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The Fibonacci tree is a rooted binary tree whose number of vertices admit a recursive definition similar to the Fibonacci numbers.
In this paper, we prove that a hypercube of dimension ℎ admits two edge-disjoint Fibonacci trees of height ℎ, two edge-disjoint
Fibonacci trees of height ℎ − 2, two edge-disjoint Fibonacci trees of height ℎ − 4 and so on, as subgraphs. The result shows that
an algorithm with Fibonacci trees as underlying data structure can be implemented concurrently on a hypercube network with no
communication latency.

1. Introduction

High speed computing is a key requirement for many
applications of science and technology. Parallel computers
perform high speed computing with thousands of processors
operating parallelly and concurrently. The interconnection
network of a parallel computer connects various components
of the system and plays a crucial role in the computational
process. A natural way to represent this interconnection
network is to construct a graph where each processor of the
system is represented by a vertex and each link connecting
two processors is represented by an edge.This representation
is the genesis for the interdisciplinary research involving
engineering and computational aspects of parallel computers
and graph theory.

Among the interconnection networks of parallel comput-
ers, the binary hypercube has received much attention. An
important property of a hypercube, which makes it popular,
is its ability to efficiently simulate the message routings of
other interconnection networks. Definingmathematically, an
n-dimension hypercube,𝑄

𝑛
, has 2𝑛 vertices each labelled with

a binary string of length 𝑛. Two vertices are adjacent if and
only if their labels differ in exactly one position. Figure 1
shows hypercubes of dimensions 1, 2, and 3.

The problem of efficiently implementing parallel algo-
rithms on parallel computers has been studied as a graph

embedding problem, which is to embed the communication
graph 𝐺 (underlying a parallel algorithm 𝐴) within the
interconnection network topology 𝐻 (underlying a paral-
lel computer 𝑁) with minimum communication overhead.
Graph embeddings are mathematical models capturing the
issues involved in the implementation of parallel algorithms
on a parallel computer (see [1]) and establishing equivalence
between interconnection networks of two parallel computers
(see [2, 3]).

Formally defining, an embedding 𝜙 of (guest) graph
𝐺(𝑉, 𝐸) into (host) graph𝐻(𝑊,𝐹) is a function 𝜙 : 𝑉 → 𝑊
such that if (𝑢, V) is an edge in 𝐺, then 𝜙(𝑢) and 𝜙(V) are
connected by a path in 𝐻. Dilation is one of the important
parameters that measure the quality of an embedding. Defin-
ing mathematically, dilation (𝜙) := max{dist

𝐻
(𝜙(𝑢), 𝜙(V)) :

(𝑢, V) ∈ 𝐸}, where dist
𝐻
(𝑥, 𝑦) denotes the length of the

shortest path connecting two vertices 𝑥 and 𝑦 in𝑊 in𝐻.The
dilation measures the communication delay when graph 𝐺 is
embedded on graph 𝐻. If dilation equals 1, then it implies
that there is no communication latency and 𝐺 is isomorphic
to a subgraph of 𝐻 and we write 𝐺 ⊆ 𝐻. Since one aims to
reduce the communication latency in a network, the goal of a
parallel algorithm designer is to map the algorithm graph 𝐺
into the corresponding network𝐻 such that 𝐺 ⊆ 𝐻.

From a computing perspective, trees form an important
class of computational structures. They naturally arise in
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Figure 1: Hypercubes of small dimension.
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Figure 2: Examples of Fibonacci trees and recursive construction.

the design of parallel algorithms which require basic oper-
ations like merging, sorting, and searching. Hence, there is
a large literature on embedding of various kinds of trees
into the graphs of interconnection networks. In particular,
embedding of binary trees into hypercubes has received
special attention since trees serve as computational structures
for parallel algorithms that employ, divide, and conquer
paradigm.

Several researchers work on the problem of embedding
a set of subgraphs, such as paths, rings, and trees, satisfying
some constraints in a network. The problem of finding edge-
disjoint spanning trees is an important example [4–6]. A
number of trees of a graph 𝐻 are said to be edge-disjoint if
no two trees contain the same edge of 𝐻. Besides being of
theoretical interest, this problem has two practical applica-
tions. One is to enhance the ability of fault tolerance. One
way to achieve fault tolerant interprocessor communication
is by exploiting and effectively utilizing the disjoint paths
that exist between pairs of source and destination. The other
application is to develop efficient collective communication
algorithms in distributed memory parallel computers [5].
Several researches have been done to recognisewhat trees and
how many of them can be accommodated in the hypercube;
see [4–6].

