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Partial discharge (PD) is a major cause of failure of power apparatus and hence its measurement and analysis have emerged as a vital
field in assessing the condition of the insulation system. Several efforts have been undertaken by researchers to classify PD pulses
utilizing artificial intelligence techniques. Recently, the focus has shifted to the identification of multiple sources of PD since it is
often encountered in real-time measurements. Studies have indicated that classification of multi-source PD becomes difficult with
the degree of overlap and that several techniques such as mixed Weibull functions, neural networks, and wavelet transformation
have been attempted with limited success. Since digital PD acquisition systems record data for a substantial period, the database
becomes large, posing considerable difficulties during classification. This research work aims firstly at analyzing aspects concerning
classification capability during the discrimination of multisource PD patterns. Secondly, it attempts at extending the previous work
of the authors in utilizing the novel approach of probabilistic neural network versions for classifying moderate sets of PD sources
to that of large sets. The third focus is on comparing the ability of partition-based algorithms, namely, the labelled (learning
vector quantization) and unlabelled (K-means) versions, with that of a novel hypergraph-based clustering method in providing
parsimonious sets of centers during classification.

1. Introduction

Among various techniques for insulation diagnosis, partial
discharge (PD) measurement is considered a vital tool since
it is inherently a nondestructive testing technique. PD is
an electrical breakdown confined to a localized region of
the insulating system of a power apparatus. PD, which may
result in physical deterioration due to chemical degradation
of the insulation system of a power apparatus, may occur
as internal discharges in cavities, voids, blow-holes, gaps
at the interfaces, and so forth or as external discharges on
the surface imperfections, at sharp points and protrusions
(corona discharges) etc. It is of major practical relevance
for researchers and operators handling utilities to be able

to discriminate sources of PD, geometry, and location since
such measurements are intimately related to the condition
monitoring and diagnosis of the insulation system of such
equipments. A few pertinent attributes [1] of PD pulses
are their magnitude, rise time, recurrence rate, phase
relationship of occurrence, time interval between successive
pulses, discharge inception, and extinction voltage. Due to
the advances in digital hardware systems, increase in the
computational speed of processors and coprocessors and
advancements in associated data acquisition systems there
has been renewed focus among researchers in carrying out
PD analysis [2]. More so, in recent years, the trend has shifted
to recognition of patterns due to multiple sources of PD
since these are often encountered during on-site, real time
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measurements wherein distinguishing various sources of PD
becomes increasingly challenging.

Diverse methodologies [3] have been adopted by several
researchers to create a comprehensive and reliable system for
discrimination and diagnosis of PD sources such as artificial
neural network (ANN) [4–11], fuzzy logic controller (FLC)
[12, 13], fractal features [14, 15], hidden Markov model [16–
18], fast Fourier transform (FFT), and wavelet transform
[19, 20] etc. Though attempts to classify single and partially
overlapped sources of PD patterns have been successful
to a fair degree [21], complexities in classifying fully
overlapped patterns in practical insulation systems, complex
non-Markovian characteristic of discharge patterns [22, 23],
variation in the pulse patterns due to varying applied voltages
in real time practical systems and so forth still continue to
present substantial challenges [24].

Three major facets have been taken up for detailed study
and analysis during the classification of multi-source PD pat-
terns. The first aspect pertains to ascertaining the ability of
the PNN versions without clustering algorithms in handling
ill-conditioned and large training datasets, assessing the role
of partition-based clustering algorithms (labelled: versions
of LVQ algorithms and unlabelled: versions of K-Means
algorithms) as compared to a novel graph theoretic based
clustering techniques (hypergraph) in providing frugal sets
of representative centers/during the training phase and anal-
ysis of the role played by the preprocessing/feature extrac-
tion techniques in addressing the curse of dimensionality
and facilitating the classification task. In addition, a well-
established estimation method that utilizes the inequality
condition pertaining to various statistical measures of mean
has been implemented as a part of the feature extraction
technique to ascertain the capability of the proposed NNs
in classifying the patterns. Further, exhaustive analysis is
carried out to determine the role played by the free parameter
(variance parameter) in distinguishing the classes, number of
iterations, and its impact on computational cost during the
training phase in NNs which utilize the clustering algorithms
and the choice of the number of clusters/codebook vectors in
classifying the patterns.

2. Preprocessing, Feature Extraction,
and Neural Networks for Partial Discharge
Pattern Classification: A Review

2.1. Preprocessing and Feature Extraction. A wide range
of preprocessing and feature extraction approaches have
been utilized by researchers worldwide for the task of
PD pattern classification. Researchers involved in studies
related to identification and discrimination of PD sources
have usually resorted to the phase-resolved PD (PRPD)
approach wherein methods based on statistical operators
which include measures based on moments (skewness and
kurtosis) [25–28], measures based on dispersion (range,
standard deviation, variance, quartile deviation, etc.), central
tendency (arithmetic mean, median, moving average etc.),
cross-correlation, and discharge asymmetry and have been
widely utilized. In studies related to time-resolved PD

analysis, pulse characteristic tools which include parameters
such as pulse rise time, decay time, pulse width, repetition
rate, quadratic rate, and peak discharge magnitude have also
been attempted. Feature vectors consisting of average values
of the spectral components in the frequency domain in
analysis wherein signal-processing-related tools are utilized.

2.2. Neural Networks for Pattern Recognition. The prelude to
PD pattern recognition studies can be traced to [29] wherein
the multilayer perceptron-(MLP-) based feedforward neural
network (FFNN) with back propagation algorithm (BPA)
that has been attempted for training of the network was a
remarkable success. Though the initial study was noteworthy
and provided exciting avenues, further analysis pertaining
to exhaustive data indicated that the basic version was
computationally expensive due to long training epochs.
Further studies with radial basis function (RBF) neural
networks as reported in [30] showed improved performance
and convergence during the supervised training phase with
better discrimination of the decision surface of the feature
vectors. However the tradeoff between unreasonably long
training epochs and improved classification rate continued
to present challenges to researchers.

Subsequently, unsupervised learning neural networks
such as self-organized map (SOM), counter propagation
NN (CPNN) [31], and adaptive resonance theory (ART)
[32] have been utilized for classification of single-source PD
signatures with a considerable level of satisfaction. However
aspects such as complications related to the inherently non-
Markovian nature of pulses further aggrandized by vary-
ing applied voltages during normal operation, apparently
predictable incidence of ill-conditioned data obtained from
modern digital PD measurement and acquisition systems
which present considerable hurdles during large dataset
training, and complexities in discriminating fully overlapped
multisource PD signatures in practical insulation systems
clearly substantiate on the need for a renewed focus on
realizing a comprehensive yet simple NN scheme as a tool
for the classification task.

