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Abstract. Hierarchical clustering is generally used for cluster analysis in which we build up a 

hierarchy of clusters. In order to find that which cluster should be split a large amount of 

observations are being carried out. Here the data set of US based personalities has been 

considered for clustering. After implementation of hierarchical clustering on the data set we 

group it in three different clusters one is of politician, sports person and musicians. Training set 

is the main parameter which decides the category which has to be assigned to the observations 

that are being collected. The category of these observations must be known. Recognition 

comes from the formulation of classification. Supervised learning has the main instance in the 

form of classification. While on the other hand Clustering is an instance of unsupervised 

procedure. Clustering consists of grouping of data that have similar properties which are either 

their own or are inherited from some other sources.  

1.  Introduction 

Learning algorithms are of two types supervised and unsupervised learning. In supervised learning, we 

provide labels and our documents or items in the cluster go to a particular label. Thus, if we have news 

report as the dataset I can classify it as sports politics or business based on the label in the case of 

supervised learning due to the presence of specific labels. However, in unsupervised learning there are 

no labels. We can create clusters, where similar articles can be clustered together. There are however 

no labels, and no limit on the number of clusters in the clustering algorithm. In unsupervised clustering 

algorithm, we can use the distance between two sets of articles to a particular cluster to determine 

which document is nearer to which cluster. Classification widely used in recommender systems, 

especially in online shopping where products which have one name or one type of genre, can be 

clustered and shown together to show to the user. Clustering is widely used in various e commerce 

companies like amazon.com or online music or movie streaming companies like Netflix.com or 

Spotify, which based on user’s choices cluster the related movies or songs and recommend to the 

interested user. Clustering systems are also used for images or computational photography where 

images belonging to a particular type like photos of books, Similar faces can be clustered together. 

And shown to user, another important application of clustering is that advertisements can only be 

show to specific set of users instead of showing to an entire lot of people. 

2. Literature Survey 

Researchers optimize Supervised and Unsupervised learning have approaches as to the 

implementation of classification system, the ones most relevant to modern approach of building a 

classification system, the ones most approach of building a classification system, the ones 

classification algorithm and Structural Equation using publication work and organizing its text 

snippets under the lables such as: title, abstract, semi structure, medata. This activity aids in Text 

classification across pdf files. [1] Moreover Semi supervised learning using multiple Clustering with 
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limited labelled data is used as normally any machine learning based algorithm produces good results 

or make good predictive models when more data is its training data. [3] However in case of supervised 

we need labelled data to train our model on, but due to lack of labelled training data (supervised 

learning) and abundance of unlabelled data (unsupervised learning),models are developed which could 

learn from both labelled and unlabelled data. [4] As learning is part of creating a system that works for 

Humans and their behaviour. Semantic analysis is used by the classification of the social, short text 

which are taken from the entropy model with maximum values which are obtained from very short 

sentences such as tweets, news headlines, comments, reviews, to improve an organization services 

Topic level entropy or TIME focusses on social Emotion classification over short texts.[7] There 

various resources that are present that can consist of the following:  

 

A) Class based semantics for hybrid semi supervised algorithm for text Classification with class based 

semantics.  

B) Data stream modification with the help of incremental machine learning algorithm.  

C) Machine learning for data that is spatial.  

D) Equation modelling for structure depends upon the satisfaction of customers as well as the analysis 

of the customer loyalty. 

 

Machine Learning can be used to divide and classify any given set of data under a label and can be 

Extremely precise about it to increase efficiency of useful data retrieval [8]. 

 

3. Algorithm 

3.1 Word Count: 

The articles are listed and a word count vector is created. The word count vector is basically an array 

which keeps the count of number of words appeared in an article. data (unsupervised learning), models 

are developed. A simple word count vector may look like below Figure 1 and Figure 2. 

 

 
 

Figure 1. The above words are most frequent occuring words 

 

 
 

Figure 2. The above given words are the least occuring words 

 

3.1.1 Demerits of Word Count: 

The disadvantage of the word count vector clustering is that words such as “and”,”the”,”a” “an” are 

given quite a high weightage which quite inconclusive to label or cluster the data but important words 
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(which do not occur frequently) are not given due importance. So, clustering using this algorithm is 

produces trival and inconclusive results, even though this algorithm is extremely simple build. 

