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Systemic lupus erythematosus (SLE) is an autoimmune inflammatory disorder that

is clinically complex and has increased production of autoantibodies. Via emerging

technologies, researchers have identified genetic variants, expression profiling of

genes, animal models, and epigenetic findings that have paved the way for a better

understanding of the molecular and genetic mechanisms of SLE. Our current study

aimed to illustrate the essential genes and molecular pathways that are potentially

involved in the pathogenesis of SLE. This study incorporates the gene expression

profiling data of the microarray dataset GSE30153 from the Gene Expression Omnibus

(GEO) database, and differentially expressed genes (DEGs) between the B-cell

transcriptomes of SLE patients and healthy controls were screened using the GEO2R

web tool. The identified DEGs were subjected to STRING analysis and Cytoscape

to explore the protein–protein interaction (PPI) networks between them. The MCODE

(Molecular Complex Detection) plugin of Cytoscape was used to screen the cluster

subnetworks that are highly interlinked between the DEGs. Subsequently, the clustered

DEGs were subjected to functional annotation with ClueGO/CluePedia to identify the

significant pathways that were enriched. For integrative analysis, we used GeneGo

MetacoreTM, a Cortellis Solution software, to exhibit the Gene Ontology (GO) and

enriched pathways between the datasets. Our study identified 4 upregulated and 13

downregulated genes. Analysis of GO and functional enrichment using ClueGO revealed

the pathways that were statistically significant, including pathways involving T-cell

costimulation, lymphocyte costimulation, negative regulation of vascular permeability,

and B-cell receptor signaling. The DEGs were mainly enriched in metabolic networks

such as the phosphatidylinositol-3,4,5-triphosphate pathway and the carnitine pathway.

Additionally, potentially enriched pathways, such as the signaling pathways induced by

oxidative stress and reactive oxygen species (ROS), chemotaxis and lysophosphatidic

acid signaling induced via G protein-coupled receptors (GPCRs), and the androgen
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receptor activation pathway, were identified from the DEGs that were mainly associated

with the immune system. Four genes (EGR1, CD38, CAV1, and AKT1) were identified

to be strongly associated with SLE. Our integrative analysis using a multitude of

bioinformatics tools might promote an understanding of the dysregulated pathways that

are associated with SLE development and progression. The four DEGs in SLE patients

might shed light on the pathogenesis of SLE and might serve as potential biomarkers in

early diagnosis and as therapeutic targets for SLE.

Keywords: systemic lupus erythematosus, protein–protein interactions, Metacore, microarray and bioinformatics,

expression profiling data, biomarkers, functional enrichment analysis

INTRODUCTION

Systemic lupus erythematosus (SLE), also known as lupus,
is a rare systemic autoimmune disease that mostly affects
middle-aged women, mainly of Asian, African, American, and
Hispanic origin (Costa-Reis and Sullivan, 2013; Cui et al.,
2013; Gurevitz et al., 2013). SLE affects an estimated 5 million
people across the world, with an incidence of 1–10 per 100,000
person-years (Pons-Estel et al., 2010). SLE is characterized
by a wide range of different autoantibodies, deposition of
immune complexes, and immune system infiltration and
inflammation within damaged organs. SLE autoantibodies invade
the patient’s kidneys, heart, skin, joints, and brain, leading to
various typical clinical symptoms. The most common clinical
symptoms of lupus are rash, arthritis, and fatigue. Severe
complications of SLE lead to nephritis, anemia, neurological
symptoms, and thrombocytopenia, eventually leading to severe
morbidity and mortality.

SLE is characterized by its clinical heterogeneity, with a
wide range of clinical manifestations reflecting its complex
etiopathogenesis (Tan et al., 1982). The clinical heterogeneity of
SLE highlights the contribution of genetic and environmental
factors to the susceptibility to the disease (Prokunina and
Alarcon-Riquelme, 2004; Harley et al., 2009; Yang and Lau,
2015; Dang et al., 2016; Wang et al., 2017). To date, the reason
for phenotypic variation in SLE is unknown. Understanding
the molecular mechanisms behind the pathogenesis of SLE
phenotypes could help in developing more efficient therapeutic
approaches and preventive strategies.

With the extensive use of gene detection methods, high-
throughput sequencing and extensive microarray data profiling
studies on SLE have been conducted, and several differentially
expressed genes (DEGs) and cellular pathways in SLE have been
identified (Borrebaeck et al., 2014; Zhu et al., 2015). Nevertheless,
until now, no particular gene has been recognized to act as a
potential marker for the diagnosis of SLE. In addition, a large
amount of data obtained from microarray technology and high-
throughput sequencing have not been fully used. Ducreux et al.
(2016) collected blood samples from SLE patients and healthy
volunteers to identify differentially expressed genes (Ducreux
et al., 2016). However, the interactions among differentially
expressed genes and key genes involved in the signaling pathways
of SLE remain to be elucidated. In addition, previous studies of
genetic factors primarily focused on single genes; nevertheless,

interactions among multiple genes may result in the multisystem
invasion characteristics observed in SLE (Smith et al., 2017).
Remarkably, studies have shown that disease−associated gene
expression networks have a potential role in the immune
response, which highlights their mechanism and therapeutic
value for SLE (Deng and Tsao, 2010; Bentham et al., 2015).