Incidentally, the initial studies taken up earlier by the
authors of this research in classifying small dataset PD
patterns using PNN and its adaptive version [33, 34] clearly
offer interesting solutions to difficulties related to large
dataset training and classification in addition to providing
a seemingly conceivable opportunity of utilizing a straight-
forward yet a reliable tool, since the PNN stems from
a background based on sound theory related to statistics
and probability. The standard version of the PNN (OPNN)
and its adaptive version (APNN) are based on the strategy
that combines utilizing a nonparametric density estimator
(Parzen window) for obtaining the probability density
estimates with that of a Bayesian classifier for decision
making wherein the conditional density estimates are utilized
for obtaining the class separability among the categories
of the decision layer. It is pertinent to note that the only
tunable part of the NN that requires to be tweaked for
ensuring appropriate training is the variance (smoothing)
parameter thus making the topology of the NN a plain
yet a robust approach. It is evident, hence, that motivation
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for this research is on ascertaining the capability of basic
PNN versions (without and with clustering algorithms) in
classifying multiple sources of PD at varying applied voltages.
The effectiveness of these algorithms in to tackle large
and ill-conditioned datasets acquired from the digital PD
measurement and acquisition system which may lead to over-
fitting during the training phase is also studied.

3. Probabilistic Neural Network and
Its Adaptive Version

PNN [35–37] is a classifier version based on “multivariate
probability density estimation.” It is a model which utilizes
the competitive learning strategy: a “winner-takes-all” atti-
tude. The original (OPNN) and the adaptive versions of PNN
(APNN) do not have feedback paths. PNN combines the
Bayesian technique for decision-making with a nonparamet-
ric estimator (Parzen window) for obtaining the probability
density function (PDF). The PNN network as described in
Figure 1 consists of an input layer, two hidden layers (one
each for exemplar and class layers), and an output layer.

Some of the merits of the PNN [38] include its
ability in training with several orders of magnitude faster
than the multilayer feedforward NN, capacity in providing
mathematically credible confidence levels during decision
making, inherent strength in handling the effects of outliers
etc. One distinct disadvantage pertains to the need for
large memory capability for fast classification. However,
this aspect has been circumvented successfully in recent
times since versions which have been implemented with
appropriate modifications have been developed. Recently,
the authors of this research have also successfully utilized
a few variants of such modifications for multi-source PD
pattern classification [39, 40].

Each exemplar node produces a dot product of the weight
vector and the input sample, wherein the weights entering
the node are from a particular sample. The product passes
through a nonlinear activation function, that is, exp[(xTwki−

1)/σ2]. The second hidden layer contains one summation
unit for each class. Each summation (class) node receives
the output from the pattern nodes associated with a given

class given by
∑Nk

i=I exp[(xTwki − 1)/σ2]. The output layer
has as many neurons as the number of categories (classes)
considered during the study. The output nodes are binary
neurons that produce the classification decision based on

the condition
∑Nk

i=I exp[(xTwki − 1)/σ2] >
∑N j

i=I exp[(xTwki −

1)/σ2].

3.1. Normalization Procedure in Modelling Pattern Unit. The
pattern unit in Figure 1 requires normalization of the input
and exemplar vectors to unit length. A variety of normaliza-
tion methods such as Euclidean, Minkowski (city block), and
Mahalanobis may be utilized during the NN implementa-
tion, though the most popular being the Euclidean and the
city block norms. Figure 2 can be made independent of the
requirement of unit normalization by adding the length of
both vectors as inputs to the pattern unit.

A basic variant of the PNN called the adaptive PNN
(APNN) [41, 42] offers a viable mechanism to vary the
free parameter “σ” (variance parameter) or the smoothing
parameter within a particular category (class node). While
the OPNN utilizes a common value for all of the classes,
the APNN employs different values of σ for each class based
on computing the average distance σ = g · dave from Eucli-
dean distances among various feature vectors while “g” is a
constant which necessitates adjustment. An additional aspect
of this approach is that a simplified formula of probability
density function (PDF) is used which obviates the necessity
for normalization and hence a considerable amount of
computation is reduced.

4. Partitioning and Graph Theoretic
Clustering Algorithms: An Overview

Clustering deals with segregating a set of data points into
nonoverlapping groups or cluster points wherein the points
in the group are “more similar” to one another than to points
in other groups [43]. The term “more similar” when used
to clustered points, usually refers to closeness by a credible
quantification of proximity. When a dataset is clustered, each
point is allocated to a particular cluster and every cluster
can be characterized by a single reference point usually an
average of the points in the cluster. A wide range of clustering
algorithms has been utilized by researchers in diverse engi-
neering applications which fall under eight major categories
[44]. These are based on similarity and sequence similarity
measures, hierarchy, square error measures, mixture density
estimation, combinatorial search, kernel, and graph theory.
While the hierarchical clustering groups data with sequence
of partitions from solitary cluster to a cluster including all
clusters, partition clustering on the other hand divides data
objects into prefixed clusters without the hierarchical com-
position. Partition-based clustering methods include square
error; density estimate includes vector quantization, K-
Means, and expectation maximization (EM) with maximum
likelihood (ML).

Any specific segregation of all points in a dataset cluster
is called “partitioning”. Data reduction is accomplished by
replacing the coordinates of each point in a cluster with
the coordinates of the appropriate reference point. The
effectiveness of a particular clustering method depends on
how closely the reference points represent the data as well
as how fast the algorithm proceeds and gets processed. If
the data points are tightly clustered around the centroid,
the centroid will be representative of all the points in that
cluster. The standard measure of the spread of a group of
points about its mean is the variance or the sum of the
square of the distance between each point and the mean.
If the data points are close to the mean, the variance will
be small. The level of error “E” as a measure indicates the
overall spread of data points about their reference points.
To achieve a representative clustering, E should be as small
as possible. When clustering is done for the purpose of data
reduction, the goal is not in finding the best partitioning but
rather a reasonable consolidation of “N” data points into “k”
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clusters and if possible some efficient means to improve the
quality of the initial partitioning. In this aspect a family
of iterative-partitioning algorithms either of labelled or
unlabelled versions has been developed by researchers. Over
the years several clustering algorithms have been proposed
by researchers which include the hierarchical clustering
(agglomerative, stepwise optimal), online clustering (leader-
follower clustering), and graph theoretic clustering.

Though the graph theoretic representation of data may
also provide avenues for clustering, its limitation from the
viewpoint of complex applications stems from the fact that
it utilizes binary relations which may not comprehensively
represent structural properties of temporal data, the nature
of association being binary neighbourhood. In this context it
is worth noting that only recently, hypergraph (HG) theory
and its relevant properties have been exploited by researchers
for designing computationally compact algorithms for pre-
processing data in various engineering applications such
as image processing and bioinformatics etc [45] due to
its inherent strength in representing data based on both
topological and geometrical aspects while most other algo-
rithms are topology based only. Hypergraph (HG) deals with
finite combinatorial sets and has the ability to capture both
topology and geometrical relationships among data.

Hence, it is apparent from this discussion that the choice
of the appropriate type of clustering technique would play a
vital role in handling the classification of large dataset PD.

4.1. Labelled Partition-Based Clustering Learning Vector Qua-
ntization Versions. Kohonen’s [46] learning vector quanti-
zation (LVQ) is basically a pattern-classification-supervised
learning version wherein each output neuron represents a
particular class/category. The weight vector for an output
neuron is usually called as a reference (codebook) vector
of the class that the unit signifies. During training, the
output units are placed by adjusting the weight vector
to approximate the decision hypersurface of the Bayesian
classifier. During testing of the PNN and its adaptive version
using LVQ clustering technique [47], the LVQ classifies an
input vector by assigning it to the same class as the output
unit which has its weight vector the closest.