It has been proved in [7] that a Fibonacci tree F
ℎ
of height

ℎ is a subgraph of a hypercube with dimension ⌊0.75ℎ⌋ +
1.5. Since the hypercube 𝑄

⌊0.75ℎ⌋+1.5
is not big enough to

accommodate two copies of F
ℎ
, we choose 𝑄

ℎ
to embed at

least two copies of edge-disjoint Fibonacci trees. In this paper,
we prove that, for ℎ ≥ 3, the hypercube 𝑄

ℎ
contains edge-

disjoint copies of two F
ℎ
, two F

ℎ−2
, . . ., and two F

𝑖
, where

𝑖 = 2 if ℎ is even and 𝑖 = 3 if ℎ is odd. This is denoted by
𝑄
ℎ
⊇ 2F
ℎ
∪ 2F
ℎ−2
∪ ⋅ ⋅ ⋅ ∪ 2F

𝑖
. For any graph 𝐺, an embedding

𝐿 : 𝐺 → 𝑄
𝑛
is a labelling of the vertices of 𝐺 with binary

strings of length 𝑛. Clearly, 𝐺 ⊆ 𝑄
𝑛
if and only if 𝐿(𝑢) and

𝐿(V) differ in exactly one position whenever (𝑢, V) is an edge

in 𝐺. This labelling technique is widely used in our proofs of
embedding.

2. Edge-Disjoint Embedding of Fibonacci Trees

A formal recursive definition of the Fibonacci tree (denoted
by F
ℎ
if its height is ℎ) is given below.

Definition 1. F
0
:= 𝐾
1
, F
1
:= 𝐾
2
, where𝐾

𝑖
is a complete graph

on 𝑖 vertices. For ℎ ≥ 2, F
ℎ
is obtained by taking a copy of F

ℎ−1
,

a copy of F
ℎ−2

, and a new vertex 𝑅 and joining 𝑅 to the roots
of F
ℎ−1

and F
ℎ−2

.

Figure 2 shows a few examples of small Fibonacci trees
and the recursive construction.

The above recursive definition implies that the number
of vertices in F

ℎ
is |𝑉(F

ℎ
)| = |𝑉(F

ℎ−1
)| + |𝑉(F

ℎ−2
)| + 1. On

solving this recurrence relation, we get |𝑉(F
ℎ
)| = 𝑓(ℎ + 2) −

1, where 𝑓(𝑖) is the 𝑖th number in the Fibonacci sequence,
𝑓(0) = 1, 𝑓(1) = 1, 𝑓(𝑛) = 𝑓(𝑛 − 1) + 𝑓(𝑛 − 2); this
justifies the terminology Fibonacci tree. The number of
vertices of the Fibonacci tree has helped to give a closed-form
representation of the Fibonacci numbers; see [8].

Theorem 2. For every ℎ ≥ 3, the hypercube 𝑄
ℎ
contains two

edge-disjoint Fibonacci trees F𝐿
ℎ
and F𝑅

ℎ
of height ℎ such that

roots of F𝐿
ℎ
and F𝑅
ℎ
are labelled 0ℎ and 0ℎ−211, respectively.

Proof. We prove the result by induction on ℎ. To do so, it is
sufficient to give two labellings 𝐵𝐿

ℎ
: F𝐿
ℎ
→ 𝑄

ℎ
and 𝐵𝑅

ℎ
:

F𝑅
ℎ
→ 𝑄
ℎ
for the tree F

ℎ
. For the basic case ℎ = 3, 4, the two

labellings for each of F𝐿
3
and F𝐿
4
are given in Figures 3 and 4,

respectively. In Figure 3(c) (resp., Figure 4(c)), we show the
two trees F𝐿

3
and F𝑅
3
(resp., F𝐿

4
and F𝑅
4
) inside 𝑄

3
(resp., 𝑄

4
)

as dashed and dotted lines, respectively.
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.

For ℎ ≥ 5, we give a labelling procedure for F𝐿
ℎ
and F𝑅

ℎ
.