Integrating and reanalyzing the data using bioinformatics
methods may help in identifying gene regulatory pathways,
essential genes, and their associated networks in SLE disease,
which can provide new and valuable ideas for understanding
the molecular mechanisms and identifying reliable diagnostic
and therapeutic targets of SLE. Therefore, in this study, we
first conducted a comprehensive collection of genes associated
with SLE from the GEO dataset with ID GSE30153. Then,
we performed a bioinformatics analysis of these genes with
the MCODE (Molecular Complex Detection), GeneGo, and
ClueGO tools. To further explore the pathogenesis of SLE in
a more specific manner, functions and pathways identified by
the modules were used to indicate the biological processes and
biochemical pathways related to the immune system. Finally,
the genes potentially associated with arthritis, pleurisy, and
myocarditis, which are the common complications of SLE, were
compared with SLE-related genes to identify common genes
that participated in the development of SLE. To interpret the
biological relevance of these changes in gene expression, we
analyzed the microarray data via an integrated bioinformatic
analysis expanding on traditional microarray analysis methods,
namely, Gene Ontology (GO) and pathway analysis, thereby
allowing the construction of interaction networks that might
identify novel prognostic markers and therapeutic targets.

MATERIALS AND METHODS

Acquisition of Array Data and Processing
Gene expression profiling data from microarray array analysis
of the GSE30153 dataset were downloaded from the NCBI GEO
database (Gene Expression Omnibus database)1. The database
accommodates gene expression datasets from a variety of
experiments, such as DNA-seq, ChIPs, RNA-seq, microarray, and
high-throughput hybridization array (Edgar et al., 2002; Barrett
et al., 2013). GSE30153 contains 26 samples, including 17 patients

1https://www.ncbi.nlm.nih.gov/geo/
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with SLE and 9 healthy controls of human sorted B-cells obtained
by using the platform GPL570 (HG-U133_Plus_2) Affymetrix
Human Genome U133 Plus 2.0 Array (Garaud et al., 2011). The
downloaded gene expression profiling data are freely available
in the public database, and there were no human or animal
experiments conducted by any of the authors in this study.

Preprocessing of Data and DEG
Identification
Using the robust multiarray standard model, the initial
information from the dataset was subjected to quantile
normalization, background correction, and log transition
(Irizarry et al., 2003). Preprocessing included changing to gene
symbols from probe IDs using the Gene ID converter from
Entrez (Alibés et al., 2007). The statistical online tool GEO2R
uses the R/Bioconductor, and limma package v3.26.8 was used to
screen the raw gene expression data (Smyth, 2005; Barrett et al.,
2013; Ritchie et al., 2015). We performed a Benjamini–Hochberg
test (to determine the false discovery rate) and T-tests to compute
the false discovery rate (FDR) and p-values to identify the DEGs
between SLE patients and healthy control human sorted B-cells
(Benjamini and Hochberg, 1995; Aubert et al., 2004). We set
the primary criteria of | log (2 fold change) | > 1 and p < 0.05
to obtain significant DEGs from the dataset, whereas cutoffs of
log2FC ≥ 1 and log2FC ≤ −1 were used to denote upregulated
and downregulated DEGs, respectively. For high-throughput
sequencing, a logarithm to base 2 is widely used and in the initial
scaling, the doubling is equivalent to a log2FC of 1 (Love et al.,
2014). A volcano plot was constructed using a web-based tool2.
The resulting DEGs were used for further analysis.

Constructing PPI Networks
To assess the relationships between the DEGs from the GSE30153
dataset, we constructed a protein–protein interaction (PPI)
network by using Search Tool for the Retrieval of Interacting
Genes (STRING v11.0)3 (Szklarczyk et al., 2017, 2019). The
cutoff criterion was set to a high confident interaction score
of ≥0.7 to eliminate inconsistent PPIs from the dataset. We
then incorporated the results from the STRING database into
Cytoscape software (v3.7.2)4 to envisage the PPIs within the
statistically relevant DEGs (Shannon et al., 2003). The MCODE
plugin fromCytoscape was utilized to identify the interconnected
regions or clusters from the PPI network. The cluster finding
parameters were adopted, such as a degree cutoff of 2, a node
score cutoff of 0.2, a kappa score (K-core) of 5, and a max depth
of 100, which limits the cluster size for coexpressing networks
(Bader and Hogue, 2003). The top clusters from MCODE were
subjected to ClueGO v2.5.5/CluePedia v1.5.5 analysis to obtain
comprehensive GO and pathway results from the PPI network.
ClueGO combines GO and pathway analyses from KEGG
and BioCarta and provides a fundamentally structured GO or
pathway network from the PPI network (Bindea et al., 2009).

2https://paolo.shinyapps.io/ShinyVolcanoPlot/
3http://www.string-db.org/
4http://www.cytoscape.org/

Metacore GeneGo Analysis of DEGs
Metacore, a Cortellis Solution software (Clarivate Analytics,
London, United Kingdom)5, was used to perform curated
pathway enrichment analysis and GO analysis. GeneGo
facilitates the rapid assessment of metabolic pathways, protein
biological networks, and pathway maps from high-throughput
experimental data (MetaCoreLogin | Clarivate Analytics). Based
on a significance threshold of p < 0.05, a pictorial representation
of the molecular interactions of DEGs from the study groups is
generated. Determination of a hypergeometric p-value enables
the estimation of the chance that an intersection between DEGs
and ontological elements is random. An FDR < 0.05 was used as
a criterion to calculate if statistically significant DEGs constituted
a processor pathway.

RESULTS

Identification of DEGs From
the Dataset
Our study contained the gene expression profiles of the
GSE30153 dataset from the GEO database, which were submitted
by Garaud et al. (2011) based on analysis with the GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array)
(Garaud et al., 2011). The dataset encompasses 26 samples,
including 17 patients with SLE and 9 healthy controls
(Table 1). By utilizing the GEO2R online tool, we obtained
the differentially expressed genes (DEGs) from the GSE30153
dataset by comparing the SLE samples with control samples. By
calculating p-values and | log2FC | values, the top 250 DEGs
were identified. A volcano plot was constructed using the Rstudio
web server ShinyVolcanoPlot to identify DEGs by comparing
the SLE and control groups from the dataset. The volcano plot
in Figure 1 depicts all the DEGs with a log2FC against the –
log10 (p-value) between the two groups. With cutoffs of p < 0.05
and log2FC ≥ 1.0 or ≤−1, we found 4 and 13 genes that were
upregulated and downregulated, respectively, between the two
groups (Table 2). The genes that were differentially expressed
between the two groups are shown in Supplementary Table S1.

