �

þDL ¼ 0; ð32Þ

A cos pk2 þ B sin pk2 þDM ¼ 0; ð33Þ
where r1; r2; s1; s2;L and M are provided in Appendix A.

For such a system of simultaneous equations to have a non-

trivial solution, it is necessary for the determinant of the coef-

ficients to be zero. Hence, the below Eq. (34) must satisfy for a

non-trivial solution of A;B and D

tan kðhþ k2 � k1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

c2
1

� M66

M44
þ M46

M44

� �2
r

¼ NR1
þiNR2

DR
; ð34Þ

where NR1
;NR2

and DR are given in Appendix B.
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The real part of Eq. (34) gives

which is the dispersion relation for SH-wave propagation in

magneto-elastic anisotropic crustal layer with corrugated

boundary surfaces lying over a heterogeneous half-space.

5. Particular cases

5.1. Case I: in the absence of upper free surface corrugation

When layer is bounded by an upper free planar surface and

lower common corrugated surface, i.e., k1 ¼ 0 and

k2 ¼ a2 cosðaxÞ, the dispersion relation (35) reduces to

tan k½hþ a2 cosðaxÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

c21
�M66

M44

þ M46

M44

� 	2
s

¼
l0 cþ a

2k
� a

ð1þaa2 cosðaxÞÞ �
ð1�RÞc

1þð1�RÞð1þaa2 cosðaxÞÞcka½ �


 �

eaa2 cosðaxÞ

s1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

c2
1

� M66

M44
þ M46

M44

� �2
r ;

ð36Þ
where s1 ¼ ½M44 þ aa2M46 sinðaxÞ�.

5.2. CaseII: in the absence of common surface corrugation

When layer is bounded by an upper free corrugated surface

and lower common planar surface, i.e., k1 ¼ a1 cosðaxÞ and

k2 ¼ 0, then the dispersion relation (35) reduces to

where r1 ¼ ½M44 þ aa1M46 sinðaxÞ� and

r2 ¼ ½M46 þ aa1M66 sinðaxÞ�.

5.3. Case III: for equal amplitudes of both corrugations

When the amplitude of both corrugations are equal, i.e.,

a1 ¼ a2 ¼ d(say) which imply k1 ¼ k2 ¼ d cosðaxÞ, then the dis-

persion relation (35) changes to

for values of s; r and T see Appendix C.

5.4. Case IV: for uniform isotropic media with planar boundary

surfaces

When the layer (bounded by planar surfaces) is isotropic with-

out magnetic effect and half-space is homogeneous isotropic,

i.e., k1 ¼ k2 ¼ 0;mH ¼ 0;C44 ¼ C44 ¼ l1;C46 ¼ 0; a ! 0 and

b ! 0, then Eq. (35) reduces to

tan kh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

c21
� 1

� 	

s
" #

¼ l0

l1

ffiffiffiffiffiffiffiffiffiffiffiffi

1� c2

c2
0

q

ffiffiffiffiffiffiffiffiffiffiffiffi

c2

c2
1

� 1
q ; ð39Þ

which is the classical Love wave equation (Love, 1920).

6. Numerical calculations and discussion

In order to study the effect of various affecting parameters on

the phase velocity of SH-wave based on dispersion Eq. (35), we

consider C44 ¼ 94 GPa, C46 ¼ �11 GPa, C66 ¼ 93 GPa,

q1 ¼ 7450 kg=m3 for anisotropic magneto-elastic layer

(Kumar et al., 2015) and l0 ¼ 71 GPa, q0 ¼ 3321 kg=m3 GPa

for heterogeneous half-space (Gubbins, 1990). The effect of

all dimensionless parameters of considered model, namely

magneto-elastic coupling parameter ðmHÞ, heterogeneities

(ah; bh), upper free surface corrugation parameter ðaa1Þ, lower
common surface corrugation parameter ðaa2Þ, undulatory