4.1.1. LVQ1. This simple algorithm proposes updating the
weight towards the new input vector (xi) if the input and
the weight vector belong to the same class or updating the
weight away from the input if the input and the weight vector
belong to different classes (determined by finding the output
pertaining to minimum distance, i.e., ‖xi −w j‖).

4.1.2. LVQ2. The modification in this version relates to
updating the weights for the runner up distance based on
the constraint that the ratios of runner up (dr) and closest
distance (dc); that is, dr/dc > (1 − ε) and dc/dr < (1 + ε)
(ε is the window describing the error in the variance) in
addition to the restriction that the distance between xi and
codebook belongs to two different classes for closest and
runner up distance and that xi belongs to codebook whose
target is runner up. When both the closest and next closest
distance are not the target output, updating of dr and dc is

swapped. When the target is the nearest codebook, then the
updating of weight for that particular exemplar is not carried
out.

4.1.3. LVQ3. Additional enhancements on the previous ver-
sions enable the learning of two closest vectors which satisfy
the window condition min(dc1/dr2,dc2/dr1) > (1− ε)(1 + ε).
In such a case the weights are updated as yc(t + 1) = yc(t) +
β(t)[x(t)− y(t)] for both yc1 and yc2. The learning rate β(t)
is a multiple of learning rate α(t), and its typical value ranges
between 0.1 and 0.5 with smaller values corresponding to a
narrower window.

4.2. Unlabelled Partition Based Clustering: K-Means Algo-
rithm Verions. K-means algorithm [48] locates and obtains
the “c” mean (cluster center) vectors (µ1, µ2, µ3, . . ., µc).
This rudimentary unlabelled clustering algorithm is called
K-means algorithm commonly referred to as Lloyd (or)
Forgy’s K-Means. In order to facilitate in having better
sets of cluster representatives and for ensuring a reasonable
choice of the initial seed vector, various variants have been
developed which include McQueen K-means, standard K-
means, continuous K-means, and fuzzy K-means etc. to
provide a better choice on the initial seed and consequently
better sets of cluster representatives.

4.2.1. Forgy’s K-Means. The algorithm describing this meth-
od is illustrated in Figure 3.

4.2.2. Standard K-Means. The distinct distinction from the
Forgy K-means is in its more appropriate utility of the data
at each step. Though the basic process for both algorithms is
similar in the context of choice of the reference points and
in the allocation of clusters to all data points, then using the
cluster centroids as reference points in subsequent partition-
ing the distinctness is in nature of adjusting the centroids
both during and after each partitioning. For a data “x” in
cluster “i” if the centroid zi is the nearest reference point, then
adjustments are not carried out and the algorithm proceeds
to the next sample data. On the other hand, if the centroid z j
of the cluster “ j” is the reference point closest to the data “x,”
then x is reassigned to cluster j in addition to recomputing
the centroids of the “losing” cluster “i” (minus point x) and
the “gaining” cluster (plus point x) and moving the reference
points zi and z j to the fresh centroids.

4.3. Graph Theoretic Clustering Algorithm: Hypergraph. A
HG [49] “H” is a pair (X , ξ) consisting of a nonempty set X
together with a family

⋃
i∈I Ei = X , I = {1, 2, . . . ,n}, n ∈ N .

Figure 4 shows a generic HG representation.

An important structure that can be studied in a HG is
the notion of an intersecting family. An intersecting family
of hyperedges of a HG “H” is a family of edges of H
which have pairwise nonempty intersections. There are two
types of interesting families: (1) intersecting families with
an empty intersection and (2) intersecting families with a
nonempty intersection. A HG has the Helly property if each
family of pair wise intersecting hyperedges has a nonempty
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Figure 3: Flow chart of K-means clustering algorithm.

intersection (i.e., they belong to a star). Figure 5, represents
two types of intersecting hyper-edges.

Several researchers in allied fields [50, 51] of engineering
have utilized a variety of properties of HG such as the Helly,
transversal, mosaic, and conformal for obtaining clustering
algorithms pertaining to a diverse set of applications. The
neighbourhood HG representation utilizes the Helly which
plays a vital role in identifying homogeneous regions in the
data augurs as well as serves as the main aspect for developing
segmentation and clustering algorithms.

In the case of studies based on HG-based clustering and
classification, the preprocessed data obtained as discussed
in Section 6 is represented as Vi = (ϕi, qi, ni), i = 1, 2, 3,
4, . . . ,m where “m” is the number of vertices of the data
per cycle. The data is grouped in terms of feature vectors
which act as the best representatives of entire database. Hence
if pair-wise intersecting edges are created from the entire
data base, the Helly property of HG can be invoked to
find the common intersection which in turn provides the
feature vectors that represent the centers of a particular set
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Figure 5: Representation of pairwise intersecting hyperedges with
(a) nonempty and (b) empty intersection.

of data pertaining to the source of PD. Hence, a minimum
distance metric scheme (Euclidean) is developed to obtain
the nearest among various intersections of the intracluster
and intercluster dataset so as to obtain the optimal set
of common intersection vectors that serve as the centers
representing the dataset. These feature vectors are taken as
training vectors of the PNN.

5. Partial Discharge: Laboratory Setup,
Artificially Simulated Benchmark Models,
and Data Acquisition

5.1. PD Laboratory Test Setup. Comprehensive studies per-
taining to single- and multi-source PD pattern recognition
have been carried out using a W.S. Test Systems Make (Model
no.: DTM-D) digital PD measurement system suitable for
measuring PD in the range 2–5000 pC with Tektronix built-
in oscilloscope (TDS 2002B) provided with a tunable filter-
insert (Model: DFT-1) with a selectable center frequency in
the range of 600 kHz–2400 kHz at a bandwidth of 9 kHz.
PD pulses acquired from the analogue output terminal are
exhibited on the built-in oscilloscope. The measured partial
discharge intensity is displayed in picocoulomb (pC).

PDGold software developed by HV Solution UK is
interfaced with the PD measurement system to acquire
the PD patterns. Window gating facility is provided by
the PD acquisition system to suppress background noise.

The test setup and various stipulations of the test pro-
cedure comply with IEC 60 270 [52]. Further, in order
to improve the transfer characteristics of the test system,
a 1 nF coupling capacitor is integrated to the test setup.
An electronic reference calibrator (Model: PDG) ensures
appropriate resolution of pulses during measurement and
data acquisition. The straight detection and measurement
test setup as recommended in IEC is utilized in carrying out
the test. Figures 6, 7, and 8 show the test arrangement for PD
measurement and acquisition system.

