
DOI: 10.4018/IJGHPC.2018010105

International Journal of Grid and High Performance Computing
Volume 10 • Issue 1 • January-March 2018

﻿
Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

71

Embarrassingly Parallel GPU Based 
Matrix Inversion Algorithm for Big 
Climate Data Assimilation
M. Varalakshmi, VIT University, Vellore, India

Amit Parashuram Kesarkar, National Atmospheric Research Laboratory, Chittoor, India

Daphne Lopez, VIT University, Vellore, India

ABSTRACT

Attempts to harness the big climate data that come from high-resolution model output and advanced 
sensors to provide more accurate and rapidly-updated weather prediction, call for innovations in the 
existing data assimilation systems. Matrix inversion is a key operation in a majority of data assimilation 
techniques. Hence, this article presents out-of-core CUDA implementation of an iterative method 
of matrix inversion. The results show significant speed up for even square matrices of size 1024 X 
1024 and more, without sacrificing the accuracy of the results. In a similar test environment, the 
comparison of this approach with a direct method such as the Gauss-Jordan approach, modified to 
process large matrices that cannot be processed directly within a single kernel call shows that the 
former is twice as efficient as the latter. This acceleration is attributed to the division-free design and 
the embarrassingly parallel nature of every sub-task of the algorithm. The parallel algorithm has been 
designed to be highly scalable when implemented with multiple GPUs for handling large matrices.
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1. INTRODUCTION

The advent of Big data technology has brought a great revolution in the science of Numerical Weather 
Prediction. Big data in NWP actually refers to ‘climate big data’ that come from rapid and dense 
observations from advanced sensors and very high-resolution model output. A ten-fold increase in 
the model resolution would require 104 more computations for the four dimensions in space and time. 
To achieve this massively challenging throughput and to fully utilize this big data so as to provide 
more accurate and rapidly updated weather prediction, innovations have to be brought to the existing 
Data Assimilation and NWP systems (Big Data Assimilation) (Miyoshi et al., 2016a; Miyoshi et 
al., 2016b). This can help strengthen our early warning system against regional, sudden and severe 
calamities such as hurricanes, heavy rain, flooding, landslides and the alike. Innovative research has 
already started towards speeding up the various phases of NWP such as observation data processing, 
model run and data transfer between model and DA. Even in the Data assimilation phase, ways to 
improve storage and processing of large matrices and vectors can be explored. With the three spatial 
dimensions and one temporal dimension considered in Variational data assimilation algorithms and 
Kalman Filter based assimilation algorithms, the atmospheric state variables such as Wind, Pressure, 
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Humidity etc at all grid points for various vertical layers and time instants are represented in a vector 
with around 108 entries. Likewise, the measurement vector contains 106 observation entries. Due to 
large size of these vectors, the resulting model error covariance and observation error covariance 
matrices too will be large, of the order of O(108X108). Hence the performance of these assimilation 
methods depends on the design and implementation of better algorithms for processing of large 
matrices in general and inversion in particular, and this was the impetus behind our proposed work.

The massive number crunching capacity needed to work with large matrices can be made possible 
by employing Graphics Processing Units (GPUs). CUDA is well suited for data-parallel algorithms 
(Garland et al., 2008) such as shallow water model (Playne & Hawick, 2015), delivering high 
computational throughput if few design principles are followed to fully utilize the GPU’s processor 
cores and their shared memory that is critical to the performance of many efficient algorithms. 
Various improvements made to the storage format for efficient execution of SpMV operations on 
GPUs (Gao, Qi & He, 2016; Koza, Matyka, Szkoda & Mirosław, 2014; Dziekonski, Lamecki & 
Mrozowski, 2011) have shown this. Wu, Ke, Lin and Jhan (2014) claim that adjusting the number 
of threads dynamically helps to completely utilize the compute power of GPUs. Modeling tools 
(Zouaneb, Belarbi & Chouarfia, 2016) also lend a helping hand in validating task scheduling on 
GPUs and analyzing the performance. Earlier studies show that GPU implementations are several 
times faster than its CPU counterpart (Helfenstein & Koko, 2012) and can be efficient if the matrix is 
represented and processed using the two-dimensional textures that GPUs are optimized for (Galoppo, 
Govindaraju, Henson & Manocha, 2005). Further studies have revealed that parallel implementation 
of algorithms on hybrid platform consisting of CPU and GPUs (Ezzatti, Quintana & Remón Gómez, 
2011a; Benner, Ezzatti, Quintana-Ortí & Remón, 2009; Ezzatti, Quintana-Orti, & Remon, 2011b) has 
proved to be more efficient for both small and large size matrices than the pure GPU implementation.

