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A B S T R A C T

The electroencephalogram (EEG) is a low amplitude signal generated in the brain, as a result of information

flow during the communication of several neurons. Hence, careful analysis of these signals could be useful in

understanding many human brain disorder diseases. One such disease topic is epileptic seizure identification,

which can be identified via a classification process of the EEG signal after preprocessing with the discrete

wavelet transform (DWT). To classify the EEG signal, we used a radial basis function neural network (RBFNN).

As shown herein, the network can be trained to optimize the mean square error (MSE) by using a modified

particle swarm optimization (PSO) algorithm. The key idea behind the modification of PSO is to introduce a

method to overcome the problem of slow searching in and around the global optimum solution. The

effectiveness of this procedure was verified by an experimental analysis on a benchmark dataset which is

publicly available. The result of our experimental analysis revealed that the improvement in the algorithm is

significant with respect to RBF trained by gradient descent and canonical PSO. Here, two classes of EEG signals

were considered: the first being an epileptic and the other being non-epileptic. The proposed method produced a

maximum accuracy of 99% as compared to the other techniques.

1. Introduction

Electroencephalography [1] is the signal generated in the brain due

to the communication of a large number of neurons among each other.

This collision usually generates a very small quantity of electrical

signal. Hence, Electroencephalography [1] measures this electrical

activity to examine the human behavior. Careful analysis of these

signals contribute to the detection of many disorders where approxi-

mately 1% of the entire world population are touched by this disease.

Thus, it is necessary to identify and properly diagnose the disease. If a

person has a seizure, it does not necessarily mean that the person is

affected by epilepsy [2]. Hence, it is really difficult to detect and

differentiate between epileptic seizures and others by manual visual

inspection.

There are various methods available to record the EEG signal, such

as, a 10–20 electrode placement scheme to measure the EEG. In this

scheme there are several electrodes placed on the human scalp to

record the EEG activity. The electrodes are placed in a 10–20

international standard, where these electrical activities in a human

brain are recorded by the instrumentation connected to these electro-

des via cabling.

Generally, doctors take a printed copy of this recorded signal and

identify whether there is any sign of epilepsy or not. But this is quite

difficult for differentiating between normal seizures and epileptic

seizure through normal eyes. Hence, it is necessary to get such a

system in which we can analyze the EEG signal [3] and properly

differentiate between normal and epileptic seizure [4]. For our work,

we have used MATLAB to analyze the EEG signals. According to the

survey, it is clearly taken in that, the discrete wavelet transform (DWT)

is the most effective method for analyzing the EEG signals. This

method generally fits into the problem where the signals are very

ephemeral in nature i.e. the frequency of signal changes rapidly with

respect to time [5]. Subsequently, from the analysis of EEG signals by

DWT [6,7] we can discover several statistical features that can be

utilized for further processing.

After analysis of the signal, the most important phase is to classify

the signals as epileptic seizures or normal. Classification is considered

as a fundamental task in the field of data mining. In this method,

identification of the specific data sample is made as to which pre-

specified group it belongs to. Here, in this problem, we have specified

two groups, one is normal and the other is an epileptic seizure group.

Classification of seizures in EEG signal is usually considered as one of
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the challenging tasks. In classification, we are given a set of instances

consisting of several features or attributes called as training set. One of

the attribute called the classifying attribute identifies the class to which

each instance belongs. Some other mark of unknown instances called

as testing set is used for evaluating the efficiency of classifier model.

Over many years NN have been very widely used in many

biomedical signal analysis because they split the signals efficiently for

decision making. Every classification system must be provided with a

set of sample data that is represented by features extracted from a

signal. Whereas, methods used for this, can be frequency domain

features, wavelet transform, etc. Over the years there are several other

architectures of NN model [8] that have been used such as Multilayer

Perceptron Neural Network (MLPNN), Adaptive Neuro-Fuzzy

Inference System (ANFIS), Radial Basis Function (RBF), Recurrent

Neural Network (RNN), etc. Our classification method is based on

RBFNNs which is itself a popular method practiced in many research

fields because of its features, such as universal approximation, compact

topology and faster learning speed.

The fundamental constraint in any classification method is its

learning process. For any machine learning approach it is really

important to choose the best learning method for classification. In

our previous work [8], we had concluded that the RBFNN model

required a better learning procedure for classification of EEG signals.

Thus, in this paper, a modified version of the PSO algorithm is used to

train the RBF network for classification of the EEG signal for epileptic

seizure identification.

1.1. Related work

There are many researchers, who have proposed a number of

methods to increase the performance of RBFNN in different applica-

tions. But in the application of EEG signal classification it is a whole

new area. Several modified training methods have been suggested as

provided below.