5.2. Artificially Simulated Laboratory Benchmark Models
for PD Pattern Classification. Five categories of laboratory
benchmark models have been fabricated to simulate distinct
classes of single and multiple PD sources, namely, elec-
trode bounded cavity, air corona, oil corona and electrode
bounded cavity with air corona which would in turn serve as
a validation technique to replicate the reference patterns as
recommended in [53]. Internal discharges are simulated by
an electrode bounded cavity of dimension 1 mm diameter
and 1.5 mm depth on 12 mm thick polymethyl metha
acrylate (PPMA) of diameter 80 mm as shown in Figure 9.
One category of external discharge (surface discharge) is
simulated with 12 mm thick Perspex of 80 mm diameter
as indicated in Figure 10. A second category of external
discharge called the air corona discharge is replicated by
an electrode of apex angle 85◦ attached to the high volt-
age terminal as shown in Figure 11. Corona discharge in
oil is produced with a similar arrangement immersed in
transformer oil as shown in Figure 12. Electrode bounded
cavity with air corona is produced by inserting a needle
configuration (2 mm) from the HV terminal in addition to a
2 mm bounded cavity in Perspex at the high voltage electrode
as replicated in Figure 13.

5.3. PD Signature and Pattern Acquisition System. PD Gold
is a data acquisition software which provides a system to
acquire high-resolution PD signals at a high-sampling rate
(1 sample per 2.5 nanoseconds). The system detects PD on
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a 50 Hz power cycle base thus enabling display of PD pulses
in sinusoidal or elliptical forms usable in either auto or
manual mode which in turn enables the user to observe the
shape of the PD pulses detected and representing the PRPD
patterns in real time. In the manual approach, the user has
the facility to record the data for a considerable duration (in
this study 5–15 minutes) which is acquired from a minimum
of 240 to a maximum of 750 waveforms per channel.

Incidentally, for carrying out PD testing which would
ensure credible acquisition of data it is essential to acquire
fingerprints of PD signals under well-defined conditions.
Hence, before testing, the test specimen is preconditioned
in line with the requirements of the relevant technical
committee. Since methods of cleaning and conditioning
test specimens play a vital role during acquisition of the
test data, preconditioning procedures indicated in [54] are
adopted.

It is observed during exhaustive studies that for discharge
sources listed in Tables 1 and 2, a time period of 5 minutes
is usually sufficient to capture the inherent characteristics
of PD. Figures 14 and 15 show typical PD pulses acquired
during the testing, measurement, and acquisition process.

Table 1: Moderate dataset of PD laboratory models.

PD
category

Type of PD
Label for

classification
No. of PD
patterns

(1) Electrode bounded cavity EC 10

(2) Surface discharge SD 10

(3) Oil corona OC 10

(4) Air corona AC 6

(5)
Electrode bounded cavity
with air-Corona

ECAC 10

(6)
Electrode bounded cavity
with surface discharge

ECSD 10

6. Preprocessing and Feature Extraction

For carrying out extensive training and testing of the PNN
versions, the raw data is preprocessed in order to ensure
compactness without compromising on unique details of
the characteristic input feature vector. The significance of
utilizing a wide variety of preprocessing methods is to enable
in ascertaining the performance of the proposed NNs so
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Table 2: Large dataset PD database of laboratory models with varying applied voltages.

Category
of PD

Label for
identification/classification

Type of PD
Applied voltage

(kV)
Total no. of training

patterns
Total no. of

testing patterns

(1) EC Electrode bounded cavity
7.3
9.1
9.6

90 120

(2) AC Air corona
14
21
23

90 120

(3) OC Oil corona
21

29.1
32

90 120

(4) ECAC
Electrode bounded cavity
with air corona

7.3
9.1
10

90 120

Figure 7: Laboratory experimental test setup indicating the direct
detection PD measurement methodology.

that tangible decisions may be taken on the role played
by the various key parameters of the neural networks such
as smoothing parameter, effect of outliers, and curse of
dimensionality. The input data presented to the PNN is based
on phase window technique wherein only simple statistical
operators, namely, (1) measures based on maximum values
of q (10◦ and 30◦); (2) measures based on minimum values of
q (10◦ and 30◦); and (3) measures based on central tendency
(10◦ and 30◦), are utilized to ascertain the capability of
the proposed PNN versions in classifying patterns as a
preliminary case study. The authors of this research work
have carried out earlier exhaustive studies based on the
traditional statistical operators albeit with other NNs. Thus
the major focus of this research is on assessing the capability
of PNN algorithms in classifying multiple sources of PD
utilizing both clustering algorithms and algorithms without
the influence of clustering and its role in distinguishing the
classes appropriately with parsimonious sets of centers.

Further, a new method of utilizing the inequality [55]
given by harmonic mean (HM) ≤ geometric mean (GM)
≤ arithmetic mean (AM) ≤ root mean square-based on

Figure 8: Digital PD measurement and acquisition system (DTM-
D model).

measures of various types of mean utilized successfully by a
few researchers in the field of target recognition serves as an
effective yet simple technique in reducing the dimensionality
of the input feature vector space. Hence, it has also been
adapted in this research work to ascertain its effectiveness in
providing a compact set of extracted features.

The acquisition of raw PD dataset was carried out as
deliberated in Section 5, preliminarily for moderate set of
multiple source PD patterns and subsequently for large
datasets for single and multiple PD sources. The first studies
are conducted for dataset consisting of a total of two sets
of training database, that is, 20 and 25 sets. A total of
56 PD fingerprints samples were collected from 6 samples
of benchmark models described in Section 5 of which 10
patterns are due to internal discharge (electrode bounded
cavity), 10 pertain to oil corona, 10 patterns correspond to
surface discharge, 6 fingerprints belong to air corona patterns
and 10 patterns belong to electrode bounded cavity with air
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Figure 9: Laboratory model replicating electrode bounded cavity
discharge.

Figure 10: Model simulating surface discharge with electrode
bounded cavity.

corona (multisource PD). The database obtained is indicated
in Table 1.

The second analysis pertains to PD signatures for large
dataset patterns acquired from the laboratory testing of
4 models simulating sources of PD. The total number of
fingerprints in the database comprises ninety patterns of
each type of the defect with thirty samples pertaining to each
of the various applied voltages. It is to be noted that these
patterns have been acquired online wherein the statistical
variations in the pulse patterns for each cycle of the sinu-
soidal voltage exhibits the inherent non-Markovian nature,
thus making the task during classification more difficult.
The task becomes even more demanding due to different
applied voltages which make the process of classification
of pulse patterns complex. Rigorous study and analysis on
the classification capability of the proposed NN is carried
out for only one applied voltage for each category of PD.
However, the limitations and aspects related to complexities
in classifying large dataset due to varying applied voltages
are also summarized. Table 2 shows the patterns acquired
for large dataset from various sources of PD.

Figure 11: Laboratory model simulating air corona discharge with
point configuration as high voltage electrode at an 85◦ apex angle.

Figure 12: Laboratory model simulating oil corona discharge with
point configuration as high voltage electrode at an 85◦ apex angle.