Screening of Module and Construction
of Interlinking PPI Network
To assess the protein–protein connections among the DEGs,
we used the STRING tool to compute the protein interactions
and plotted them using Cytoscape v3.7.2. Figure 2 depicts the
PPI network with 103 nodes and 201 edges. The DEGs are
represented as nodes, and the edges are interactions between the
DEGs. A combined node score of >0.4 was considered to be
significant. MCODE plugin v1.5.1 from Cytoscape was utilized
to identify the densely interlinked regions within the protein
network. As a result, we obtained the top two significant clusters
from the DEGs protein network with MCODE scores of 5.043
and 3.625. A graphical representation of these clusters is shown
in Figures 3A,B. The subnetworks, scores, number of nodes and
edges, and node IDs are tabulated in Table 3.

5https://clarivate.com/products/metacore/
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TABLE 1 | The primary characteristics of 26 studies in GSE30153 procured from the Gene Omnibus Expression database.

Group Accession Title Organism Disease state Tissue Cell type

Patient GSM746726 Patient 1 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746727 Patient 2 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746728 Patient 3 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746729 Patient 4 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746730 Patient 5 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746731 Patient 6 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746732 Patient 7 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746733 Patient 8 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746734 Patient 9 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746735 Patient 10 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746736 Patient 11 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746737 Patient 12 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746738 Patient 13 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746739 Patient 14 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746740 Patient 15 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746741 Patient 16 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

GSM746742 Patient 17 Homo sapiens Systemic lupus erythematosus (SLE) Blood Human sorted B cell

Control GSM746743 Control 1 Homo sapiens Control Blood Human sorted B cell

GSM746744 Control 2 Homo sapiens Control Blood Human sorted B cell

GSM746745 Control 3 Homo sapiens Control Blood Human sorted B cell

GSM746746 Control 4 Homo sapiens Control Blood Human sorted B cell

GSM746747 Control 5 Homo sapiens Control Blood Human sorted B cell

GSM746748 Control 6 Homo sapiens Control Blood Human sorted B cell

GSM746750 Control 8 Homo sapiens Control Blood Human sorted B cell

GSM746751 Control 9 Homo sapiens Control Blood Human sorted B cell

GSM746752 Control 10 Homo sapiens Control Blood Human sorted B cell

FIGURE 1 | Pictorial representation of volcano plot for differentially expressed

genes (DEGs) in systemic lupus erythematosus (SLE) compared to controls

from the GSE30153 dataset. The X-axis represents Log2FC, large magnitude

fold changes; Y-axis represents −log10 of a p-value, high statistical

significance. Each black dot represents one gene. Black dots above red and

beside blue line (left-sided and right-sided) are log2FC ≥ 1 and p-value

<0.05, representing SLE related DEGs.

TABLE 2 | Significantly upregulated and downregulated DEGs between two

groups from GSE30153 dataset are tabulated.

GENE SYMBOL log2FC p-value

Upregulating Genes

EGR1 1.22 0.00074

DSE 1.125 0.00291

CD1C 1.068 0.00053

GPM6A 1.052 0.00097

GPM6A* 1.043 0.002981

Downregulating Genes

RRM2 −2.406 0.0027527

RRM2* −2.152 0.0030096

TYMS −1.923 0.0032032

CD38 −1.702 0.0031747

CAV1 −1.516 0.0048324

MIR7110 −1.4 0.0027212

ELL2 −1.354 0.0035256

SLC44A1 −1.219 0.0035298

SAR1B −1.176 0.0049953

MAN1A1 −1.111 0.004425

CHAC2 −1.071 0.004354

ERAP1 −1.047 0.005321

ARF4 −1.044 0.0058274

PDIA4 −1.014 0.0041988

*The asterisk denotes the DEGs with two different probes from the dataset.
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FIGURE 2 | The network demonstrates the protein–protein interaction between the DEGs identified from GSE30153 using Cytoscape. The nodes represented as

ellipse (robin’s blue) and edges as lines (gray).

Enrichment Analysis by ClueGO
The top two subnetworks fromMCODEwere used as an input for
analyzing the functional enrichment of PPI subnetworks using
the ClueGO/CluePedia plugin from Cytoscape. In a biologically
clustered subnetwork, ClueGO helps to visualize the biological
terms of broad gene clusters. The subnetwork enrichment
analyses of MCODE cluster 1 and cluster 2 are depicted in
Figures 4A,B. For functional enrichment analysis, we set the
statistical options based on a two-sided hypergeometric test
with a Benjamini–Hochberg correction, p ≤ 0.05, and kappa
scores ≥ 0.4 as criteria. The DEGs from cluster 1 were shown

to be enriched mostly in T-cell costimulation (GO: 0031295),
lymphocyte costimulation (GO: 0031294), negative regulation of
vascular permeability (GO: 0043116), the metaphase/anaphase
transition of the mitotic cell cycle (GO: 0007091), regulation
of the transcription involved in the G1/S transition of the
mitotic cell cycle (GO: 0000083), negative regulation of signal
transduction in the absence of ligand (GO: 1901099), and KEGG
pathways such as hematopoietic cell lineage (KEGG: 04640),
B-cell receptor signaling pathway (KEGG: 04662), ErbB signaling
pathway (KEGG: 04012), and AGE-RAGE (advanced glycation
end products and receptor for AGE) signaling pathway in diabetic
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FIGURE 3 | The MCODE (Molecular Complex Detection) plugin from Cytoscape analyzed the top two clusters derived from the network of interactions between

protein and protein. (A) Cluster 1; (B) Cluster 2. The MCODE cluster score > 3. The nodes represented as ellipse (green) and edges as lines (gray).