parameter ðahÞ and position parameter ðx=hÞ has been evalu-

ated numerically along with graphical representation in

Figs. 2–11 for their different values. The curves of all figures

tankðhþ k2 � k1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

c21
�M66

M44

þ M46

M44

� 	2
s

¼
s1l0T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

c2
1

�M66

M44
þ M46

M44

� �2
r

r22 � 2r1r2
M46

M44
� r21

c2

c2
1

�M66

M44

� �h i

eak2

r2s2 � ðr1s2 þ r2s1ÞM46

M44
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have been plotted for the dimensionless phase velocity ðc=c1Þ
against dimensionless wave number ðkhÞ. The vertical axis in

each figure represents dimensionless phase velocity ðc=c1Þ
and the horizontal axis represents dimensionless wave number

ðkhÞ. The values of parameters are given in Table 1 and angle

U has been kept fixed to 10o in all figures.

Fig. 2 shows the effect of magneto-elastic coupling param-

eter ðmHÞ on the dispersion curve. Value of mH for curves 1–3

has been taken as 0.025, 0.050 and 0.075 respectively. It has

been observed that as the value of mH increases the phase

velocity ðc=c1Þ of SH-wave also increases.

Figs. 3 and 5 describe the effect of upper corrugation

parameter ðaa1Þ on the phase velocity of SH-wave. Fig. 5 is

associated with case-I, in which common surface is planar

i.e. aa2 ¼ 0. In both figures, the value of ðaa1Þ for curves 1–3
has been taken as 0.02, 0.06 and 0.10 respectively. From these

figures it has been found that, the phase velocity ðc=c1Þ of

SH-wave increases uniformly as the value of aa1 increases.

Figs. 4 and 6 show the influence of common corrugation

parameter ðaa2Þ on the phase velocity of SH-wave. The curves

of Fig. 6 are associated with case-II, in which upper surface of

layer is planar i.e. aa1 ¼ 0. Value of ðaa2Þ for curves 1–3 in

both figures has been taken as 0.02, 0.06 and 0.10 respectively.
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Fig. 2 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of mH.
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Fig. 3 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of aa1.
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Fig. 4 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of aa2.
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Fig. 5 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of aa1, when aa2 ¼ 0.
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It is very clear from Figs. 4 and 6 that the phase velocity ðc=c1Þ
of SH-wave decreases uniformly with increase in aa2.

Curves plotted in Fig. 7 are associated with case-III and

show the effect of lower and upper corrugation parameters

on phase velocity, when amplitudes of both cyclic corrugations

are equal i.e., aa1 ¼ aa2 ¼ d (say). Also, this figure compares

the effect of planar and corrugated boundary surfaces. Value

of d for curves 1–4 has been taken as 0.0, 0.4, 0.8 and 1.2

respectively. The phase velocity curve 1 represents for the uni-

form planar boundary surfaces of the layer, i.e., aa1 ¼ 0 ¼ aa2.

It is established through the figure that the phase velocity

ðc=c1Þ increases with an increase in d, but the increasing effect

is negligible. On the other hand, when the uniform planar

structure is compared with the corrugated structure, it has

been found that the phase velocity of SH-wave is more in

uniform planar boundary structure.

The influence of heterogeneous parameters ah and bh on the

phase velocity of SH-wave is illustrated with the aid of Figs. 8

and 9. respectively. Values of ah and bh for curves 1–3 have

been taken as 0.05, 0.10 and 0.15 respectively. Curve 2 of

Fig. 8 shows for equal heterogeneity parameters i.e.,

ah ¼ bh ¼ 0:1. Meticulous observation of both figures con-

cludes that phase velocity ðc=c1Þ decreases with increase in

ah whereas it increases with increase in bh.
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Fig. 6 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of aa2, when aa1 ¼ 0.
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Fig. 8 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of ah.
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Fig. 9 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of bh.
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Fig. 7 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of d ¼ aa2 ¼ aa1.
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Curves plotted in Fig. 10 portray the effect of undulatory

parameter ðahÞ on the phase velocity of SH-wave. Value of

ah for curves 1–3 has been taken as 1.0, 1.4 and 1.8 respec-

tively. It is revealed from the figure that as ah increases phase

velocity ðc=c1Þ also increases.