 

3.2.  K-Nearest Neighbour: 

K-Nearest Neighbour(KNN) is a simple machine learning approach. KNN is easily approached 

because of its simplicity and flexibility to process different data variables. The objectivity of KNN is 

to estimate on a fixed no. of observation, say k, which is nearest to the desired outcome. Here we use 

nearest neighbour search to determine which articles are nearer to each other. This is useful especially 

in unsupervised learning where we do have labels and we only need to cluster similar documents. It 

doesn't build any model or function, but still, it predicts the nearest k records from the training data set 

that is including the most similarity to the test. KNN is referred as lazy learning algorithm because of 

this nature. It can be implemented on both continuous and discrete known as regression and 

classification respectively. Regression carries out the k neighbour average, whereas classification 

carries out a frequent neighbour. It is a supervised algorithm, training data n pair (xi , yi) and  y(x) is 

to find out the problem from a new input x. To implement the technique, it is required to have a 

training set and a test sample. In order to know the value of k, and the formula for the distance 

between the instances. The nearest neighbour with similar characteristics is given by: 

 

      
 

∑ ∑‖    ‖
 

    

 

   

       
 

∑|  |    

 

   

    

3.2.1. Algorithm: 

for all test example x do 

 for all training example         , do 

 compute distance        ; 

 end for 

select the k-nearest neighbour of x; 

return the average output value among neighbours i.e.   ⁄ ∑   
 
  ; 

end for; 

 

3.3 TF-IDF: 

TF-IDF i.e. "Term Frequency, Inverse Document Frequency” is an approach to score the significance 

of words (or "terms") in a record in light of how as often as possible they show up over different 

archives. On the off chance that a word shows up as often as possible in a report, it's vital. Give the 

word a high score. In any case, if a word shows up in many records, it's not an interesting identifier. 

Give the word a low score. Subsequently, regular words like "the" and "for", which show up in many 

archives, will be downsized. Words that show up as often as possible in a solitary report will be scaled 

up.  

TF-IDF is the result of term recurrence and converse record recurrence. 

3.3.1. Term Frequency: 

Term frequency tf(t,d) represents how many time t happens to occur in d.  This is given by : 

                 
    

                  
 

3.3.2. Inverse Document Frequency: 

The converse archive recurrence speaks to the measure of data given by that particular word. It 

additionally tells whether the term is normal or uncommon in the accessible archives. Converse report 

recurrence is spoken to by idf(t,D) and N gives the aggregate number of archives. Idf can be given by: 
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3.3.3. Term Frequency - Inverse Document Frequency: 

Then tf-idf can be calculated as: 

                              

4. Mathematical Example 

Consider two counting tables consisting only two documents as shown below Table 1 and Table 2. 

 

Table 1. Training Accuracy of NN Models in percentages: 

 

Text File 1 

Term Term 

Count 

That 2 

This 1 

Is 2 

A 1 

 

Table 2. Training Accuracy of NN Models in percentages: 

 

Text File 2 

Term Term 

Count 

That 2 

A 3 

This 1 

Consider 1 

 

Here the tf-idf for the term “this” is being calculated. 

 

Term frequency is given by: 

 

              
 

 
     

 

 

              
 

 
      

 

Inverse document frequency is given by: 

 

                 (
 

 
)    

 

In the event that tf-idf has esteem zero for a specific word then this infers the word is very little 

educational as it shows up in the given records. 
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5. Dataset 

Dataset used here is the list of famous US Based personalities and the information that Wikipediae has 

about them. Here hierarchical clustering is being applied on these personalities in such a way that a 

particular cluster for the politicians, musicians and sports persons is being created. A total of 59071 

personalities is being considered which would be clustered, and the similar personalities will be 

brought together. 

 

6. Result 

Here the similarity would be formed with word count method as well as TF-IDF method. Further on 

the basis of the results obtained, the preferred model would be suggested. 

 

6.1 Word Count 

Consider the example of Victoria Beckham. According to the word count model, the most similar 

personality to Victoria beckham is Mary fitzgerald. But we know that this clustering is not that 

relevant to the clusters that are to be formed. Hence, we say that the word count analysis is not 

appropriate. Here the frequency is divided by the total number of tokens, i.e. word occurrences, in the 

training set. The reason is if we divide by the number of distinct words, the probabilities for all words 

will not necessarily sum to one so they won't form a probability distribution. The word count result is 

shown in Figure 3. 

 

Figure 3 Word Count Result 

6.2 TF-IDF 

According to TF-IDF method, the result shows that the most relevant or similar personality to Victoria 

backham is her husband david beckham, then their children, and so on. Hence TF-IDF has taken into 

account the most frequent as well as the most relevant character that would help in keeping the 

personality in a specific cluster. Not all the models work in such a manner. Hence, we are able to 

cluster in clusters as decided by us. The TF-IDF result is shown in Figure 4. 
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Figure 4. TF-IDF Result 

7. Conclusion 

Comparison of the above two algorithms on the basis of similar characteristics of the personalities, 

shows that TF-IDF model is best suitable of hierarchical clustering. Tf-idf provides the clusters which 

has the people who are genuinely connected to each other. But on the other hand, word count model 

give us the cluster on the basis of unimportant selection of words. It picks up the most frequent words 

irrespective of their relevance with the personality. On the other hand, TF-IDF selects those words 

which have proper relevance as well as have more frequency in the given text. 
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