Vahid Fathi et al.[9] have proposed a novel PSO-OSD algorithm to

improve the RBF learning algorithm in real time applications.

Mazurowski et al.[10] have proposed a method for NN training and

compared the same with back-propagation algorithm for medical

decision making. Zhang et al.[11] have proposed a hybrid PSO-BP

algorithm for training feed-forward NN. Ge et al.[12] suggested a

modified PSO algorithm for training recurrent neural network.

Zhao .[13] have proposed a modified PSO algorithm called as

CRPSO to train the NN for time series prediction. Guerra et al.[14]

have proposed a novel method to train RBFNN using PSO and k-means

clustering technique.

From these surveys, it is clearly understood that lot of research

work have been done by researchers for performance enhancement of

NN using PSO algorithm along with some variants of PSO. The

remaining sections of this paper have been organized as follows. In

Section 2, we have discussed the background details regarding the

research work. Section 3, provides details about our proposed method

for RBFNN training using IPSO. Section 4 describes the experimental

detail used for the research work with the outcomes of experiments. At

last, the paper concludes with its conclusion and future scopes.

2. Preliminaries

For our work, we have collected two different data samples of EEG.

One is the EEG data for epileptic seizure identification from [15]. And,

the other is an EEG data for eye state prediction. In the first phase of

this problem, we can analyze the signal using DWT, which can provide

several statistical features. These features can be used to construct a

well defined dataset of samples and features.

2.1. Basics of discrete wavelet transform

Basically, all types of signals generated under medical diagnosis are

analyzed in time domain with their amplitudes. Like EEG and ECG

signals are generally collection of amplitudes with respect to time. If we

plot this data it can give a shape from which the pathological condition

of a patient can be observed. If there is any significant deviation in

shape it can be shown and observed properly by visualizing the graph

[16]. The same can be achieved by using any transformation technique

such as Fourier Transform. But the major disadvantage of this is, it is

not so effective for transient signals such as EEG. Hence, we need some

other transform technique such as Wavelet Transformation for the

analysis of EEG signal [16]. The basic idea behind this technique is to

use a scale for analysis. This wavelet transform can be split up into two

categories like Continuous Wavelet Transform (CWT), and DWT [17].

CWT was first made as an alternative to Short Time Fourier Transform

(STFT). In this, the product of the signal with a role that is wavelet

function is calculated [18]. This transformation is then calculated for

different time domain. It is defined as given in Eq. (1).

∫ x t φ tCWT(a,b)= ( ). ( )dt
−∞

∞

a,b
∇

(1)

where x(t) represents the original signal. a, b represents the scaling

factor and translation along the time axis respectively. The symbol

∇denotes the complex conjugation and φa,b
∇ is calculated by scaling the

wavelet at time b and scale a.

⎛

⎝
⎜

⎞

⎠
⎟φ t

a
φ

t b

a
( )=

1 −
a,b

(2)

where φ t( )a,b represents the mother wavelet. In CWT, it is assumed that

the scaling and translation parameter a and b change continuously. But

the main disadvantage of CWT is the calculation of wavelet coefficients

[18] for every possible scale can result in a large amount of data. It can

overcome with the help of DWT. It analyzes the signal at a different

frequency band by decomposing the signal into a set of high and low

pass filters called as Approximation and Detailed coefficients. These

coefficients can be calculated by using the wavelet toolbox available in

MATLAB. Using the predefined functions available inside this toolbox,

we can easily extract the features of EEG signal (as shown in Figs. 1–3).

For these experimental work from the data available at [15], a

rectangular window of length 256 discrete data were selected to form

a single EEG segment. The wavelet coefficients have been computed

using Daubechies of order four.

2.2. Feature extraction

From the data available at [15], a rectangular window of length 256

discrete data were selected to form a single EEG segment. The wavelet

coefficients have been computed using Daubechies of order four. This

technique was found to be more suitable because of its smoothing

features which are more appropriate to detect changes in EEG signal.

For our study, the original signal have been decomposed as four

detailed coefficients (d1, d2, d3, d4) and four approximation coeffi-

cients (a1, a2, a3, a4). For simplicity, all the approximation coefficients

are ignored except the one in the last step i.e. a4. Hence, the signal is

decomposed into five segments by using DWT. In this work, for four

detailed coefficients we get 247 coefficients (129+66+34+18) and

eighteen for approximation coefficients. Several statistical features

have been extracted. But for this study, four important features were

taken into considerations:

I. Maximum of wavelet coefficients in each sub-band.

II. Minimum of wavelet coefficients in each sub-band.

III. Mean of wavelet coefficients in each sub-band.

IV. Standard deviation of wavelet coefficients in each sub-band.

Therefore, for five coefficients all total twenty features have
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been extracted and the dataset have been constructed. Like DWT,

there are many other techniques for extracting features from an

EEG dataset. The features that can be extracted from the techni-

ques include,

a. Fractal Dimension (Higuchi and Petrosian)

b. Hurst Exponent

c. Spectral, Approximation and SVD Entropy

d. Detrended Fluctuation Analysis

e. Hjorth Mobility and Complexity

These features extracted provides us a sector to explore the EEG

dataset in a more detailed way for the purpose of classification. Hence,

along with the features that have been extracted from DWT, we have

also used these nine features for our experimental analysis process of

classification. The techniques have been elaborated and stated as given

below. For mathematical discussions, let us consider the signal for

which features are extracted is X x x x x= [ ..., ]N1, 2, 3,

2.2.1. Fractal dimension [19,20]

It is one of the important features of a signal that may contain some

information about the geometrical shape at different scales. These

information's can be extracted using different methods such as

proposed by Petrosian and Higuchi and named accordingly Petrosian

Fractal Dimension (PFD) and Higuchi Fractal Dimension (HFD). Eq.

(3) shows the formula for calculating PFD.

PFD =
log (S)

log (s) + log ( )
10

10 10
S

S + 0 . 4Sφ (3)

where S is the series length and Sφis the number of sign changes in the

signal.

Similarly, HFD is the slope of line that best fits the curve of ln(Z(k))

and ln(1/k), Z(k) is defined in Eq. (4).

Z k
Z i k

k
whereZ m k

x x N

N m k k
( )=

∑ ( , )
( , )=

∑ − ( −1)

⌊( − )/ ⌋
i

k

i

N m k
m ik m i k=1 =2

⌊( − )/ ⌋
+ +( −1)

(4)

Fig. 1. : Single channel EEG signal decomposition of set A using db-2 up to level 4.

Fig. 2. : Single channel EEG signal decomposition of set D using db-2 up to level 4.
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This algorithm constructs k new series from the original series as

shown below:

x x x x m k, , ,..., here = 1,2, ...,m m k m k m N m k k+ +2 +[( − )/ ]

2.2.2. Hurst exponent [21]

It is generally used as a measure of long term memory of time series

data. It can be calculated by first calculating deviation from mean of

time series and then by calculating the rescaled range statistics (R/S).

First, we have to calculate the accumulated deviation from mean of

time series within the range T as shown in Eq. (5).

∑ ∑X t P x xWherex
P

x t N( , )= − =
1

, ∈[1. .. ]
i

t

i
i

P

i=1 =1 (5)

Then R(P)/S(P) is calculated as per the formula shown in Eq. (6).

R P

S P

max X t P min X t P

P x x

( )
( )

=
( ( , )) − ( ( , ))

(1/ ) ∑ [ − ]
t

P
t=1

2
(6)

The Hurst Exponent is calculated as the slope of line produced by

ln(R(P)/S(P)) versus ln(P).

2.2.3. Spectral, approximation and SVD entropy [22–25]

Entropy can be measured as the spread of data and data with broad

or flat probability distribution usually have a high entropy and vice

versa. This is one of the statistical descriptor of variations in EEG

signal. Spectral entropy can be specified in terms of Power Spectral

intensity (PSI) and Relative Intensity Ratio (RIR) as indicated in Eq.

(7).

∑SI
log K

RIR logRIR=
−1

( ) i

K

i i=1 (7)

Where RIR, =j
PSI

PSI∑

j

k
K

k=1
−1 andPSI X k K= ∑ , =1, 2, ..., −1k i N f f

N f f
i=⌊ ( / )⌋

⌊ ( +1/ )⌋

k s

k s

fs is the sampling rate, Xi denotes FFT of time series xi. f1 to fK
represents K slices of the frequency band of equal or unequal widths.

Similarly, approximation entropy is a statistical parameter computed

for a time series. SVD entropy defines an entropy measure by the help

of Singular Value Decomposition.

2.2.4. Detrended fluctuation analysis [26]

It is another important feature extracted for analysis of signals with

scale invariant structure. It is a method for determining statistical self-

affinity of a signal. The exponents obtained are almost similar to Hurst

exponent.

2.2.5. Hjorth mobility and complexity [27]

Hjorth parameters generally describe the statistical properties of a

signal. This is a very popular signal analysis method proposed by

Hjorth in 1970, used for analyzing electroencephalogram signals. It has

mainly three kinds of parameters such as activity, mobility and

complexity. In this paper, we have used the last two for analysis of

EEG signal, which uses the activity parameter. Mathematically, it can

be defined as shown in Eq. (8).