Fig. 11 describes the impact of position parameter ðx=hÞ on
the phase velocity of SH-wave. Value of x=h for curves 1–3 has

been taken as 0.2, 0.6 and 1.0 respectively. It has been noticed

that as the value of x=h increases the phase velocity ðc=c1Þ of
SH-wave also increases.

The results have been characterized by the fact that

c1 < c < c2 (condition of SH-wave). To follow this condition,

the first mode of the dispersion curve has been obtained in

the approximated frequency range 3–7 of kh. So, we have con-

sidered such interval of kh in each figure. We have ignored

higher values of kh, because the velocity of surface SH-waves

decays with respect to depth and finally vanishes. An overview

of all the figures establishes that the phase velocity ðc=c1Þ of

SH-wave always decreases with increase of wave number

ðkhÞ, which is the basic characteristic of SH-wave propagation.

7. Conclusions

The propagation of SH-wave in a magneto-elastic anisotropic

crustal layer (bounded by corrugated irregular surfaces) lying

over a heterogeneous half-space has been studied. Maxwell’s

equations have been employed to find the Lorentz force in

the anisotropic layer. The non-linear differential equations

are simplified by using suitable substitutions and solved using

the variable separable method and Whittaker’s equation. A

dispersion equation has been obtained in closed form and

studied for different cases of corrugations. The dispersion

equation also reduces to the classical result of Love (1920)

and hence validating the solutions of the problem discussed

in this manuscript. The analytical findings of this work are

given below.

	 The magneto-elastic coupling parameter, position and

undulatory parameters have favourable effect on phase

velocity, that is phase velocity increases with an increase

in these parameters.

	 The heterogeneous parameter ðahÞ has inverse effect on

phase velocity, whereas heterogeneous parameter ðbhÞ has

favourable effect on phase velocity. But the effect of hetero-

geneous parameter ðahÞ is significant.
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Fig. 10 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of ah.
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Fig. 11 Variation of phase velocity ðc=c1Þ against wave number

ðkhÞ for different values of x=h.

Table 1 Fixed values of parameters.

Figure No. mH aa1 aa2 ah bh ah x=h

2 – 0.1 0.2 0.2 0.1 1.4 0.04

3 0.08 – 0.2 0.2 0.1 1.4 0.04

4 0.08 0.1 – 0.2 0.1 1.4 0.04

5 0.08 – 0 0.2 0.1 1.4 0.04

6 0.08 0 – 0.2 0.1 1.4 0.04

7 0.08 – – 0.2 0.1 1.4 0.04

8 0.08 0.1 0.2 – 0.1 1.4 0.04

9 0.08 0.1 0.2 0.2 – 1.4 0.04

10 0.08 0.1 0.2 0.2 0.1 – 0.04

11 0.08 0.1 0.2 0.2 0.1 1.4 –
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	 Both corrugations have remarkable but unlike effect on

phase velocity. Presence of upper free surface corrugation

parameter increases the phase velocity, but lower common

interface corrugation parameter decreases the phase

velocity.

	 The effects of both corrugations are found negligible when

the amplitudes of both corrugations are equal. The phase

velocity of wave is found more in the case of planar bound-

ary surfaces of the layer.

It is very clear from the study that the presence of

corrugated irregularities and magneto-elastic behaviour of

layer have prominent effect on the propagation of SH-wave,

especially for unequal amplitudes of corrugations. From the

last two–three decades maximum earthquakes have occurred

in the crust only and draw attention for seismologists to study

the seismic waves in different kind of layered media. The

results obtained in this paper give some essential information

about the velocity of SH-wave propagation in Earth’s crustal

layer which is anisotropic (Monoclinic) and corrugated irregu-

lar with magnetic behaviour. These results may play a vital

role to understand well and predict the seismic wave behaviour

at continental margins, mountain roots, etc.
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Appendix A.
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