To support the efficient execution of linear algebra applications, there are several linear Algebra 
libraries optimized for GPU architecture such as CUBLAS and MAGMA for finding matrix inverse. 
MAGMA linear algebra C/C++ library (A. Chrzeszczyk & J. Chrzeszczyk, 2013) provides code for 
calculating matrix inverse for a regular matrix and positive definite matrix both in single precision 
and double precision. However, these libraries are not efficient for certain applications and there are 
other findings that show that further enhancements can be made to these implementations.

According to Haidar, Abdelfatah, Tomov and Dongarra (2017), high performance GPU-only 
algorithm developed for dense Cholesky factorization to run on latest GPUs and the hybrid panel-
based LU decomposition algorithm outperform the existing libraries. The tile data layout followed in 
Cholesky-based matrix inversion (Ibeid, Kaushik, Keyes & Ltaief, 2011) results in up to 5 and 6-fold 
improvement compared to the equivalent routines from MAGMA V1.0 by completely removing the 
synchronization points and unlike Magma it is not memory-limited and can scale beyond the available 
device memory. Efficient batched solvers have been developed for a set of small dense matrices as the 
pre-existing solvers were either just memory-bound, or even if highly optimized, did not exceed in 
performance the corresponding CPU versions (Haidar, Dong, Luszczek, Tomov & Dongarra, 2015). If 
matrix inversion algorithms are tailored to handle specific application requirements, they outperform 
the methods employed in the standard libraries to calculate direct inverse (Prabhu, Rodrigues, Edfors 
& Rusek, 2013; Ylinen, Burian & Takala, 2003; Xingbo, 2011).

Moreover, these libraries employ direct methods that either use LU-decomposition with partial 
pivoting or Cholesky decomposition, for factorization of matrix. While the former suffers from lack 
of optimal stability, high convergence time for sparse matrices as compared to dense matrices and 
inability to find approximate solution (Agarwal & Mehr, 2014), the latter is not very robust and 
works only for symmetric positive definite matrices. On the other hand iterative methods are more 
stable, simpler, less prone to numerical errors, best suited for large matrices due to smaller storage 
requirements and more specifically, efficient for sparse matrices. They compensate for individual 
and accumulation of round-off errors as they are a process of successive refinement (Jamil, 2012).
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The existing iterative methods are not without their limitations. Either their convergence rate 
is too slow or convergence is not guaranteed for all types of matrices. Amidst the iterative methods, 
those that involve only the simple elementary arithmetical operations (Chang, 2015) and use 
approximations to avoid division and square root operations (Zhou et al., 2012) have been shown 
to execute faster. Hence in the recent years, the quest for inversion algorithms with high order of 
convergence has intensified; more specifically division-free algorithms are explored, the reason 
being two-fold: It is never divide overflow and also division operation is the slowest among all the 
arithmetic operations. These are the motivating factors for choosing a matrix multiplication based 
iterative method of inversion that has seventh order of convergence as a topic of study in this paper. 
Such high order iterative methods are so efficient for very ill-conditioned linear systems or to find 
robust approximate inverse preconditioners (Soleymani, 2012). Also, this method will be of great 
accuracy when implemented on parallel machines. The embarrassingly parallel nature of the various 
subtasks of this method such as matrix type identification and initial inverse construction makes it 
favorable for implementing in a GPU hardware environment that has a massively parallel architecture. 
Thus, this paper focuses on implementing a rapid numerical algorithm to compute out-of-core matrix 
inverse in a GPU-accelerated parallel computing platform, so as to obtain high throughput. To facilitate 
the comparison of our parallel iterative approach with a direct method of matrix inversion, it also 
parallelizes the Gauss-Jordan algorithm. Although Sharma, Agarwala and Bhattacharya (2013) have 
made attempts earlier to parallelize Gauss-Jordan algorithm, it might not be useful for applications 
that involve double-precision floating point arithmetic and matrices too large to be processed within 
a single kernel call. On similar grounds of comparison, our parallel iterative method has been proved 
to be more efficient than the direct method.

The rest of the paper is organized as follows. Section 2 describes the matrix multiplication based 
iterative algorithm for matrix inversion. Section 3 expounds the implementation of proposed parallel 
algorithm for the iterative method of matrix inversion. Section 4 presents the experimental results. 
At last, Section 5 draws the conclusions.