Mobility B AVG Complexity B AVG B B= 2/ = ( 4* )/( 2* 2) (8)

where AVG x x N B d N B d d N d

x x

= ∑ ∑ / , 2 = ∑ / , 4 = ∑ (( − − 1) / ),

= − − 1

i i i i i i

i i

2

After the features have been extracted, the next important task is to

design a classifier model for classifying the seizure and non-seizure

signals. For this task, the radial basis function neural network

(RBFNN) was considered for its architectural simplicity and less

number of parameters required for adjustment. This technique has

been briefly described in the next section.

2.3. Computational model of a radial basis function neural network

(RBFNN)

RBFNN is one of the simplest form of Neural Network consisting of

exactly three layers, namely input, hidden, and output layer. The

limitation of only three layers makes it simpler and somehow the

efficient neural network architecture (as shown in Fig. 4). The idea of

RBFNN has been derived from function approximation. An RBF

network positions one or more RBF neurons in the space described

by the predictor variables [28]. This space has as many dimensions as

there are predictor variables. The Euclidean distance is computed from

the point being evaluated to the center of each neuron. The RBF is so

named because the radius distance is the argument to the function. The

output of RBFNN depends on the distance of the input from a given

stored vector. For this research work, we have taken N number of input

neurons, m number of hidden neurons and one output neuron. There

are several kernel functions used in RBFNN, such as Gaussian, Multi-

quadric, Inverse Multi-quadric, Mexicanhat, etc. Each of the functions

has its own benefits depending on the data domain they are used.

Based on the recommendation of our previous research, we use to

verify the performance of Gaussian, Multi-quadric, Inverse Multi-

quadric basis function in RBFNNs for identification of epileptic seizure.

Fig. 3. : Single channel EEG signal decomposition of set E using db-2 up to level 4.
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2.3.1. Learning of RBFNN

Learning or training of a network is a process by which it conforms

to the environment by adjusting a few parameters. For RBFNN, to

generate the desired output for a given input there are mainly three

adjustable parameters, such as Center, Spread, and Weight. Other than

this, out of several learning algorithms gradient descent approach is

most widely practiced. This is a first order derivative based optimiza-

tion algorithm [29,30] for finding local minimum of a subroutine.

Conceding to the Eq. (9), the error can be estimated by determining the

difference between desired and real output. Here, the MSE is taken as a

function [31,32] with parameters as center (c), spread (σ) and weight

(w).

⎛

⎝
⎜

⎞

⎠
⎟∑ ∑MSE c σ w

n
d w H x( , , )=

1
− * ( )

i

n

i
j

m

j j=1 =1

2

(9)

where di is the desired output, Hj(x) is the basis function used for

RBFNN and n is the total number of samples.

Then the partial derivative of this error with respect to weight and

center can be calculated to adjust the parameter with minimizing the

error. The formula of gradient descent [33,34] is stated in Eq. (10).

w η
E

w
c η

E

c
=w−

∂
∂

, =c −
∂
∂

i i
i

ij ij
ij (10)

where η is the learning parameter or step size. We have performed

several experimental evaluations by considering different η values

between 0.5 and 1.0. The detailed result is given in the next section.

There are as well various other learning techniques like Particle Swarm

Optimization [35], Genetic Algorithm [36], and Differential evolution

[37] etc. Basically, RBF networks are used in many applications

because of its architectural simplicity and requirement for less number

of adjustable parameters. As a result, to employ the RBFNN in the

relevance of EEG classification, we require some additional techniques

for improving its performance. This can be done by integrating the

optimization techniques with training methods. There are several

optimization techniques available such as PSO, Artificial Bee Colony

(ABC), Genetic Algorithm (GA) etc. Yet again, we opt for PSO

optimization technique owing to its requirement for less number of

adjustable parameters and its capability to produce global optimal

solutions.

In this paper, we have proposed an improved training algorithm for

RBFNN based on Particle Swarm Optimization (PSO) algorithm. The

different parameters such as center, spread and weight are trained by

using swarm optimization algorithm. This is a nature inspired algo-

rithm from the behavior of bird flocks. It has been explained in the next

section.

2.4. Basics of particle swarm optimization

PSO algorithm was developed initially by Kennedy and Eberhart in

1995 [38]. This algorithm is a nature inspired algorithm, that is

inspired from the behavior of bird flocks called as a swarm. In this

algorithm, each solution is represented as a vector called as a particle

(bird). Here, the population (swarm) may contain any random number

of initial solutions (particles). Each particle starts with its initial

position and velocity, then moves in the solution space to achieve the

optimum result. The main computational steps of PSO include

generating initial position & velocity of each particle in population,

updating position and velocity for a certain number of generations to

get the optimal solution.