TABLE 3 | The interconnected regions are clustered from the GSE30153 dataset

using MCODE plugin in Cytoscape.

Cluster Score (density ×

No. of nodes)

Nodes Edges Node IDs

1 5.043 45 116 OBBP2, IL6ST,

CD1C, ABHD15,

PTPRJ, ITGAX,

UNC5B, TLR10,

CD38, GAS6,

NCF4, MAPK9,

DDAH2, PTPN6,

GAB1, ARHGAP24,

CUL3, PROX1,

CYTH4, E2F6,

TNFSF9, VEGFA,

TYMS, IL7, RRM2,

PRKCB, MPEG1,

MARCKS, SLC2A5,

ARHGAP35,

BMP6, TCF3,

AKT1, EIF4EBP2,

GNG11, CAV1,

FYN, EGR1,

SIGLEC10, CD24,

CHEK1, E2F7,

CD84, CDK6,

SRGN

2 3.625 15 29 RRM2, CKAP2,

MGLL, TCF3,

SUB1, EGR1,

POLA2, RPA1,

CHEK1, E2F7,

CASC5, DP2,

E2F6, CDK6, TYMS

complications (Figure 4A). The DEGs from cluster 2 weremainly
enriched in the regulation of the transcription involved in the
G1/S transition of the mitotic cell cycle (GO: 0000083), the
negative regulation of the G0 and G1 transitions (GO: 0070317),

and the p53 signaling pathway (KEGG: 04115) (Figure 4B).
The pathways that were activated in the enrichment analysis
were highly related to B-cell pathophysiology, resulting in events
associated with the immune system, vasculopathy, and kidney.

MetacoreTM GeneGo for Enrichment
Analysis of DEGs
Further functional enrichment analysis was carried out using
MetacoreTM GeneGo software from Clarivate Analytics to
comprehensively dissect the pathways associated with the DEGs.
Using the functional ontology feature in GeneGo, the IDs of
potential genes that were involved in the target pathways were
identified. Based on hypergeometric p-values, the probability
that the intersection of a gene set and associated ontological
objects was random was evaluated. A decreased p-value indicated
that the entity would be more significant to the DEGs,
suggesting a better score. The functional enrichment analysis
of the DEGs defined the top 10 metabolic networks, and
canonical pathway maps are depicted in Figures 5A,B. For
each classification, the significant statistical data rely on a
low p-value. The pathway maps with the lowest p-value are
shown in Figures 6A–C. These are the top-scoring signaling
pathways based on the gene enrichment distribution, which
emphasizes that the DEGs from human sorted B-cells are
triggered via oxidative stress and ROS-induced cellular signaling
(Figure 6A), chemotaxis and lysophosphatidic acid signaling
via GPCRs (Figure 6B), and androgen receptor activation
and downstream signaling in prostate cancer (Figure 6C).
The well-distinguished proteins and complexes of proteins
are shown as specific symbols6; all experimental data are
displayed and have corresponding thermometer-like symbols on
all the maps. The upregulated genes are indicated by a red
thermometer facing upwards.

6https://portal.genego.com/help/MC_legend.pdf
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FIGURE 4 | Visualization of Gene Ontology (GO) enrichment profiles from DEGs using Cytoscape software based on network analysis of ClueGO/CluePedia inferred

from MCODE cluster 1 (A) and cluster 2 (B). The plugin provides a combined enrichment analysis of clusters, including the GO biological process, molecular function,

and pathway from KEGG. The GO term/pathway network connectivity defined by edges and functional clusters on genes shared between terms (kappa score ≥ 0.4)

and displaying pathways only with p≤ 0.05. The size of the node indicates the p-value. The color code of nodes represents the functional group that they belong to.

The most important functional terms specify the pathway names within each class are indicated in bold colored characters. (A) The network enrichment analysis of

cluster 1. Each node constitutes a precise term for cluster 1; (B) The network enrichment analysis of cluster 2. Each node constitutes a precise term for cluster 2.

FIGURE 5 | The top 10 metabolic networks and pathway maps were annotated using GeneGo enrichment analysis for the genes that are differentially expressed

from SLE patients vs. healthy controls, respectively. (A) The content of these metabolic networks was annotated and defined by GeneGo Cortellis Solution software.

Each process represents a pre-set network of protein interactions characteristic for the process, and sorting was performed for the metabolic networks that are

statistically significant. (B) The pathway maps (canonical) of GeneGo display a series of signals and metabolic charts that cover human in a structured manner. The

significant expression of a gene/protein represented in histogram height.
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FIGURE 6 | The enrichment analysis from GeneGo showed three regulated pathways with the highest score that are triggered in the SLE human sorted B-cells.

(A) Oxidative stress ROS induced cellular signaling. (B) Chemotaxis lysophosphatidic acid signaling via G protein-coupled receptors (GPCRs). (C) Androgen receptor

activation and downstream signaling in prostate cancer. The image depicts the protein and protein complexes that are well characterized as a specific symbol;

laboratory data from all reports are correlated and shown on the maps as thermometer-like indicators. The red or blue color upward/downward thermometers

indicate gene transcripts with upregulation/downregulation, respectively. The proteins connected by arrows demonstrate the stimulating and inhibitory effect of the

protein. Further details are given at https://portal.genego.com/help/MC_legend.pdf.