We first provide the labelling for F𝐿
ℎ
. By induction hypothesis

we are given embeddings (labellings) 𝐵𝐿
ℎ−1
: F𝐿
ℎ−1
→ 𝑄

ℎ−1

and 𝐵𝐿
ℎ−2
: F𝐿
ℎ−2
→ 𝑄

ℎ−2
. For notational convenience, we

denote 𝐵𝐿
ℎ−1
(F𝐿
ℎ−1
) by 𝐵𝐿

ℎ−1
and 𝐵𝐿

ℎ−2
(F𝐿
ℎ−2
) by 𝐵𝐿

ℎ−2
. We extend

the labellings𝐵𝐿
ℎ−1

and𝐵𝐿
ℎ−2

to a labelling𝐵𝐿
ℎ
of F𝐿
ℎ
by prefixing

the labels of all the vertices of F𝐿
ℎ−1

by 1 and the labels of
all the vertices of F𝐿

ℎ−2
by 01 and label the root of F𝐿

ℎ
by

0
ℎ; see Figure 5(a). We note that the roots of F𝐿

ℎ−1
and F𝐿

ℎ−2

are labelled 10ℎ−1 and 010ℎ−2 and both are adjacent to the
root of F𝐿

ℎ
which is labelled 0ℎ. In a similar way, we next

provide the labelling for F𝑅
ℎ
. By induction hypothesis we are

given embeddings (labellings) 𝐵𝑅
ℎ−1
: F𝑅
ℎ−1
→ 𝑄

ℎ−1
and

𝐵
𝑅

ℎ−2
: F𝑅
ℎ−2
→ 𝑄
ℎ−2

. For notational convenience, we denote

𝐵
𝑅

ℎ−1
(F𝑅
ℎ−1
) by 𝐵𝑅

ℎ−1
and 𝐵𝑅

ℎ−2
(F𝑅
ℎ−2
) by 𝐵𝑅

ℎ−2
. We extend the

labellings 𝐵𝑅
ℎ−1

and 𝐵𝑅
ℎ−2

to a labelling 𝐵𝑅
ℎ
of F𝑅
ℎ
by prefixing

the labels of all the vertices of F𝑅
ℎ−1

by 1 and the labels of all
the vertices of F𝑅

ℎ−2
by 01 and label the root of F𝑅

ℎ
by 0ℎ−111;

see Figure 5(b). The recursive labelling technique of F𝐿
ℎ
(and

hence F𝑅
ℎ
) does not alter the adjacency property of the vertices

since 𝐵𝐿
ℎ
(and hence 𝐵𝑅

ℎ
) is an injective extension of 𝐵𝐿

ℎ−1
and

𝐵
𝐿

ℎ−2
(𝐵𝑅
ℎ−1

and 𝐵𝑅
ℎ−2

). The trees F𝐿
ℎ
and F𝑅

ℎ
are the required

two edge-disjoint copies of 𝐹∗
ℎ
in 𝑄
ℎ
.

Theorem 3. For ℎ ≥ 3, 𝑄
ℎ
⊇ 2F
ℎ
∪ 2F
ℎ−2
∪ ⋅ ⋅ ⋅ ∪ 2F

𝑖
, where

𝑖 = 2 if ℎ is even and 𝑖 = 3 if ℎ is odd.

Proof. In the labelling technique of F
ℎ

discussed in
Theorem 2, the root is the only vertex whose label starts
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with 00. Hence, apart from the two copies of F
ℎ
, the edges

of 00𝑄
ℎ−2

are unused in 𝑄
ℎ
. By recursion, 𝑄

ℎ−2
contains

2F
ℎ−2
∪2F
ℎ−4
∪⋅ ⋅ ⋅∪2F

𝑖
, hence the theorem. As an illustration,

referring to Figure 4, the hypercube𝑄
4
apart from containing

two F
4
shown in dashed and dotted lines, it also contains two

F
2
as follows: since F

2
is isomorphic to a path on four vertices,

we give two path labellings (1) 1110 − 0110 − 0010 − 1010
and (2) 0010 − 0011 − 0111 − 1111.

Remark 4. An induced subgraph of the hypercube based
on the Fibonacci numbers is called the Fibonacci Cube.
This interconnection network was introduced by Hsu in [9].
Several topological properties of the Fibonacci cube have
been studied over the recent years and various extensions
have been introduced; see [10, 11]. Also, recently there has
been some work done on graph indexing and we refer to [12–
14].

3. Conclusion

In this paper we proved that, for every ℎ ≥ 3, the hypercube
𝑄
ℎ
of dimension ℎ contains two edge-disjoint copies of

F
ℎ
, F
ℎ−2
, . . . F
2
as subgraph (that is with dilation 1). This

result shows that an algorithm with Fibonacci tree as its
underlying data structure can bemade to run concurrently on
a hypercube network with no communication latency. Thus,
this mathematical result will have a significant interest in the
fields of parallel computing and interconnection networks.
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