It is pertinent to note from Table 2 that only eighteen sets
(20% of the training dataset) pertaining to each source of
PD (referred to as prototype/codebook vectors in the case of
labelled clustering or random cluster centers in the case of
unlabelled clustering) were taken up for finding the centers
since it has been observed from our study that these represen-
tative fingerprints were sufficient for obtaining considerable
number of centers which led to reasonable classification
capability of PNN versions. This is notwithstanding the fact
that NN literature studies have indicated the usual practice of
using at least 50% as representative samples for the training
phase though it would ideally be suitable to have two-thirds
as the basis for training the NNs. However, further studies
were taken up by the authors with 40% of codebook vectors
for obtaining centers. It was made evident that enhanced
classification capability was evinced by the NNs.

7. Neural Network Verification

The most prevalent verification methods, namely, the
alphabet character recognition and the Fischer’s Iris Plant
database [56], are used for training and testing of the
PNN versions for ascertaining the performance of the
proposed PNN versions. Coding for versions of PNNs is
developed using MATLAB 6.1, Release 12. The ability of
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Figure 13: Laboratory model replicating electrode bounded cavity
discharges overlapped on air corona discharges (multiple source
discharges).

Figure 14: Typical waveform representation on the oscilloscope
depicting air corona discharges on sinusoidal base.

the clustering algorithms and hence the number of codebook
reference vectors/centroids as appropriate to the type of
clustering formed have also been studied and found to
be reasonably precise in classifying the divergent input
vectors.

8. Analysis and Inferences

8.1. Case Study 1: Discrimination Capability of OPNN and
APNN without Clustering Algorithm for Moderate PD Data-
sets. Based on the training and testing of PNN and its
adaptive version with two sets of training data which include
overlapped and single PD source patterns comprising 4 sets
(3 nos. of single PD source and 1 number of void corona
overlapped) and 5 sets (3 single PD sources and 2 numbers
void corona and void-surface discharge overlapped), exten-
sive observations and analysis are summarized.

Table 3: Classification capability of PNN and APNN for moderate
database—without clustering algorithm.

Pre-processing
Technique

Misclassifications
in OPNN

Misclassifications
in APNN

Φ-qmax-n (30◦)

4 types—7 numbers
(AC2, AC7, EC1AC2,
EC2AC7, EC5AC2,
EC6AC7)
5 types—15 numbers
(AC2, AC7, EC1AC2,
EC2AC7, EC3AC8,
EC4AC9,
EC2SD2, EC3SD3,
EC4SD4, EC1,
EC6AC7, EC6SD6,
EC7SD7, EC8SD8)

4 types—5 numbers
(EC1, EC5, SD6, SD9)
5 types—6 numbers
(EC1, EC6AC7,
EC6SD6, EC7AC8,
EC7SD7, EC8SD8)

Φ-qmin-n (30◦)

4 types—8 numbers
(EC5AC2, EC3AC8,
EC2AC7, EC1AC2,
EC6AC7, EC7AC8,
EC8AC9)
5 types—15 numbers
(EC1AC2, EC2AC7,
EC3AC8, EC5AC2,
EC1SD1, EC2SD2,
EC3SD3, EC4SD4,
EC5SD5, EC1,
EC6AC7, EC6SD6,
EC7SD7, EC8SD8)

4 types—5 numbers
(EC1, EC6AC7,
EC7AC8,
EC8AC9)
5 types—7 numbers
(EC1, EC6AC7,
EC6SD6,
EC7AC8, EC7SD7,
EC8SD8)

Φ-qmax-n (10◦)

4 types—7 numbers
(AC2, AC7, EC1AC2,
EC5AC2, EC6AC7,
EC8AC9)
5 types—8 numbers
(EC5SD5, EC4SD4,
EC1, EC6AC7,
EC7AC8, EC8AC9,
EC7SD7)

4 types—4 numbers
(EC2, EC3, EC5, SD6)
5 types—4 numbers
(EC1, EC5, SD6, SD9)

Φ-qmin-n (10◦)

4 types—8 numbers
(AC2, AC7, EC3AC7,
EC6AC2, EC8AC9,
EC3AC8, EC2, EC4,
EC6)
5 types—12 numbers
(AC2, AC7, EC3AC7,
EC1AC2, EC6SD6,
EC7SD7, EC8SD8,
EC6AC2, EC2, EC4)

4 types—6 numbers
(S6, S7, S10, V6C2,
V8C9)
5 types—5 numbers
(EC7SD7, EC6AC2,
SD10, SD7, SD6)

8.1.1. Analysis of the Performance of OPNN

(1) Since the basic version of PNN is an unsupervised
learning scheme (without feedback for learning),
the exemplar nodes are themselves the weight vec-
tor and hence these are not updated during the
training phase (training phase is not a part of
the rudimentary scheme). Hence, it is obvious that
for effective learning higher number of exemplar
nodes which are representative of the category of
PD source during training would ensure enhancing
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Figure 15: Typical sample of laboratory model testing of electrode bounded cavity with air corona PD acquired from the PD measurement
and acquisition system.

the classification capability of both versions of PNN.
Though a minor variation in classification capability
of the PNN version may be obtained by tweaking the
variance parameter since the focus of the research
is on comparing the characteristics of clustering
algorithms, a fixed value of smoothing parameter is
taken for the purpose of analysis during classification.
The classification capability is summarized in Table 3.

(2) Since it is also made evident during detailed study
that issues related to overfitting would be an impor-
tant aspect while training large non-Markovian PD
datasets, this algorithm suffers from the drawback
of requirement of large memory during the training
phase.

8.1.2. Analysis on the Performance of APNN

(1) It is also evinced from detailed study that since the
adaptive version provides a mechanism for having
independent variance parameter for unique class
labels, this version in almost all cases learnt well
during the training phase (though this network
structure also does not include supervised learning).
This feature is evident from the modifications made
in the structure of the APNN (due to the separate
values of the variance parameter pertaining to each
class decision boundaries). Table 3 and Figure 16
substantiate this aspect.

(2) Nevertheless, since the basic variant of PNN also
does not involve training and supervision during
learning, considerable numbers of misclassifications
are noticed, more so, pertaining to fully overlapped
multi-source (electrode bounded cavity with surface
discharge) PD signatures. The difficulties during
classification of such overlapped signatures are evi-
dent from the nature of also from the nature of
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Figure 16: Classification capability of OPNN and APNN with five
types of feature inputs with 4- and 5-types of overlapped patterns—
without clustering algorithm (in the histogram dotted chequered
blocks refer to 4 and 5 type inputs to PNN; striped and brick blocks
refer to 4- and 5-type inputs to APNN).

hyperboundary separation, wherein values of the
smoothing parameter are indicated in Table 5.

8.2. Case Study 2: Performance of OPNN and

APNN with Labelled (LVQ Versions) Algorithms for

Moderate PD Datasets

(1) Fewer misclassifications are noticed during training
of multiple source PD patterns in most of the
LVQ variants considered for study in this research.
The only exception noticed is with the mea-
sures based on minimum and maximum values
wherein considerable number of misclassification are
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Classification capability of LVQ1, LVQ2, and LVQ3

clustering algorithms
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Figure 17: Classification capability of OPNN and APNN with six
types of feature inputs with 4- and 5-types of overlapped patterns—
with LVQ clustering algorithms (in the histogram dotted, chequered
blocks refer to 4- and 5-type inputs to PNN; striped and brick
blocks refer to 4- and 5-type inputs to APNN).

observed for fully overlapped PD source considered
in this study. Results of the comprehensive set of
studies are shown in Table 4 and Figure 17.