Let us discuss about the mathematical computation of PSO algo-

rithm. Let any particle x
⎯→

k (solution) in n-dimensional space is repre-

sented in Eq. (11).

x x
⎯→={ ,x ,x , ...,x }k k1 k2 k3 kn (11)

Where, k=1, 2, 3, …, d and d is the number of particles in the swarm.

Each particle maintains its own velocity, let represented as given in Eq.

(12).

v v
⎯→={ ,v ,v , ...,v }k k1 k2 k3 kn (12)

Also, in this algorithm each particle maintains its personal best

position called as pbest and a best solution among all the particles

called as gbest. In each iteration or generation, the particles move

towards optimal solution by updating their velocity and position

according to the formula given in Eqs. (13) and (14).

v v t r p t x t r g t x t
⎯→(t+1)=λ*⎯→( )+c1* 1*(⎯→ ( )− ( ))+c2* 2*(⎯→ ( )−⎯→( ))k k k k k k (13)

x x t v
⎯→(t+1)=⎯→( )+⎯→(t+1)k k k (14)

where v
⎯→(t+1)k represents the velocity of kthparticle at t+1 iteration. λ is

the inertia weight, v t
⎯→( )k represents velocity of kthparticle at t iteration.

p t g t
⎯→ ( ), ⎯→ ( )k k represents the personal best of the particle and global best of

swarm at t iteration respectively. x t x
⎯→( ), ⎯→(t+1)k k are the previous and

present solutions respectively. c1 and c2 are two positive real constants

known as self confidence factor and swarm confidence factor respec-

tively. r1 and r2 are any random number generated in between [0,1].

From the survey, it has been proved that larger inertia weight performs

more efficient global search and smaller inertia weight performs

efficient local search [39]. Hence, this inertia weight can be considered

as an important parameter to tune the performance of PSO algorithm.

This paper proposes a novel strategy to vary the inertia weight in each

iteration to perform the efficient global search [40].

3. Improved PSO model for classification using RBFNN

This section will describe the new proposed learning method for

RBFNN known as Improved Particle Swarm Optimization (IPSO)

algorithm for classification task. This section has different parts which

describe the IPSO details, then how it is used for learning RBFNN and

finally an algorithmic description about the proposed model.

3.1. Improved PSO model

One of the important drawbacks of PSO algorithm is, it's quite slow

searching around the global optimum. The improved PSO algorithm is

based on a general PSO algorithm. The main idea of improving the base

algorithm is to do a faster search around the global optimum [35].

Hence, the basic PSO algorithm has been modified as follows.

In Eq. (13), the inertia weight (λ) is generally taken as a constant

value for the total number of generations. This can be modified by

decreasing λ gradually as the number of generations (or iteration)

increases. Thus, we can reduce the search space for global optimum by

reducing the value as the number of generation increases. After each

Fig. 4. : Radial Basis Function Neural Network Architecture.
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generation the best particle in the previous generation will replace the

worst particle in the current generation. Several selection strategies

have been suggested by researchers. In this research work, we have

applied two types of selection strategy sequentially for inertia weight,

one is linear selection and the other is the non-linear selection. In

linear selection, λ should reduce rapidly, while around the optimum λ

will reduce slowly. Mathematically, it can be described as follows.

Let λ0 is the initial value of inertia weight, λ1 is the end point of

linear selection, g1 is the number of generations for linear selection

and g2 is the number of generations of non-linear selection. Then,

according to the proposed algorithm for 1 to g1 no. of generations the

inertia weight for PSO will be calculated as given in Eq. (15).

λ λ g i=λ −(( / 1)* ),wherei=1,2,3,...,g11 0 1 (15)

For g1 to g2 no. of generations the inertia weight for PSO will be

calculated according to Eq. (16).

λ λ λ g i i g=( − )*exp((( 1 + 1)− )/ ),wherei=g1... 21 0 1 (16)

Generally, the value of g1 and g2 is selected for empirical study. In

this research work, we have considered the total number of generations

as 100. Linear and non-linear selection of the inertia weight takes place

for 50% of the total number of generations. The detailed experimental

evaluation of this operation has been explicated in the following part.

3.2. Improved PSO-RBFNN method for classification of EEG signal

This section describes the detailed procedure for the proposed

model (as given in Fig. 5). The classifier model consists of mainly three

phases. In the first phase, the data preprocessing is done. Since, we are

considering EEG signal classification for epilepsy as our problem area,

hence the preprocessing of data is necessary. But EEG data for eye state

prediction, preprocessing is not required. The signal analysis and

feature extraction are performed by using DWT. In the second stage,

some parts of these datasets are provided for training RBFNN using

our proposed improved PSO algorithm. The detailed algorithmic

procedures are described in the next section. In the final and third

phase, the network model is examined by using remaining portions of

dataset. This testing of classifier model also includes the validation

procedure. The different measures to calculate efficiency of model has

been described in Section 4.