2. MATRIX MULTIPLICATION BASED ITERATIVE 
ALGORITHM FOR MATRIX INVERSION

Soleymani (2012) and Soleymani (2013) have proved that the following matrix multiplication-based 
iterative method for finding matrix inverse has seventh order of convergence, with an appropriate 
initial guess for the inverse.

	
n= 0, 1, 2,…	

With a higher rate of convergence, matrix inverse can be evaluated with fewer iterations but still 
with high accuracy.

To achieve seventh order convergence for this method, the initial inverse, V0 should be constructed 
using any of the following three ways.

A. 	 For a strictly diagonally dominant matrix, V0 = diag 1 1 1 1
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 where aii are the 

diagonal elements of A.
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B. 	 For a matrix A, V0 = A

A A

T

1
( )

∞

., where AT is the transpose of the original matrix A and

||A||1 and ||A||∞ are 1-Norm and Infinity Norm of the matrix A.	

C. 	 In case of failure of the above two approaches, V0 = αI where I is the identity matrix, and α ∈ 
R should adaptively be determined such that ||I- αA|| <1.

In the context of big climate data, as huge matrices of size million by million have to be worked 
upon, the aforementioned method requires O(n3) operations to be executed for the long series of 
matrix multiplications that are to be performed. Even with a machine offering Teraflops performance, 
overall computation time will be approximately (1018) / (8.6𝛸104𝛸1012) = 11.5 days. To cater to this 
huge computation demand of the application, Graphics Processing Unit (GPUs) featuring 1000s of 
general purpose compute processors has been employed.

2.1. Parallelization of Matrix Inverse
The extremely high processing power of GPU-accelerated high-end system has been used to expedite 
both inversion and initial inverse matrix construction as well, without sacrificing accuracy. Figure 
1 is a schematic representing the subtasks of the proposed parallel algorithm. Salim, Akkirman, 
Hidayetoglu and Gurel (2015) have examined the size limit of the matrices that can be solved by a 
GPU and Intel Xeon Phi. Their investigation shows that GPU cannot support matrices larger than 
a specific size (20000) owing to the lesser amount of memory directly available to the device. Our 
proposed approach overcomes this limitation by parallelizing every subtask in a way that works by 
splitting up huge matrices into several smaller blocks/tiles that can be supported by a specific GPU 
and iterating the kernel for all these blocks. Literature shows that this approach is not very new. To 
overcome the limitation of device memory on GPU, only a chunk of the distance matrix is computed 
instead of the entire distance matrix for each kernel call (Arefin, Riveros, Berretta & Moscato, 2012) 
and only partial input tiles are loaded into the shared memory (Kijsipongse, Suriya, Ngamphiw & 
Tongsima, 2011) and the kernel is repeated several times.

2.1.1. Matrix Type Identification
Speed of convergence of iterative methods depends on the initial inverse approximation. This conveys 
the fact that construction of initial guess for the inverse is of prime importance to this approach. 
Multiple ways have been suggested by which initial inverse can be constructed depending on the type 
of the original input matrix (Soleymani, 2012).

A. 	 For a strictly diagonally dominant matrix, V0 = diag 1 1 1 1

11 22 33
a a a a

nn

, , , ,





……





 where aii are the 

diagonal elements of A.

This makes it necessary to check for the type of the input matrix, a. A strictly diagonally dominant 
matrix is one in which for every row the absolute value of the diagonal element is greater than the 
sum of absolute values of all other elements along that row. An efficient method to perform this test 
in a parallel environment is to sum up all the elements along a particular row by performing parallel 
reduction of that row and then subtract the diagonal element. The difference should be smaller than 
the diagonal element. This condition must be satisfied for all the rows to declare it to be a strictly 
diagonally dominant matrix.
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The above procedure is tantamount to the summation of non-diagonal elements of every row.
Very large matrices cannot be transferred to the GPU in a single step for its limited memory. This 

requires partitioning of matrices and reducing the partitions individually. There are several approaches 
to partitioning the large size matrices and transferring them to the device for reduction. Column-
wise and row-wise partitioning of matrices albeit simple to implement will not scale well should the 
matrix size increase further. Individual columns and rows should in turn be split up to fit into the 

Figure 1. Implementation flowchart of the proposed parallel matrix inversion algorithm
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device memory and the algorithm has to be restructured to handle segments of rows and columns. 
To alleviate these problems, block approach is followed in which matrices are partitioned into blocks 
and parallel reduction is done for individual blocks. The original matrix of order fullsize𝛸fullsize is 
partitioned into several small sub-matrices of order sizeXsize. This will yield (fullsize/size) 𝛸  (fullsize/
size) unique sub-matrices (see Figure 2).