(2) It is also of considerable importance to note from
Table 5 that the decision hyperboundaries that sepa-
rate the various categories of PD sources are found
to be very sharp (small values of the variance
parameter). This clearly indicates that the com-
plexities pertaining to classification of multi-source
PD signatures in addition plausible inconsistencies
during data acquisition for subsequent training and
testing by PNN variants.

(3) Another prominent feature made evident from
Table 5 is the similarity in the range of values of vari-
ance parameter for various categories of PD sources.
Incidentally the values of variance parameter in the
case of APNN are found to be almost similar thus
signifying the similar nature of both Bayesian-based
strategies in creating hypersurface boundaries. The
performance of PNN versions which utilize the vari-
ants of LVQ algorithms is summarized in Figure 17.

8.3. Case Study 3: Role of the Trainable Part in Unsupervised

and Supervised PNN Versions

(1) It is pertinent to note from Table 5 that in the case
of all the versions of LVQ clustering-(LVQ1, 2, and
3) based PNNs, the range of the variance parameter
is between 0.01 and 0.05 which describe the feature
for void defect. Similarly the value of σ4, that is,
void-corona overlapped pattern, is also reasonably
similar but for one specific case with LVQ3 only.
This establishes the fact, already stated by researchers
in identifying and classifying the overlapped void-
corona patterns. In addition, from the viewpoint of
decision of the boundary hyperplane, considerable
clarity in separation of class boundaries is noticed.

(2) However, in the case of void-surface overlapped
patterns the value of variance is considerably
divergent in various versions of LVQ. This is vividly
observed in the case of input feature vector using
measures based on minimum and maximum values
of number of pulses.

(3) Since it is noticed that the value of variance
parameter is narrow (peaked), it is evident that such
a technique may not be appropriate for further fine
tuning of the trained vectors. This technique might
augur well only for large training datasets wherein
wider class identification is expected thus possibly
suggesting the need for more training for obtaining
enough number of representative codebook vectors
pertaining to a class for better class discrimination.

8.4. Case Study 4: Performance of OPNN and APNN

for Large Dataset with Traditional Statistical Operators

and Inequality Measures of Mean with Labelled

(LVQ Versions) Algorithms

(1) It is worth noting that the LVQ versions of algorithms
are able to create a reasonably good parsimonious
set of centers relevant to the four classes even with
about 20% (6 codebook vectors for every 30 training
datasets of each applied voltage) of prototype vectors.
In this context, it is to be emphasised that these code-
book vectors become the weight (centers/centroids)
vectors which are now the representatives of the sam-
ples. Table 6 summarizes the classification capability
of the LVQ-PNN variants.

(2) It is also evident from Table 6 the superiority of the
LVQ 2 version as a clustering algorithm for large
dataset training as compared to the other types. This
characteristic noticed in the course of this study
by the authors of the research work has also been
concurred by a few researchers in other allied areas
of engineering [57].

(3) When the study was extended to that of doubling
of the number of reference vectors during training,
the improved classification rate is noticed (about 90–
95%) for almost all categories and types of prepro-
cessing schemes of varying levels of compactness.

(4) A perceptible difference in the classification capabil-
ity of patterns pertaining to the feature extraction
scheme that utilizes the inequality relation based on
the measures related to the types of mean values (with
both 30◦ and 10◦ phase window input features) has
been observed.

8.5. Case Study 5: Performance of OPNN and APNN for

Large Dataset with Traditional Statistical Operators

and Inequality Measures of Mean with Unlabelled

(K-Means Versions) Algorithms

(1) It is obvious that the classification rate is quite infe-
rior as compared to the labelled clustering algorithms
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Table 4: Observations made on the classification capability of OPNN and APNN for moderate database—with clustering algorithm.

Preprocessing
Technique

Misclassifications
in OPNN with LVQ1

Misclassifications in OPNN with
LVQ2

Misclassifications in OPNN with
LVQ3

Φ-qmax-n (30◦)

4 types—3 numbers
(AC2, AC9, EC1)
5 types—6 numbers
(EC1, EC3, EC7SD7, EC8SD8,
EC2, EC4)

4 types—2 numbers
(EC2, EC1)
5 types—3 numbers
(EC1, EC6SD6, EC8SD8)

4 types—2 numbers
(EC2, EC1)
5 types—4 numbers
(EC2, EC1, EC7SD7, EC8SD8)

Φ-qmin-n (30◦)

4 types—6 numbers
(AC7, AC5, AC2, EC6AC7,
EC7AC8, EC8AC9)
5 types—6 numbers
(EC6C7, EC7AC8, EC7SD7,
EC8SD8, AC2, EC5AC2)

4 types—3 numbers
(EC1, EC6SD6, EC8SD8)
5 types—8 numbers
(AC2, EC5, SD7, EC6AC7,
EC7AC8, EC6SD6, EC8SD8)

4 types—5 numbers
(AC2, EC5, EC6AC7, EC7AC8,
EC8AC9)
5 types—8 numbers
(AC2, EC5, SD7, EC6AC7,
EC7AC8, EC8AC9, EC7SD7,
EC8SD8)

Φ-qmax-n (10◦)

4 types—3 numbers
(EC2, EC8SD8, EC1)
5 types—7 numbers
(EC2, EC1AC2, EC5AC2, EC1,
EC3, EC7SD7, EC8SD8)

4 types—1 number
(EC1)
5 types—4 numbers
(EC1AC2, EC6AC2, EC6SD6,
EC8SD8)

4 types—3 numbers
(EC2, EC5AC2, EC1)
5 types—5 numbers
(EC1AC2, EC6AC2, EC7SD7,
EC8SD8)

Φ-qmin-n (10◦)
4 types—2 numbers
(AC2, AC7)
5 types—4 numbers
(AC2, AC7, EC7SD7, EC8SD8)

4 types—2 numbers
(EC5SD5, EC6AC2)
5 types—4 numbers
(EC1AC2, EC6AC2, EC6SD6,
EC8SD8)

4 types—2 numbers
(AC1, AC2)
5 types—5 numbers
(EC1AC2, EC6AC2, EC7SD7,
EC8SD8)

during the training phase since it is an established
fact that the selection of the initial seed (which is
a random selection) would be vital for appropriate
learning. However, the ability of such algorithms
to be able to provide class separable boundaries,
proposes an attractive alternative for input data
validation and in addition to providing plausible
solutions for identifying unknown categories. It is
relevant to note that since the scope of the research
is on assessing the capability of the clustering algo-
rithms in providing solutions to handle large training
datasets, only the more popular and traditional types
of clustering algorithms have been implemented to
ascertain this fact. However, a wide gamut of other
improved versions of K-means algorithms (improved
K-means, Greedy K-means etc.) may be attempted
for better classification capabilities. Table 7 summa-
rizes the important observations during the analysis
of the classification capability of the unlabelled
clustering algorithms.