Pathway Map Interaction Results From
Clarivate
From the MetacoreTM results, we extracted the key genes from
the enriched pathways that were differentially expressed, such
as EGR1, CD38, CAV1, and AKT1. The differential expression
of these genes was involved in the activation or inhibition
of specific protein complexes in the enriched pathway maps

(Figure 6 and Table 4). Early growth response 1 (EGR1) is

a transcription factor that interacts with the IGF-2, APEX,

SRD5A1, CD44, and EGFR genes and activates them through

transcriptional regulation. The cyclic adenosine diphosphate

(ADP) ribose hydrolase CD38 is an enzyme involved in the

activation of the genes Semaphorin 4D, CD19, and c-Cbl

through physical interactions. Caveolin 1 (CAV1) is a binding
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TABLE 4 | The interaction reports of key genes from pathway maps by Clarivate Analytics.

Network

object

“from”

Object type Network

object “to”

Object type Effect Mechanism Link info Input IDs Signal P-value PMID

EGR1 Transcription

factor

IGF-2, APEX,

SRD5A1,

CD44, EGFR

Receptor

ligand, generic

enzyme,

generic

enzyme,

generic

receptor,

receptor with

enzyme activity

Activation Transcription

regulation

EGR1 increases IGF II expression, EGR1 binds

to gene APEX promoter and activates APEX

expression, Egr-1 trans-activates the 5alpha-R1

promoter via the Egr-1-binding site at position

−60/−54, Putative EGR1 binding site is found

in gene CD44 promoter, EGR1 binds to gene

EGFR promoter and activates EGFR

expression.

EGR1 1 0.0032807 8584025; 9925986;

10606246; 11336542;

16043101; 19276347;

29092905; 29170465;

15788231; 15936112;

17194527; 18215136;

8628295; 9300687;

12670907; 15155664;

15923644; 19195913;

20357818; 25673149;

1417865; 11830539;

16750517; 17230532;

19032775; 20190820;

23763269

CD38 Generic

enzyme

SEMA4D,

CD19, c-Cbl

Generic

receptor,

generic binding

protein, generic

enzyme

Activation Unspecified,

Binding

CD31-induced activation of CD38 up-regulates

Semaphorin 4D cell-surface expression in B

cells, CD19/CD81 complex interacts with CD38

but this interaction is not required to induce

proliferation in mouse B-lymphocytes,

Fluorescence resource energy transfer and

coimmunoprecipitation showed that c-Cbl and

CD38 bind each other.

CD38 1 0.0031747 15613544; 17327405;

20570673; 22564057;

8695807; 18974118;

19635790

CAV1 Generic

binding

protein

ErbB2, MDR1,

HTR2A,

Androgen

receptor

Receptor with

enzyme activity,

transporter,

GPCR,

transcription

factor

Unspecified,

Inhibition,

activation

Binding HER2 physically interacts with caveolin-1,

Caveolin-1 interacts with p-gp, Down-regulation

of caveolin-1 by siRNA reduced the interaction

between p-gp and caveolin-1, followed by a

decrease in [3H]-Taxol and [3H]-Vinblastine

accumulation in RBE4 cells, Caveolin-1

physically interacts with HTR2A and increases

its activity, Highly conserved 9 amino acid motif

in the ligand binding domains (E domains) was

identified in human/mouse ER alpha and ER

beta, progesterone receptors A and B, and the

androgen receptor. The localization sequence

mediated palmitoylation of each SR, which

facilitated caveolin-1 association, subsequent

membrane localization, and steroid signaling.

CAV1 1 0.0048324 9374534; 9685399;

11697880; 22389470;

14622130; 15239129;

15498565; 17326770;

18485890; 19099191;

22389470; 25788263;

15190056; 8703009;

11278309; 17535799;

17940184; 18786521;

19931639; 22771325;

24375805
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TABLE 4 | Continued

Network

object

“from”

Object

type

Network

object “to”

Object type Effect Mechanism Link info Input IDs Signal P-value PMID

AKT1, AKT

(PKB)

Protein

kinase

FKHR, mTOR,

Bcl-10,

FOXO3A,

HNF3-beta,

GSK3 beta

Transcription

factor, protein

kinase, generic

binding protein

Inhibition,

activation

Phosphorylation AKT1 phosphorylates FKHR1 and decreases its

activity, Increased AKT phosphorylation

regulates different metabolic pathways in liver,

including increases in protein synthesis through

activation of mTOR/p70 (S6kinase), AKT1

phosphorylates Bcl-10 and increases its activity,

AKT1 phosphorylates FOXO3A and decreases

its activity, AKT1 phosphorylates HNF3-beta

and decreases its activity, AKT (PKB) inhibits

GSK3 alpha by phosphorylation at Ser-9.

AKT1 1 0.0010146 10102273; 10358014;

10358075; 10377430;

11030146; 12393870;

16076959; 16099987;

16230533; 16603397;

17186497; 18388859;

18391970; 18420577;

18687691; 18786403;

19703413; 20940043;

21106439; 21157483;

21238503; 21407213;

21440577; 21708191;

21779512; 26053093;

27966458; 30413788;

10567225; 10910062;

11357143; 11438723;

12767043; 14970221;

15208671; 15549092;

16818631; 17660512;

18505677; 18566586;

18566587; 18678273;

21097843; 21177249;

21302298; 21343617;

22084251; 22595285;

23686889; 23872070;

26958938; 29221131;

16280327; 10102273;

12130673; 12767043;

17570479; 17577629;

17957242; 17960591;

18391970; 18687691;

19703413; 20223831;

20399660; 21106439;

21157483; 21440577;

21621563; 21708191;

21775285; 21779512;

24518891; 27966458;

14500912; 11584303;

11701324; 12124352;

12750378; 12808085;

14966899; 14985354;

15016802; 15297258
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protein shown to interact with the ErbB2, MDR1, HTR2A,
and androgen receptor genes, and inhibition or activation is
followed by specific binding to its corresponding proteins. RAC-
alpha serine/threonine-protein kinase (AKT1) is a protein kinase
that interacts with the FKHR, mTOR, Bcl-10, FOXO3A, HNF3-
beta, and GSK3 beta genes via phosphorylation, resulting in
inhibition or activation. These genes were differentially expressed
between sorted B-cells from controls and sorted B-cells from SLE
patients and result in transcriptional regulation and inhibition of
genes/proteins within the top-scored pathway maps.

