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The present work focuses on the dynamics of a two prey and one predator model where the preys are
subjected to the logistic growth law and the predator is subjected to the mortality rate and intra specific
competition. The effects of time delay and random environmental fluctuations on the stability of the
model around the interior equilibrium point are analytically tested using classical mathematical tools.
The stable, periodic and chaotic behaviours of the model for different sets of chosen parameters are
explored in numerical simulations.
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1. Introduction

There has been a large amount of research during the last few
decades regarding the dynamical features of inhabitant structures
[1-6]. Among these, hunter—victim systems play a vital role in
inhabitant dynamics. The dynamical association between hunters
and their victims has been a significant issue in theoretical envi-
ronmental science since the renowned Lotka—Volterra equations.
Theoretical environmental science has not addressed the surprising
variety of the dynamic performances of three species structures for
a long time. Freedman and Waltman [7] evaluated three level food
webs — a single predator feeding on two conflicting prey species.
They determined conditions for the system to be persistent. Kar and
Chaudhuri [8] deliberated a two-prey one-predator harvesting
structure with interference. The structure was founded on Lotka-
Volterra dynamics with two conflicting species, which are preten-
tious not only by harvesting but also by the presence of a predator.
The possibility of the existence of a bionomic stability and ideal
harvesting plan is discussed. Dubey and Upadhyay [9] proposed a
two predator one prey structure with a ratio reliant on the predator
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evolution rate. The conditions for the native stability and overall
stability of the interior equilibria were achieved. They also dis-
cussed the enduring co-existence of the three species. Braza [10]
considered a two predator and one prey structure in which one
predator significantly interferes with the other examined predator.
Zhang et al. [11] studied the steadiness of three species inhabitant
structure that consists of an endemic prey, alien prey and alien
predator. The utmost decisive portions in predator—prey structures
are the ‘interaction with delay’ and ‘effect of noise on the stability of
the system’. Numerous models of the inhabitant's growth were also
studied with time delays [12—17]. Some other authors [18,19]
studied the dynamics of prey predator models by including
attribute-like stochastics.

2. Mathematical equations

The two preys and one predator model with time delay is rep-
resented by the following system of three nonlinear delay differ-
ential equations:

X(t) = r1x(1 - %) ~ ay3xz (2.1)
Y(t) =nry (1 - %) — a3yz (2.2)
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Z(t)=—dz—a332? + az1X(t—1)z(t—T) + azy(t—1)z(t—7)  (2.3)
where x(t), y(t) and z(t) represent the population density of prey1,
prey2 and predator species, respectively. r; and r, represent the
intrinsic growth rates of preyl and prey2, respectively. k; and k;
represent the carrying capacities of prey1 and prey2, respectively.
a3 and ap3 represent the decrease rates of preyl and prey2,
respectively, due to predation. a3; and a3, represent the gain rates
of the predator due to the predation of preyl and prey2, respec-
tively. d denotes the mortality rate of the predator. 33 denotes the
decreased rate of the predator due to intra-specific competition. 7
represents the time delay parameter. All of the model parameters
are assumed to be positive.

3. Analysis of steady states

k k%

The interior equilibrium point E*(x",y",z*) of the system is given by
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3.1. Boundedness and analysis of the limit cycle

Theorem (3.1.1): The solution of the system (2.1)—(2.3) in R for
t > 0 is bounded.

Proof. Let w(t) = x(t) + y(t) + z(t) and 5 > 0 be a constant. Then,
w(t) + nqw = X'(t) + y'(t) + 2(t) + nw

r
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I3
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By using the differential inequality, we obtain W/(t) + nw = p,
and its solution is w = % +ce ", By t = 0, we obtain w(x(0),y(0))

= u/n + ¢, and then, ¢ = w(x(0),y(0))—u/n. Hence, w(x(t),y(t)) =
5 (1—e™") + (w(x(0),y(0)))e™ and where 0<w(x(t),y(t)) <%
(1 — e ) + (w(x(0),y(0)))e~". By taking the limit t— co, we have
0 < w(t)<u/n. This proves the theorem.