To befit the two-level hierarchy of threads prevailing in GPU architecture, each size𝛸size sub-
matrix is further sub-divided into several blocks of blocksize𝛸blocksize elements each. Thus a total 
of (size/blocksize)X(size/blocksize) blocks have to be processed to perform row-wise summation of 
a single sub-matrix. After splitting up the matrix into blocks, parallel reduction technique is applied 
to sum up the blocksize elements of each row. Eventually, sizeX(size/blocksize) would be the order of 
the matrix to be taken for the next level processing. During the next phase each row of (size/blocksize) 
elements is reduced individually to obtain a single column of size elements. The same procedure is 
repeated for every sizeXsize sub-matrix until all the (fullsize/size) 𝛸 (fullsize/size) sub-matrices are 
processed. At the end, a single fullsize𝛸 1  array is obtained from which the appropriate diagonal 
elements are subtracted and verified if the results are still lesser than the diagonal elements in each 
row or not. If true then the initial inverse matrix is computed as follows.

V0 = diag 1 1 1 1

11 22 33
a a a a

nn

, , , ,





……





where aii are the diagonal elements of A.	

This can be best illustrated by considering a matrix with fullsize = 16, size = 4 and blocksize 
= 2. Figures 3-7 show the first level partitioning of the original matrix into 4 sub-matrices of order 
4X4 and the second level partitioning of a single sub-matrix into 4 smaller blocks of order 2X2 and 
their parallel reduction.

2.1.2. Initial Inverse Construction
For a strictly diagonally dominant matrix, initial inverse V0 can be easily constructed as the non-
diagonal elements are zeroes. On the other hand, for a matrix A that is not strictly diagonally dominant 

initial inverse is calculated as V0=
A

A A

T

1
( )

∞

, where AT is the transpose of the original matrix A 

Figure 2. Reading the original matrix as sub-matrices
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Figure 3. Partitioning of original matrix into sub-matrices

Figure 4. Partitioning of sub-matrix into blocks and their reduction
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and ||A||1 and ||A||∞ being 1-Norm and Infinity Norms of the matrix A. As a result, initial inverse 
construction necessitates the computation of 1-Norm and Infinity-Norm and transpose of the matrix.
2.1.2.1. Norm Computation

1-Norm (||A||1) = max | |
1

1
≤ ≤

=
∑





)

j n
i

n

ij
a  gives the maximum of the sum of absolute values taken along each 

column. Infinity-Norm (||A||∞) = max | |
1

1
≤ ≤

=
∑





)

i n
j

n

ij
a  gives the maximum of the sum of absolute values 

taken along each row. Additional speed up can be achieved by parallelizing the norm computation. 
Both the norms involve summing up all values along a particular column or row. The idea is to adopt 
the same parallel reduction technique but this time with max operator. For 1-Norm and Infinity-Norm, 
1𝛸fullsize and fullsize𝛸1 arrays are obtained respectively which are in turn reduced to single scalar 
maximum each.
2.1.2.2. Optimization Techniques

Figure 5. Reduction of individual sub-matrices

Figure 6. Reduction of sub-matrices to form reduced matrix
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In addition to the optimization strategies recommended for parallel reduction in previous works 
(Lungu, Petrosanu & Pirjan, 2012; Martín, Ayuso, Torres & Gavilanes, 2012), two other optimization 
techniques have been implemented in our parallelization that greatly improves the device performance. 
The first of them being the allocation of host arrays directly in page-locked memory of the host using 
cudaMallocHost() to help for higher bandwidth between device and host. The advantage of using pinned 
memory is twofold. It also helps to overlap data transfer with computation on host which is the second 
major optimization technique followed in our approach (Harris, 2012). Data transfer and computation 
operations should occur in different, non-default streams in order for them to be overlapped. Hence 
it becomes mandatory to work with multiple streams instead of a single default stream. Creation of 
multiple streams is made possible with cudaStreamCreate() function and cudaStream_t structure 
variable. After the creation of multiple streams, the blocking or synchronous data transfer function 
cudaMemcpy() has been replaced with its asynchronous counterpart cudaMemcpyAsync(). While 
the second stream of data is being transferred, the kernel call being asynchronous can proceed with 
computation of data in the first stream. Also cudaStreamSynchronize(), a less severe method of 
synchronizing the host with a stream is used to synchronize the host code with operations in a stream.

Our implementation employs four streams to read a sizeXsize sub-matrix and copy it to GPU 
memory. Each stream comprises of (size/nstreams)size elements. Once the transfer of first stream 
of (size/nstreams)Xsize data is complete, transfer of second stream of (size/nstreams)𝛸size data and 
kernel execution with first stream of data are performed in tandem (see Figure 8).