DISCUSSION

DNA microarrays and next generation sequencing (NGS)
approaches are high-throughput technologies that have resulted
in the emergence of new biomedical discoveries. Data from
microarray and gene expression profiles have enabled a deeper
understanding of the intrinsic molecular pathways of complex
mechanisms of biological systems and their responses (Russo
et al., 2003; Babu, 2004; Perez-Diez et al., 2013; Kumar et al.,
2019). It is therefore highly relevant to examine the peripheral
B-cell transcriptomes of SLE patients and healthy controls
to determine genes that are differentially regulated and their
target pathways. Our current study extracted DEGs from 17
SLE patients and 9 healthy controls from the GEO database
(GSE30153) (Garaud et al., 2011). The top 250 DEGs were
identified, including 4 upregulated and 13 downregulated genes
from the groups through bioinformatics strategies (Table 2 and
Supplementary Table S1). These identified DEGs were subjected
to ClueGO and GeneGo MetacoreTM analysis for GO and
pathway annotation, and constructed the interacting networks of
PPI and used for cluster analysis. In the network, the nodes were
considered proteins, and the edges were their interactions. Using
network topology features, the PPI network can be analyzed to
distinguish the core proteins that are involved in the pathways
(Barabási and Oltvai, 2004; Ideker and Sharan, 2008; Keskin
et al., 2016; Kumar et al., 2019). The identified DEGs from the
present study were analyzed with STRING to exploit the complex
interactions between the DEGs via text mining, evidence from
experiments, and repositories (Figure 2). We performed module
screening of the PPI networks using the MCODE plugin from
Cytoscape. As a result, we obtained significant clusters that are
densely interlinked regions in the PPI network (Figures 3A,B).
Screening of these clusters from the network might help to
identify the essential genes that are involved in the pathogenesis
and progression of SLE. The obtained clusters mostly contained
protein complexes or proteins present in the pathways in the PPI
network, and cluster visualization is essential for comprehending
the properties of the network functionally and systematically
(Krogan et al., 2006; Rahman et al., 2013).

Furthermore, to identify the functional enrichment of these
subnetworks fromMCODE, we implemented the ClueGO plugin
for analysis. This revealed that the DEGs were enriched in
most essential pathways, which are highly associated with the
immune system. The GO and KEGG enrichment analyses of the
DEGs from cluster 1 showed that they were mostly enriched

in T-cell costimulation, lymphocyte costimulation, negative
regulation of vascular permeability, the metaphase/anaphase
transition of the mitotic cell cycle, regulation of the transcription
involved in the G1/S transition of mitotic cell cycle, the
hematopoietic cell lineage, the B-cell receptor signaling pathway,
the ErbB signaling pathway, the AGE-RAGE signaling pathway in
diabetic complications, and pancreatic cancer. Interestingly, the
costimulation of T-cell and lymphocyte receptors is recognized
to be important in SLE pathogenesis by enabling communicating
with B-cells for the production of autoantibodies (Shlomchik
et al., 2001; Mak and Kow, 2014). In SLE, negative regulation of
vascular permeability may be induced by different mechanisms;
the dysregulated genes from the cluster 1 subnetwork might
lead to endothelial cell damage and vasculopathy (Favero et al.,
2014; Lee et al., 2019). The differential cell signaling results in
the recruitment of various proteins and inappropriate activation
of B-cells (Zhou et al., 2009; Comte et al., 2015). Oxidative
stress is common in inflammatory disorders and results in
the increased production of reactive carbonyl groups that are
partially converted to AGEs, and the DEGs in the AGE-RAGE
signaling pathway might also be involved in the accumulation
of AGEs in SLE patients and lead to diabetic complications (de
Leeuw et al., 2007; Li et al., 2007; Kurien and Scofield, 2008;
Nienhuis et al., 2008). Interestingly, our enrichment analysis
found that the identified differential expression of the genes
(AKT1, VEGFA, CDK6, and MAPK9) that were involved in
the risk of developing pancreatic cancer in SLE patients was
due to chronic inflammation, suggesting that these genes might
be involved in the pathogenesis of SLE. Our findings are
therefore consistent with the roles of genes that are differentially
expressed in SLE-causing pathways (Figure 4A). The enrichment
analysis of the cluster 2 subnetwork showed that the DEGs
were mostly enriched in the regulation of transcription involved
in the G1/S transition of the mitotic cell cycle, the negative
regulation of the G0 and G1 transitions, and the p53 signaling
pathway. It has been reported that the proliferation of T-cells
is followed by lowered levels of cyclin-dependent kinase (CDK)
inhibitors, and alterations in the expression of CDKs in the
G0/G1 phase were seen in the lymphocytes of SLE patients
(Yamauchi and Bloom, 1997; Tang et al., 2009). The DEGs
involved in the cluster 2 subnetwork might negatively regulate
these pathways. Alterations in cyclin-CDK complex behavior and
cyclin-dependent kinase inhibitors (CDKIs) have been reported
to alter the proliferation of T-cells, oxidative stress, and immune
responses (Santiago-Raber et al., 2001; Tang et al., 2009). p53
signaling is essential for various cellular mechanisms, and defects
in this signaling pathway are associated with SLE development.
Considerably elevated levels of p53 protein are found in SLE
patients with active inflammatory disorders (Miret et al., 2003;
Veeranki and Choubey, 2010). Apoptosis dysregulation appears
to be another cause of SLE pathogenesis because the possible
sources of autoantigens are cell debris from apoptosis in SLE,
and excessive cellular senescence of the immune cells, especially
T-cells, was reported in SLE patients with peripheral blood
mononuclear cells (PBMCs) and skin lesions (Colonna et al.,
2014; Sáenz-Corral et al., 2015). Thus, our identified DEGs
(RRM2, APC, CHEK1, E2F6, TYMS, E2F7, and CDK6) from the
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cluster 2 subnetwork are highly related to and consistent with the
members of the signaling pathways associated with the immune
system, apoptosis, the cell cycle, and vasculopathy.