3.2. Analysis of limit cycle

Theorem (3.2.1): (a) The system (2.1)—(2.3) cannot have any
periodic solution in the interior of the quadrant of the xy-plane. (b)
The system (2.1)—(2.3) cannot have any periodic solution in the
interior of the quadrant of the yz-plane. (c) The system (2.1)—(2.3)
cannot have any periodic solution in the interior of the quadrant of
the zx-plane.

Proof of Theorem (3.2.1):
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From the above equation, we note that A(x,y) does not change
sign and is not identically zero in the interior of the positive
quadrant of the xy, yz, and zx-planes.

4. Discussion of local and global stability without delay

The variational matrix of the system (2.1)—(2.3
evaluated at the interior equilibrium point is

) with 7 = 0

r
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and the characteristic equation of J is 23+ 73 + nyA+73 =0
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According to the Routh-Hurwitz criteria, the system is locally
asymptotically stable.

Let us now consider the following Lyapunov function to verify
the global asymptotic stable behaviour of the interior equilibrium
point.

V(x,y) =x — x* xln( >+l1<y v y*ln(%))
+12(z—z*—z*ln(zé>>

V'(t)=(x—x") {rl (1 *%) *04132} +h(y-y") {Tz (1 *%) *04232]

+12(z—z*)(—d—a332+a31x+a32y)

If Iy =323, =¢*, then we have
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Hence, the system is globally asymptotically stable near E".

5. Analysis of stability with delay

The characteristic equation of the delayed model (2.1)—(2.3)
evaluated at the interior equilibrium point E" is

XA +e MY =0 (5.1)
where
X(2) = 2+ 2% + M + A3 Y(2) = Pyy + Wy + 3

r
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Let A = iw be a root of (5.1), where w is a real number. Placing
A = iw into (5.1) and separating the real and imaginary parts, we
obtain

(x3 - w2x1> = <y1w2 —y3>cosw7 — wy,ysinwr (5.2)

wxy — w3) = (y3 — y10? ) sinwr — wy,coswT (5.3)
(w22 %) = ( )

Squaring and adding (5.2) and (5.3), we get

%+ w*By +w?*By + B3 =0 (5.4)
where
By =x2 — 2%y —y3>0;By = X3 — 2X1X3 + 2y1y3 — ¥3; B3 = X3 — y2.

By the Descartes rule, if B3 < 0, then (5.4) has an unique positive
root, w%, and then, the equation (5.1) has a pair of imaginary roots
+iwo.

From (5.2) and (5.3), we obtain

(x3 — wle) (y3 — wz}ﬁ) + wy2 (w3 — WX2)
(v3 — ©2y1)” + (wy2)?

Then, 7, corresponding to w = wy, is given by

COSWT =

Y 2 3_
=L cos™1 [(’% w’x1) (Y3 —w yzl) +wys (zw wxy) | 2k
(¥3—0?y1)"+(wy2) “o
=0,1,2,3,...
(5.5)
By Butler's lemma, the model (2.1)—(2.3) is stable around E* for
T<T0.

To check the condition for Hopf-bifurcation, we differentiate
(5.1) with respect to 7,

di di , di
X )G +e Y )T+ Y(/\)e*”( . TE) ~0 (5.6)
21
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where £ = (x3 — 3x1)” + (woxa — 03)* = (v3 — W3y1)> + (Way2)*,
by using (5.4).

-1
If B < 0 and Bs < 0, then Re K%) } > 0; hence, d/dr(Re}) > 0.

Therefore, the condition for Hopf-bifurcation holds and the
system undergoes periodic oscillations at 7 = 7.