(2) It is also substantiated that improved classification
rate is noticed for pre-processing scheme that utilizes
the inequality relationship based on the measures
pertaining to the types of mean values. This aspect
was also noticed in the case of labelled clustering
algorithms.

8.6. Case Study 6: Capability of the Novel Hypergraph-PNN

(HGPNN) in Classifying Multisource PD Patterns

(1) It is also observed that the novel HG-PNN classi-
fier serves as a significantly good center selection

algorithm though only a modest set of centers were
obtained for classification. Table 8 clearly elucidates
this aspect of utilizing the novel method of HG as a
clustering algorithm in PD pattern recognition.

(2) The best classification during the studies was
obtained for values of the smoothing parameter
within the range of 15–30. This characteristic delin-
eates the fact that the separation of class boundaries
is much wider than the previous studies carried out
by the authors [14] of this research on similar set of
testing of multi-source PD thus providing an index of
good set of centers that represent the class of PD.

(3) It is also obvious from Tables 8 and 9 that though
the HGPNN performed outstandingly, the number
of centers created by the HG algorithm is substantial
as compared to the density estimation-based clus-
tering/center selection algorithm for studies carried
out by the authors of this research earlier [13]. This
aspect could be ascribed to the utility of one of the
properties of HG, namely, the Helly property. Yet,
since the focus of the research is mainly to ascertain
the capability of the HG algorithm in being adaptable
as a center selection technique, other more salient
properties of HG such as transversal, conformal, and
mosaic have not been attempted.

(4) In the case of measures based on ϕ-qmax-n (30◦), the
number of centers obtained were much higher than
the number of centers achieved by HG algorithm for
measures based on ϕ-qmin-n (10◦). It is of significance
to note that the classification capability of measures
with 30◦ window was better than that of classification
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Table 5: Comparison on the role of variance parameter in classifying multiple PD sources.

Input feature vector APNN
(without clustering)

OPNN with LVQ1 OPNN with LVQ2 OPNN with LVQ3

Φ-qmax-n (10◦)

4 input types

σ ′1 = 0.097 σ ′1 = 0.018 σ ′1 = 0.019 σ ′1 = 0.033

σ ′2 = 0.195 σ ′2 = 0.025 σ ′2 = 0.021 σ ′2 = 0.040

σ3 = 0.058 σ3 = 0.070 σ3 = 0.073 σ3 = 0.062

σ4 = 0.079 σ4 = 0.020 σ4 = 0.025 σ4 = 0.016

5 input types

σ ′1 = 0.171 σ ′1 = 0.024 σ ′1 = 0.037 σ ′1 = 0.031

σ ′2 = 0.241 σ ′2 = 0.025 σ ′2 = 0.008 σ ′2 = 0.008

σ3 = 0.067 σ3 = 0.079 σ3 = 0.038 σ3 = 0.040

σ4 = 0.078 σ4 = 0.032 σ4 = 0.028 σ4 = 0.029

σ5 = 0.173 σ5 = 0.016 σ5 = 0.004 σ5 = 0.003

Φ-qmin-n (10◦)

4 input types

σ ′1 = 0.138 σ ′1 = 0.044 σ ′1 = 0.038 σ ′1 = 0.054

σ ′2 = 0.206 σ ′2 = 0.015 σ ′2 = 0.021 σ ′2 = 0.009

σ3 = 0.071 σ3 = 0.035 σ3 = 0.043 σ3 = 0.028

σ4 = 0.075 σ4 = 0.011 σ4 = 0.019 σ4 = 0.007

5 input types

σ ′1 = 0.172 σ ′1 = 0.032 σ ′1 = 0.037 σ ′1 = 0.032

σ ′2 = 0.258 σ ′2 = 0.006 σ ′2 = 0.007 σ ′2 = 0.007

σ3 = 0.009 σ3 = 0.037 σ3 = 0.0307 σ3 = 0.039

σ4 = 0.094 σ4 = 0.027 σ4 = 0.0277 σ4 = 0.028

σ5 = 0.141 σ5 = 0.003 σ5 = 0.004 σ5 = 0.003

Table 6: Comparison of classification capability of OPNN and APNN with LVQ versions’ clustering algorithms.

Input feature vector

Classification capability

LVQ1 clustering LVQ2 clustering LVQ3 clustering

OPNN APNN OPNN APNN OPNN APNN

Iter. (%) Iter. (%) Iter. ε (%) Iter. ε (%) Iter. ε η (%) Iter. ε η (%)

Φ-qmax-n (30◦) 5000 89 5000 91 500 .5 95 1000 .5 94 1000 .6 .3 93 1000 .7 .3 93

Φ-qmax-n (10◦) 5000 87 5000 88 1000 .6 90 1000 .7 93 1000 .8 .2 89 1000 .7 .2 89

Φ-qmin-n (30◦) 1000 91 1000 93 1000 .6 94 1000 .8 93 5000 .7 .3 92 1000 .6 .3 93

Φ-qmin-n (10◦) 1000 88 1000 89 1000 .7 91 1000 .7 93 1000 .7 .3 91 1000 .8 .3 92

Measure of types of mean (30◦) 1000 91 1000 93 1000 .8 95 1000 .8 96 1000 .7 .3 92 3000 .7 .3 93

Measure of types of mean (10◦) 1000 92 1000 93 1000 .8 95 1000 .8 96 1000 .7 .3 92 1000 .8 .3 94

Table 7: Comparison of classification capability of OPNN and APNN with versions of K-means clustering algorithms.

Serial
number

Input feature vector

Classification capability

PNN versions
(without clustering)

OPNN
(with standard K-means clustering)

APNN
(with the Forgy K-means

clustering)

OPNN APNN
OPNN APNN OPNN APNN

Iter. (%) Iter. (%) Iter. (%) Iter. (%)

(1) Φ-qmax-n (30◦) 93.6% 93% 1000 81 1000 83 2000 80 5000 81

(2) Φ-qmax-n (10◦) 94% 93.3% 1000 84 1000 84 2000 81 5000 82

(3) Φ-qmin-n (30◦) 89% 91% 5000 80 1000 81 5000 80 5000 81

(4) Φ-qmin-n (10◦) 91% 92% 5000 81 1000 82 5000 81 5000 81

(5) Measure of types of mean (30◦) 94 94 5000 84 1000 85 5000 82 5000 82

(6) Measure of types of mean (10◦) 94 95 5000 85 1000 86 5000 83 5000 83
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Table 8: Optimal centers obtained from HG algorithm for PD pattern classification.