3.3. Algorithmic description of the proposed model

The following algorithm/pseudo code describes the detailed struc-

ture of our proposed model:

Algorithm:

For each particle do

Initialize particle position and velocity

End For

While stopping criteria is not fulfilled do

Calculate the inertia weight using Eqs.(15) or (16)depending on

generation number

For each particle do

Calculate fitness value (Using MSE of RBFNN)

If fitness value is better than best fitness value in par-

ticle history (pBest) then

Set current position as pBest

End If

End For

Choose the global best (gBest) as the particle with best fitness

value among all the particles

For each particle do

Calculate particle velocity using Eq.(13)

Update particle position (Center, Spread & Weight) using Eq.

(14)

End For

End While

Fig. 5. : Proposed model architecture for EEG signal classification using RBFN with IPSO.
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4. Experimental work

This section describes the detailed analysis of experimental works

carried out for our proposed model. The computational complexity of

the proposed algorithm may change for different datasets depending on

its size. The parametric values may vary accordingly.

4.1. Datasets description

In this research study, we have conducted several experiments on

two dissimilar types of datasets. One of them is an EEG dataset for

epileptic seizure identification and the other one is an EEG dataset for

Eye state prediction. These are openly available source of data for EEG

used by many researchers for their research study. EEG data for

epilepsy is primarily categorized into five types, set A, B, C, D and E (as

shown in Table 1). Each set contains 100 single channel EEG segment.

Each segment is of 23.6 s duration. Altogether, these data have been

fixed by removing artifacts due to eye or muscle movements. Set A and

B have been collected from healthy patients having eyes open and

closed respectively. Set C, D and E have been collected from epileptic

patients, but C and D recorded in seizure-free activity, where set E

contains seizure activity. EEG data for eye state prediction is already in

a sample - feature format for classification problem [41].

4.2. Environment

This paper has been supported by a lot of experimental evaluations.

These results of the evaluation have been used for providing correct-

ness of our proposed model and all the experiments have been carried

out in the Java platform. The latest version of Java is used that is JDK

1.8 with Eclipse Mars as IDE. The operating system used is Linux Mint

17.2 with hardware configuration as RAM of 2 GB and Intel processor.

There are several tools of Java that have been used such as classes,

packages, enumerations, interfaces. Several frameworks have been

designed for machine learning techniques, optimization techniques,

graph drawing and designing.

4.3. Parameter details

The different significant parameters used for RBFNN are center,

spread and weight. The different symbols used for RBFNN, PSO and

IPSO are described in Tables 2, 3.

4.4. Evaluation metrics

Generally, the evaluation of a classification problem is based on a

matrix called as a confusion matrix [42] with the number of testing

samples correctly classified and incorrectly classified represented as

follows (as shown in Table 4).

So, the accuracy can be measured according to Eq. (17).

Accuracy=
TN+TP

TN+TP+FN+FP (17)

For a binary classification problem, the other measures include

Precision, Sensitivity or Recall and Specificity. The formula to derive

these measures are given in Eqs. (18), (19) and (20).

Precision=
TP

TP+FP (18)

Recall=
TP

TP+FN (19)

Specificity=
TN

FP+TN (20)

The precision and recall can be combined together to calculate an F

- measure [43]. A constant β controls the tradeoff between precision

and recall. Formula for calculating F-measure is given in Eq. (21).

F
β

β
−measure=

( +1)*Precision*Recall
*Precision+Recall

2

2 (21)

In general, β value is taken as 0.9 for better analysis of F-measure.

The most important question in any classification task is that “how

accurate is the accuracy rate estimate”. The accuracy rate estimate is

more accurate based on the larger size of the test set. This can be

estimated by the confidence interval for a gifted degree of statistical

significance. When we value the accuracy on a test set, we are actually

Table 1

Description of benchmark EEG dataset for Epilepsy identification and Eye state

prediction.

Datasets No. of

features

No. of

classes

No. of

patterns

EEG dataset for

epilepsy

identification

Set (A

& E)

20 2 200

Set (D

& E)

20 2 200

Set (A

+D &

E)

20 2 300

EEG dataset for Eye state

prediction

14 2 14,980

Table 2

Description of parameters used for RBFNN.

Symbols used Description Considered value/Size

N Number of input vectors 200 or 300

D Desired output vector 200×1 or 300×1

M Number of hidden neurons 40

W Weight vector 40×1

N Number of input neurons 20

X Input vector 1×20

C Center matrix 40×20

Table 3

Description of parameters used for IPSO.