6. Analysis of random fluctuations with white noise

In this section, we allow stochastic perturbations of the vari-
ables x, y and z around E” in the case when it is locally asymptoti-
cally stable. We consider the white noise stochastic perturbations,
which are proportional to the distances of x, y and z from x*,y",z". As
a result, the stochastically perturbed system (2.1)—(2.3) with 7 =0
is given by

dx = (ﬁx(l —%) —0513X2>df+‘71 (x—x*)d.fg (6.1)
1
dy = (rzy (1 - %) - az3yz) dt + o3 (y — y*)d& (62)
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dz = ( —dz - a3322 + 031XZ + a32yz>dt +03(z— z*)dE? (6.3)
where ¢;,i = 1,2,3 are real constants and Ei =§(t),i=1,2,3 are
independent standard Wiener processes [20]. To analyse the sto-
chastic stability of E*, we consider the linear system of (6.1)—(6.3)
around E" as follows:

du(t) = f(u(t))dt + g(u(t))dé(t) (6.4)
where u(t) = col(u(t)ua(t)us(t));flu(t)) = Ju(t)g(u) =
g1Uq 0 0
|: 0 gy 0 :|;

0 0 g3Us3

dé(t) = col(&1(t),&2(D));up =X — XUy =y -y U3 =z —2".

Let U= {(t > tg) x R" ,tp=R"}. Hence, Vng(U) is a contin-
uous function with respect to t and a twice continuously differen-
tiable function w.r.t to u. With reference to [21], we have

av(tu) o, aV(tu) 1 T, 9%V(t,u)
Lv(t,u) = m +f(u) ou +§TT g (u)Tg(u)
(6.5)
where %:Col(%,%); az‘ggﬁ‘mz%; i,j=1,2 and T means
transposition.

With reference to [18], the following theorem holds.
Theorem (6.1): If there is a function V (u, t) GCQ(U) satisfying the
following

Ki|ul? <V(t,u) <Ky|ul?;LV(t,u) < —K3|u|’ ,K;>0,p>0, (6.6)

the trivial solution of (6.4) is exponentially p-stable for t > 0.
Note that if in (6.6) p = 2, then the trivial solution of (6.4) is
globally asymptotically stable.

Theorem (6.2): Suppose that (,Z—llx* - %a%) >0, (,%y* - %a%) >0

and (a33z* - %a%) >0, the zero solution of (6.4) is asymptotically

mean square stable.
Proof: Let us consider the Lyapunov function

153
V(u) :%(wlu%+w2u§+w3u§),wi>OeR (6.7)
The inequalities in (6.6) are true when p = 2, and we have
LV (u)=wy ((—IZ—]x*) uq —(x13x*u3) uq
1
r * * *
+W; (—éy Uy —ay3y U3)U2+W3(04312 U (6.8)
" N 1 9’V
0322 Uy — 332 U3 Uz +5Tr gT(u)auzg(u)}
5 wq 0 0
We can easily observe that % =0 w, 0 |,and hence,
0 0 w3
5 W1 0'%“1 0 0
gl w)ihg(u) = 0 Wy 03U, 0 , with
0 0 W30’%u3
1 02V 1
STr [gT(u) Wg(u)} =5 [wl o3u? + wyo3ul + w3a%u§} (6.9)

If in (6.8), we choose wjaq3x* = W3a31Z*, Waap3y* = W3a3p2",
and then, from (6.9), we have

1 Ty .
i

1 21,2
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15\ o
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According to Theorem (6.1), the proof is completed.

7. Computer simulations

In this section, we checked the conditions, especially the sta-
bility and impact of white noise, which are performed in the above
sections by randomly choosing appropriate and suitable sets of
attributes (mentioned in examples). Here, we provide simulations
in view of the stability using Matlab, as follows.

Example 1: r; = 0.625, k; =10, ay3 = 2.036, 12 = 1.228, k; = 10, a3 = 4, d = 1.5, a33 = 0.15, a3; = 0.112, a3, = 2.02, 7 = 0.04, x(0) = 0.5,

¥(0) = 0.5, z2(0) = 0.5
b)

Prey1
Prey2
Predator 7

population
o
=]

o
o
T

N
IS

0.2

40 60 80 100
Time

Predator population

o
o

o
&)