To clearly define the interactions between the proteins and
signaling pathways examined from the interpretation of STRING,
Cytoscape, MCODE, and ClueGO analyses, we implemented the
GeneGoMetacore software, which incorporates extensive data on
metabolic signaling pathways and their regulatory mechanisms
and contains accurately complied networks of biological systems.
Byutilizing theGeneGoMetacore software,weobtained adetailed
description of the DEGs that participate in SLE pathogenesis
based on the determined p-values. Among the top 10 metabolic
networks, the phosphatidylinositol-3,4,5-triphosphate pathway,
O-hexadecanoyl-(L)-carnitine pathway, 1,2-didocosapentaenoyl-
sn-glycerol 3-phosphate pathway, and 1-linoleoyl-glycerol-3-
phosphate pathway were profoundly enriched and significant
in the SLE DEGs (Figure 5A). The increased activity of
phosphatidylinositol-3,4,5-triphosphate stimulates essential cell
signaling pathways such as the pathways involved in cell division,
survival, and the rapid increase in T-lymphocytes in SLE (Comte
et al., 2015). PI3K (phosphatidylinositol 3-kinase) is a protein
kinase that phosphorylates phosphatidylinositol 4,5-phosphate to
regulate the signaling of T-lymphocytes; an increased amount of
PI3K was also observed in an animal model of lupus (Liu et al.,
1998; Grolleau et al., 2000; Niculescu et al., 2003; Joseph et al.,
2014). Modification of the carnitine signaling pathway results
in various organ failures by producing effective responses to
pathogens (Famularo andDeSimone, 1995; Famularo et al., 2004).
Thus, the DEGs involved in the O-hexadecanoyl-(L)-carnitine
pathway might lead to increased immune responses. In addition,
the top three pathways associated with the DEGs of sorted B-cells
from SLE patients were mostly enriched in oxidative stress-
and ROS-induced cellular signaling (Figure 6A), chemotaxis
and lysophosphatidic acid signaling via GPCRs (Figure 6B),
and androgen receptor activation and downstream signaling in
prostate cancer (Figure 6C). Recent findings have shown that
oxidative stress and ROS induce molecular alterations that have
adverse effects in SLE patients (Choi et al., 2016; Tsokos et al.,
2016; Lightfoot et al., 2017). Elevated oxidative stress in SLE
patients leads to the accumulation of higher amounts of oxidative
lipoproteins, which are harmful in zebrafish models and cause
additional oxidative damage to the system (Chung et al., 2007;
Park et al., 2016; Lightfoot et al., 2017). Interestingly, our study
identified the EGR1 gene as downregulated in the SLE patients in
comparison to controls, and it also plays a role in ROS signaling.
This clearly indicates that EGR1 might be required to maintain
the oxidative stress and ROS signaling pathways.

Moreover, the DEGs involved in the oxidative stress signaling
pathway might contribute to peripheral neuropathy, damage to
blood vessels, and cardiovascular events, which are the prominent
clinical conditions found in SLE patients. Chemotaxis and
lysophosphatidic acid (LPA) signaling are essential pathways in
autoimmune inflammatory disorders, andGPCRs are responsible
for regulating immune cells via LPA receptors (Yang et al.,
2005; Skoura and Hla, 2009). G2A gene knockout resulted in
the hyperresponsiveness of T-cells to T-cell receptor stimulation,
manifesting as an increased proliferation of T-cells, which may

promote inflammatory phenotypes in G2A-deficient mice (Le
et al., 2001). Various studies have suggested that LPA plays a
vital role in atherosclerosis progression and development by
promoting neutrophil and monocyte adherence and enhancing
inflammatory events (Siess et al., 1999; Smyth et al., 2008; Skoura
and Hla, 2009). The androgen receptor (AR) is a transcription
factor that is activated by a ligand and is essential for cells targeted
by the androgen response (Robeva et al., 2013; Gubbels Bupp and
Jorgensen, 2018). AR also regulates immune function in SLE via
transcriptional regulation of various genes. Our study identified
the transcription factor AR, which positively regulates the c-
Myc, SCAP, prosaposin, and KLF5 genes, which are responsible
for inflammatory responses, and promotes tumor growth factors
and cytokine signaling when activated (Figure 6C). The enriched
terms from ClueGO modules and the GeneGo-identified terms
correlated well in this study and validate the significance of the
findings from the pathway maps. The combined results from
these two enrichment analyses suggest that B-cells from SLE
patients and B-cells from healthy controls undergo differential
gene expression associated with positive regulation of kidney
development, the hematopoietic cell lineage, positive regulation
of vasoconstriction, T-cell costimulation, and regulation of
the transcription involved in the G1/S transition of the
mitotic cell cycle.