Symbols used Description Considered value/

Size

λ0 Initial inertia weight 0.8

λ1 Final inertia weight for linear

selection

0.5

c1 Local search coefficient 0.9

c2 Global search coefficient 0.9

P Population size 25

g1 Number of generations for linear

increment

50

g2 Number of generations for non-

linear increment

50

Table 4

Confusion matrix.

Predicted class

Actual Class TP FN

FP TN

Table 5

Value of ZCL on different confidence intervals.

Confidence Level 90% 95% 98% 99%

Value of ZCL 1.64 1.96 2.33 2.58
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performing random experiments on different independent test sets. Let

TS is the total test set and ITS is any independent test set from the total

test set. Let AccTS is the accuracy of the total test set and AccITS is the

accuracy of independent test set. Then, the accuracy of classifier on

total test set can be represented according to Eq. (22).

ZAcc =Acc ± *SDTS ITS CL ITS (22)

Where, ZCL is the value of a standard normal random variable

associated with a desired confidence level, CL. SDITS is the standard

deviation of accuracy estimate AccITS. Value of ZCL for confidence level

90%, 95%, 98%, 99% are given in Table 5 assuming two sided

Fig. 6. : Mean square error graph of RBFNN with GD for experiment 1, 2, 3.

Fig. 7. : Mean square error graph of RBFNN with PSO for experiment 1, 2, 3.
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Fig. 8. : Mean square error graph of RBFNN with Improved PSO for experiment 1, 2, 3.

Table 6

Training and Testing accuracy Comparison of RBF Network (Inverse Multi-quadric) trained with GD, PSO and IPSO (Confidence level 98%).

Datasets used in experiment RBF trained with GD RBF trained with general PSO RBF Trained with improved PSO

Training accuracy Testing accuracy Training accuracy Testing accuracy Training accuracy Testing accuracy

EEG for Epilepsy (Set A & E) 97.0 ± 0.033 70.0 ± 0.089 97.0 ± 0.033 96.00 ± 0.038 99.0± 0.019 99.0 ± 0.019

EEG for Epilepsy (Set D & E) 89.2 ± 0.060 84.0 ± 0.071 98.0 ± 0.027 96.00 ± 0.038 99.0± 0.019 97.0 ± 0.033

EEG for Epilepsy (Set A+D & E) 80.4 ± 0.063 75.3 ± 0.069 85.7 ± 0.056 78.6 ± 0.065 90.6± 0.046 84.6 ± 0.057

EEG for Eye State Prediction 90.6 ± 0.006 86.4 ± 0.007 93.4 ± 0.005 87.54 ± 0.0074 98.3± 0.0029 95.19 ±0.0048

Table 7

Comparison of performance of RBF Network (Gaussian) trained with GD, PSO and IPSO (Confidence level 98%).

Datasets used in experiment RBF trained with GD RBF Trained with general PSO RBF trained with improved PSO

Training accuracy Testing accuracy Training accuracy Testing accuracy Training accuracy Testing accuracy

EEG for Epilepsy (Set A & E) 97.0 ± 0.039 70.0 ± 0.106 97.0 ± 0.039 96.00 ± 0.0456 99.0± 0.023 99.0 ± 0.023

EEG for Epilepsy (Set D & E) 89.2 ± 0.072 84.0 ± 0.085 98.0 ± 0.032 96.00 ± 0.0456 99.0± 0.023 97.0 ± 0.039

EEG for Epilepsy (Set A+D & E) 80.4 ± 0.075 75.3 ± 0.100 85.7 ± 0.066 78.6 ± 0.095 90.6± 0.055 84.6 ± 0.084

EEG for Eye State Prediction 90.6 ± 0.0078 86.4 ± 0.009 93.4 ± 0.006 87.54 ± 0.007 98.3± 0.003 95.19 ±0.0057
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Fig. 9. : Comparison of training accuracy for different datasets using different training

techniques.
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confidence intervals.

Standard deviation can be calculated as given in Eq. (23).

nSD = (Acc *(1−Acc ))/ITS ITS ITS (23)

Where, n is the number of data instances in any independent test set.

The validation of the results has been performed by k-fold cross

validation. Here, k value is chosen as 10. Hence, the whole dataset is

divided into 10 exceptional subsets. In each cycle of classification

process, one set is in use for testing purpose and rest of the sets are

taken for training purpose. Thus, total 10 cycles for classification task

have been performed and the performance metrics are calculated. As a

result, the average of these metrics is taken as the final performance

results. There is a very minute difference between the best performance

results and average performance results through cross validation.