Preprocessing technique
Number of optimal centers from HG algorithm

Electrode bounded cavity Air corona Oil corona Multiple sources

7.3 kV-26 14 kV-17 21 kV-18 7.3 kV-11

Φ-qmax-n (30◦) 9.1 kV-13 21 kV-15 29.1 kV-17 9.1 kV-12

9.6 kV-7 23 kV-8 32 kV-14 10 kV-17

7.3 kV-6 14 kV-8 21 kV-15 7.3 kV-8

Φ-qmax-n (10◦) 9.1 kV-16 21 kV-12 29.1 kV-16 9.1 kV-15

9.6 kV-10 23 kV-10 32 kV-14 10 kV-17

7.3 kV-12 14 kV-16 21 kV-12 7.3 kV-18

Φ-qmin-n (10◦) 9.1 kV-18 21 kV-18 29.1 kV-13 9.1 kV-21

9.6 kV-8 23 kV-17 32 kV-15 10 kV-17

7.3 kV-9 14 kV-15 21 kV-17 7.3 kV-17

AM-GM-HM-RM (10◦) 9.1 kV-26 21 kV-18 29.1 kV-17 9.1 kV-16

9.6 kV-9 23 kV-17 32 kV-19 10 kV-15

Table 9: Classification capability of HGPNN for multiple source PD patterns.

Preprocessing scheme Phase window No. of tuples Training patterns Classification capability (%)

Measures based on maximum Φ-qmax-n (30◦) 36 175 97

Measures based on maximum value Φ-qmax-n (10◦) 36 174 96.67

Measures based on minimum Φ-qmin-n (10◦) 36 188 93.6

Measures based on mean AM-GM-HM-RM (10◦) 36 186 90.5

based on 10◦. However, it is obvious that this has been
achieved at the cost of higher number of centers as
observed in Table 8.

(5) Tables 8 and 9 clearly enunciate the fact that the
number of centers that essentially describe the source
of PD is dependent on the dimensionality of the
HG centers. It is evident that the classification
capability is enhanced with number of representative
centers while a slightly inferior classification rate is
obtained for a larger dimensionality (tuple) though
with substantially larger number of centers. Though
“curse of dimensionality” is a vital aspect in designing
computationally effective clustering algorithms, the
nature of centers obtained provides a much broader
value of the smoothing parameter, thus circumvent-
ing the stated aspect previously discussed.

8.7. Comparison of Classification Capacity of HGPNN with
Feedforward Backpropagation (FFBPA) Neural Network. Pre-
liminary studies carried out by the authors of this research
earlier [33] clearly indicate limitations pertaining to long
training epoch (in several cases prohibitively large training
time in the range of 8–10 hours) for convergence during
the iterative procedure even in the case of small dataset
training. Since large dataset training and testing is taken up
for studies in this research, it is obvious that the training
phase would necessitate more robust training strategies for
better computational cost. These observations also clearly

indicate the limitations during the training phase of the
FFBPA network as discussed in [58] where the research
findings of Specht and Shapiro deliberate this aspect. This
issue becomes even more significant in the context of training
and testing large dataset, online, complex real time PD
signature analysis.

8.8. Comparison of Classification Capacity of HGPNN with
Wavelet Transform-PNN Classifier. In this context, for the
purpose of comparison, studies based on discrete wavelet
transformation (DWT) have also been taken up in this
work since recent studies by researchers have indicated
the merits of utilizing this technique in discriminating
overlapped PD signatures most prevalent during practical
measurements on-site. The Daubechies wavelet has been
utilized in this work as it has been observed that this family
of wavelets has desirable properties that usually match the
requirements pertaining to PD pattern classification such
as data compression and compactness, orthogonality, and
asymmetry for analysis for fast varying pulses Since, a
few classical studies based on wavelet transformation in
PD analysis [20] also provide substantial guidelines in the
appropriate selection of the order and level of the selected
wavelet, it is found relevant to use higher-order and lower-
level (scale) wavelet representation for pattern recognition
tasks. Hence, in this study the Daubechies wavelet with order
7 and level 3 was taken up for obtaining the approximate
and detailed coefficients. Based on the coefficients obtained,
postprocessing and further studies have been carried out
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Table 10: Capability of wavelet transform-PNN in classifying multiple source PD signatures.

Feature vector
Number of
tuples

Total number of
windows for
statistically extracted
features

Total number of PD
signatures

Classification capability (%)

OPNN without
clustering

APNN without
clustering

LVQ2 clustering

OPNN APNN

The Daubechies
coefficients
(order 7 and level 3)

192
264

16
9

480
480

92
90.2

93.1
91.3

94.2
92.3

94.7
93.1

utilizing statistical measures (range, standard deviation,
mean, skewness, and kurtosis) for a phase window of
30◦ and 10◦. Table 10 summarizes the analysis carried out
utilizing wavelet transform.

It is obvious from Table 10 that the number of feature
extraction bins (during the extraction of the wavelet coeffi-
cients based on statistically processed measures) plays a vital
role in the capability of classification of the WT-PNN. It
is pertinent to observe that with increased dimensionality
of the extracted features, the classification capability is not
enhanced, in fact, detrimental to classification. This aspect
clearly exemplifies the need for appropriate center selection
strategies (such as HG-based clustering).

Further it is evident from the detailed analysis and
from case study shown in Table 10 that good classification
capability of the wavelet PNN is obtained for considerably
larger number of tuples of extracted features as compared
to considerably lesser-dimensioned features obtained from
simple statistical measures based on HG methodology.
Thus much more parsimonious sets of centers are obtained
with more compact feature representatives with the HG-
based center selection and clustering technique though with
slightly inferior classification capability. However, it would
be worth mentioning in this context that this limitation may
be attributed to the utility and exploitation of only one of
the preliminary property of HG, namely, Helly, while several
other powerful salient properties of HG such as transversal,
mosaic, and conformal have not be taken up in this
research. Such properties are expected to provide enhanced
results.

9. Conclusions

The role played by both partition and graph theory-
based clustering algorithms in discriminating multi-source
PD patterns utilizing the two basic variants of PNN are
summarized as follows.

(1) During the training phase-labelled versions of LVQ
clustering augurs well as a good learning scheme
and are able to handle ill-conditioned dataset and
overlapped multiple PD sources considerably well. It
is also evident that this method may be appropri-
ate during offline studies wherein under controlled
testing conditions, appropriate training of prototype
vectors pertaining to a particular class would ensure a
compact and reasonable codebook vector for further
classification by PNNs.

(2) The unlabelled clustering algorithm offers fresh
insight into possible schemes for cluster validation
which may consequently present a likely methodol-
ogy for recognition of unknown class of PD sources
during real time studies. Though this scheme may
appear to be more associated with its counterpart
(weak learning strategy), it is essential to note that
since PD source discrimination is fundamental for
successful insulation diagnosis it may be reasonable
that the sources of PD signatures are classified
from the viewpoint of strong learning strategy. The
authors of this research are engaged in attempting
a cluster validation-based scheme which is ongoing
presently.

(3) It is evident from the studies that HG-based center
selection/clustering algorithm provides an exciting
and a viable option for obtaining reasonably parsi-
monious set centers that describe the class of PD.
Though the properties of the HG algorithm was
utilized only to cluster and classify the PD patterns
in this research, this scheme provides an exciting
opportunity to correlate the relationship/association
of PD pulses in terms of geometric aspects also.
This research aspect is presently ongoing. Since much
larger sets of representative centers are observed
during this study, more appropriate properties of HG
such as transversal, conformal, and mosaic can be
attempted to further validate the approach.
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