<
i

o
w

o
N

Prey2 population

Prey1 population

Fig. 1. (a) shows that the time series evaluation of the deterministic system with a stable equilibrium point (0.7229, 0.7720, and 0.2848). (b) shows the stable spiral in behaviour

between prey1, prey2 and predator.
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Example 2: r; = 0.625, k1 =10, a13 = 2.036, 1y = 1.228, ky = 10, ap3 = 4,d = 1.5, a3z = 0.15, a3; = 0.112, a3y = 2.02, x(0) = 0.5, y(0) = 0.5,
z(0) = 0.5, 7 = 0.05

a
) s 1 . ‘ . b)
Prey1
Prey2 0.6
1.2 : : Predator |
- 0.5
S
3 04
a
5 g
k< 503
g i
= & 0.2
0.1
1.5
0.9
0.7
0 i i i i
0 20 40 60 80 100 0 04 05

Time Prey2 population Prey1 population
Fig. 2. (a) shows that the time series evaluation of the deterministic system with 7 = 0.05 around equilibrium point (0.7229, 0.7720, and 0.2848). (b) shows the space-phase delay
dynamics between prey1, prey2 and predator.

Example 3: r; = 0.625, k; = 10, aq3 = 2.036, 1, = 1.228, k = 10, an3 = 4, d = 1.5, a3 = 0.15, a3; = 0.112, a3y = 2.02, x(0) = 0.5, y(0) = 0.5,
2(0)=0.5,7 = 0.2

a), ‘ ‘ . .
Prey1 b)
Prey2 25
6F : : Predator | .
2
c
sl S
s
3
Q
5 a
: 2
] :
e l o
- 0
0 20 40 60 80 100 Prey2 population 0 Prey1 population

Time

Fig. 3. (a) shows the time series evaluation of the deterministic system with 7 = 0.2 around equilibrium point (0.7229, 0.7720, and 0.2848). (b) shows the space-phase delay
dynamics between prey1, prey2 and predator.
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Example 4: r; =0.625, k1 =10, a3 = 2.036, 12 = 1.228, k; = 10, a3 = 4,d = 1.5, a33 = 0.15, 31 =0.112, 32 = 2.02, 7 =0, 01 = 02 = 03 = 0.02

a)
1.4 T
— Prey1
— — — Prey2
1.2F Predator |

population
o
0

o
o

0.4

0.2 : b

0 i i i i
0 20 40 60 80 100

Time

0.4

0.3

0.2

= O
[N

b) Predator—preys Oscillations with noise

0.5

0.9

0.5
0 04

Fig. 4. (a) shows the time series evaluation of the deterministic system with random fluctuations around the equilibrium point (0.7229, 0.7720, and 0.2848). (b) shows the space-

phase stochastic dynamics between prey1, prey2 and predator.

Example 5: 1 = 2.58, k1 = 6.68, a3 = 3.326, rp = 1.076, kz = 8.01, ay3 = 1.372, d =15, a3z = 015, az1 = 0.112, a3y = 2.02, 7 = 0,

g1 :0'2:0'3:0.02

a
) 1.8 T T T T
Prey1
— — — Prey2
167 Predator ||

population
o
© N

(=
)

0.4

0.2 i i i i
0 20 40 60 80 100

Time

b)

Predator-preys Oscillations with noise

Fig. 5. (a) shows the time series evaluation of the deterministic system with random fluctuations around the equilibrium point (0.5702, 0.7636, and 0.7095). (b) shows the space-

phase stochastic dynamics between prey1, prey2 and predator.

8. Concluding remarks

In this paper, we considered an ecological system consisting of
two preys and one predator model where the preys are subjected to
logistic growth and the predator is subjected to the mortality rate
and intra specific competition. The boundedness and existence of
the limit cycle of the system are also verified. The effects of time
delay and random environmental fluctuations on the stability of
the model around the interior steady state point are analytically
confirmed using tackles, such as butler's lemma, Lyapunov func-
tion, and so on. The stable, periodic and chaotic performances of the
model for various sets of suitable attributes are reconnoitred in the
numerical replications in terms of Matlab Figs. 1(a)—5(b).
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