Furthermore, the interaction results from the GeneGo
analysis provided the essential genes (EGR1, CD38, CAV1, and
AKT1) from the pathway maps constructed from the DEGs.
Among them, EGR1 (early growth response 1) is a transcription
factor shown to interact with the IGF-2 (insulin-like growth
factor 2), APEX (apurinic/apyrimidinic endodeoxyribonuclease
1), SRD5A1 (steroid 5 alpha-reductase 1), CD44 (cell surface
glycoprotein CD44), and EGFR (epidermal growth factor
receptor) genes and transcriptionally regulate them by activating
or promoting their expression in sorted B-cells from patients with
SLE (Liu et al., 1995; Recio and Merlino, 2003; Lee et al., 2005;
Pines et al., 2005; Blanchard et al., 2007; Rui et al., 2008; Cullen
et al., 2010; Sauer et al., 2010). The cyclic ADP ribose hydrolase
(CD38) is also known as cluster of differentiation 38 protein,
can be found on several immune cells, and activates SEMA4D
(semaphorin-4D or cluster of differentiation 100), CD19 (B-
lymphocyte antigen CD19 or cluster of differentiation 19), and
c-Cbl (Casitas B-lineage lymphoma proto-oncogene) (Deaglio
et al., 2005, 2007; Shen and Yen, 2008; Vences-Catalán et al.,
2012). These interactions with CD38 result in the activation of
B-lymphocytes and increase immune responses in SLE patients.
The protein caveolin 1 (CAV1) has been shown to interact
with the ErbB2 (Erb-B2 receptor tyrosine kinase 2), MDR1
(multidrug resistance protein 1), HTR2A (5-hydroxytryptamine
receptor 2A), and AR (androgen receptor) genes. Several
studies have suggested that caveolin 1 physically interacts with
HER2, p-gp, HTR2A, and AR and activates/inhibits them by
binding to their specific caveolin-binding motif (Couet et al.,
1997; Lu et al., 2001; Razani and Lisanti, 2001; Bhatnagar
et al., 2004; Bennett et al., 2010, 2014; Yu et al., 2012). AKT1
is a protein kinase that interacts with FKHR (Forkhead box
protein O1), mTOR (mechanistic target of rapamycin), Bcl-10
(B-cell lymphoma/leukemia 10), FOXO3A (Forkhead box O3),
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FIGURE 7 | The interrelation analysis of genes EGR1, CD38, CAV1, and AKT1 that strongly associated to SLE. Each gene involved in different pathways via

interacting to each other. Inbuilt color code was provided to all the genes based on the STRING tool from Cytoscape.

HNF3-beta (hepatocyte nuclear factor 3-beta), and GSK3 beta
(glycogen synthase kinase three beta). The protein kinase AKT1
inhibits FKHR via phosphorylation and decreases its activity
(Biggs et al., 1999; Rena et al., 1999; Tang et al., 1999; Hay,
2011), whereas it increases its activity via phosphorylation
of mTOR (Navé et al., 1999; Sekuliæ et al., 2000; Ikenoue
et al., 2008; Thirumal Kumar et al., 2019). Additionally, AKT1
phosphorylates Bcl-10 at the specific residues Ser231 and Ser218,
increasing its activity (Yeh et al., 2006), while it inhibits the
action of FOXO3A via phosphorylation and decreases its activity,
increasing the survival of cells (Brunet et al., 1999; Linding et al.,
2007; Calnan and Brunet, 2008; Li et al., 2008; Tzivion et al.,
2011). AKT1 decreases HNF3-beta activity by phosphorylating
it at Thr156 (Wolfrum et al., 2003), whereas phosphorylation of
GSK3-beta by AKT1 occurs at Ser9 to inhibit its activity (Brazil
and Hemmings, 2001; Salas et al., 2004; Kuemmerle, 2005; Shin
et al., 2006; Markou et al., 2008). This suggests the vital genes
we identified from the DEGs of patients with SLE play essential
roles in the development and progression of SLE via different
signaling pathways to increase autoimmune responses.

In addition to the interaction analysis, we carried out
interrelation analysis for the essential genes to determine the
relationships between the genes, which implicitly or explicitly
interacted with each other. Interestingly, the identified genes
indirectly communicated with each other via molecular signaling
pathways related to mTOR signaling, apoptosis, PI3K-Akt
signaling, the hematopoietic cell lineage, positive regulation of
vasoconstriction, signaling by receptor tyrosine kinases, AGE-
RAGE signaling, and lymphocyte and T-cell costimulation
(Figure 7). EGR1 and AKT1 are directly involved in oxidative
stress via ROS and AGE-RAGE signaling, whereas CAV1 is
directly involved in tyrosine kinase receptor signaling and
lymphocyte and T-cell costimulation. CD38 is directly associated
with the hematopoietic cell lineage and positive regulation of
vasoconstriction. Overall, the dysregulation of the indicated
pathways in SLE patients is a result of differential gene expression.
The essential genes are differentially expressed between cells from
patients with SLE and cells from healthy controls and are present
in important signaling cascades, which could be a crucial factor
for SLE development.
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CONCLUSION

Taken together, the results of our comprehensive bioinformatics
analysis showed that the DEGs identified between sorted
B-cells from patients with SLE sorted B-cells from controls
could play a significant role in the growth, progression, and
development of SLE. This study identified 4 upregulated and 13
downregulated genes, including essential genes (EGR1, CD38,
CAV1, and AKT1), from the pathway enrichment analysis.
Indeed, the identified pathways from the enrichment analysis
were strongly related to the immune system, vasculopathy,
cardiovascular functions, and inflammatory responses, which
are processes that can lead to the development of SLE. The
broad understanding of SLE pathophysiology from this study
will allow us to identify and develop therapies targeting
SLE and contribute to personalized treatment strategies.
Collectively, the study findings could aid in enhancing our
understanding of the fundamental molecular processes of SLE
and provide possible strategies for early diagnosis in SLE; in
addition, combinatorial therapeutic strategies using oxidative
stress and ROS cellular signaling and lysophosphatidic acid
signaling via GPCRs might have symbiotic effects on the
molecular events in SLE.
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