4.5. Results and analysis

This section provides the detailed experimental evaluation results

performed according to above said procedures. Different experiments

have been performed to analyze the efficiency of classification process

trained with improved particle swarm optimization for classifying

epileptic seizure from non-epileptic ones. To prove this, it has been

compared with other existing techniques such as RBFNN trained with

gradient descent approach and RBFNN trained with the conventional

PSO algorithm.

Table 8

Other performance measures for RBFNN trained with GD approach.

Datasets used in

Experiment

Precision Recall Specificity F-measure

EEG for Epilepsy (Set A &

E)

0.9 0.642 0.833 0.763

EEG for Epilepsy (Set D &

E)

0.98 0.845 0.976 0.914

EEG for Epilepsy (Set A+D

& E)

0.26 1.0 0.729 0.388

EEG for Eye State Prediction 1.0 0.782 1.0 0.889

Table 9

Other performance measures for RBFNN trained with PSO approach.

Datasets used in

Experiment

Precision Recall Specificity F-measure

EEG for Epilepsy (Set A &

E)

0.92 1.0 0.926 0.954

EEG for Epilepsy (Set D &

E)

0.92 1.0 0.926 0.954

EEG for Epilepsy (Set A+D

& E)

0.7 1.0 0.869 0.808

EEG for Eye State Prediction 1.0 0.782 1.0 0.889

Table 10

Other performance measures for RBFNN trained with Improved PSO approach.

Datasets used in

experiment

Precision Recall Specificity F-measure

EEG for Epilepsy (Set A &

E)

0.98 1.0 0.98 0.988

EEG for Epilepsy (Set D &

E)

0.94 1.0 0.943 0.966

EEG for Epilepsy (Set A+D

& E)

0.78 1.0 0.9 0.865

EEG for Eye State Prediction 0.892 1.0 0.92 0.937
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Fig. 11. : Comparison of Precision for different datasets using different training

techniques.
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Figs. 6, 7 and 8 shows the graph for the mean square error with

respect to the number of iterations for different datasets with different

training algorithms (Fig. 6 for RBFNN with GD approach, Fig. 7 for

RBFNN with conventional PSO and Fig. 8 for RBFNN with improved

PSO). As compared to Fathi et al. [9] where the PSO algorithm has

been applied to optimize Optimum Steepest Decent (OSD) algorithm,

here we have tried to optimize the parameters directly used in RBF

network such as center, weight and spread parameter values.

These graphs show the comparison of different methods. The

following tables (Tables 6, 7) show the training and testing accuracy

of different training methods. Table 6 shows different accuracies

validated at a confidence level 95% and Table 7 shows accuracies

validated at confidence level 98%.

Figs. 9 and 10 shows the graph representation for comparison of

different training algorithms on 4 different datasets. Here, SET1

represents EEG data for epilepsy with set A and E. SET2 represents

EEG data for epilepsy with set D and E. SET3 represents EEG data for

epilepsy with set A, D and E. SET4 represents EEG data for eye state

prediction.

As per descriptions given in Section 4.4 other than accuracy, several

different measures have been considered in comparing different

techniques. Those include precision, recall, specificity and F-measure.

Table 8 shows the values of these measures for RBFNN trained with

GD approach. Table 9 shows the values of these measures for RBFNN

trained with conventional PSO algorithm. Table 10 shows the values of

these measures for RBFNN trained with the improved PSO algorithm.

Similarly, the graph representations for comparing different tech-

niques have been provided in Figs. 11–14 respectively. From these

detailed experimental evaluation, it can be strongly proved that

RBFNN trained with improved PSO algorithm outperforms other

techniques for the classification of EEG signal in epileptic seizure

identification. The main advantages of this proposed method is that it

is able to classify epileptic seizures and non-epileptic seizures with

maximum accuracy for different cases such as Set A-B, D-E, AD-E and

eye state EEG. One of the disadvantage we can say there is a very small

increase in time required for classification as compared to others (PSO

and GD) which can be considered negligible as compared to increase

the accuracy.

5. Conclusion and future work

In this research work, a new modified PSO algorithm have been

proposed to train the RBFNN more efficiently to classify the epileptic

seizures. Also, this technique was examined on a different dataset, i.e. Eye

state prediction. This proposed technique was compared with few other

available techniques (Gradient decent, convention PSO) by rigorous and

thorough practical implementations and experimental results. Thus, it was

proved that the proposed technique outperformed the other existing

techniques. In this research work, DWT was only utilized for analysis and

statistical feature extraction from EEG datasets for epilepsy. For eye state

prediction, the dataset was already in the format for classification. Our

future work would focus, to broaden this work for handling imbalanced

datasets for classification task.
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