Initially columns belonging to various blocks are reduced and their results stored in a (size/
blocksize)Xsize matrix that is further reduced to 1𝛸size 1-D array in the next level (Figure 9).

Figure 7. Matrix after reduction
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2.1.2.3. Transpose Computation
For transpose generation of a given matrix the task to be performed is to simply interchange the 
elements along rows and columns. However, performing this task for a reasonably large matrix requires 
considerable amount of time and hence transpose computation has also been parallelized. As done 
for matrix type identification and norm computation, the original matrix of order fullsize𝛸fullsize 
is partitioned into several small sub-matrices of order sizeXsize. This will yield (fullsize/size) 𝛸 
(fullsize/size) unique sub-matrices. Every sub-matrix is in turn partitioned into (size/blocksize) X 
(size/blocksize) blocks with blocksizeXblocksize elements in each block. Transpose of a single sub-
matrix is formed by interchanging the elements within the individual blocks followed by interchanging 
the blocks themselves along rows and columns. In a similar way, transpose is found for all the sub-
matrices. While writing these transposed sub-matrices back to the file, sub-matrices along the rows 
and columns should be interchanged and written.

Following a similar assumption made earlier with fullsize = 16, size = 4 and blocksize = 2, 
Figures 10 and 11 show the first level partitioning of the original matrix of fullsizeXfullsize into 4 
sub-matrices of order sizeXsize and the second level partitioning of a single sub-matrix into 4 smaller 
blocks of order blocksizeXblocksize respectively. Figure 10 also portrays the 4 individual transposed 
blocks and the interchange of the blocks along rows and columns. Figure 11 depicts the 4 transposed 
sub-matrices and the final matrix obtained by interchanging the sub-matrices along rows and columns. 
Figure 12 shows transposition of individual blocks and their interchange.

Figure 8. Overlapping data transfer and computation
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Now the initial inverse is computed as V0=
A

A A

T

1
( )

∞

 for which division of all the elements 

in the transpose by the product of 1-Norm and Infinity-Norm, is done in parallel.

2.1.3. Matrix Inversion
Out-of-core matrix inversion using matrix multiplication-based iterative method with seventh order 
of convergence forms the crux of our approach. With a higher rate of converge, matrix inverse can 
be evaluated with fewer iterations but still with high accuracy.

	
n = 0,1,2,…	

From the equation it is very obvious that the matrix inverse computation has been reduced to a 
series of matrix multiplication operations. In the very beginning, product of the original matrix and 
its initial inverse (AVn) should be computed. At every step this product should be multiplied with 
the intermediate matrix computed at that step. A total of 9 such multiplications are to be performed 
in the series.

Figure 9. Parallel reduction in multiple levels
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2.1.3.1. Block Matrix Multiplication Approach
Block partitioning technique followed in the previous stages is used here too and hence a block matrix 
multiplication approach is seemingly the right choice. Consider the size of the original matrix and the 
initial inverse matrix I_initial to be n𝛸n where n=2k. For large sizes, both the matrices are partitioned 
into several small blocks each of size k𝛸k. By this way of partitioning, matrices A  and I_initial can 
be represented as a combination of four smaller matrices as given below.

Figure 10. Partitioning of a sub-matrix into four blocks and its transpose computation

Figure 11. Interchange of transposed sub-matrices to form a complete transposed matrix
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Block-matrix multiplication approach is followed to evaluate the product of these two matrices as

Product C= 
C C

C C
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where every element Aij or Bij is itself a submatrix of size k𝛸k. Partitioning is continued till k  equals 
size. Multiplication of two matrices of order sizeXsize and multiplication of identity matrix by a 
constant are done in parallel. Same multiplication strategy is applied for the entire multiplication 
chain proposed in Soleymani’s method (see Figure 13).

Figure 12. Transpose of individual blocks and their interchange
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3. RESULTS AND DISCUSSION

3.1. Performance Evaluation of the Proposed Parallel Iterative Algorithm
Every subtask of the algorithm has been parallelized and designed to work for double-precision 
floating-point arithmetic. Performance of our approach has been tested for various matrix sizes in a 
GPU with 96 cores, having a global memory of 1024 MB and shared memory size of 49152 Bytes 
per block. Time taken for computing matrix norm and transpose have been recorded and shown in 
Table 1. Also for the same operation, time taken by CPU without offloading the workload to GPU 
has been measured and given in Table 1 that aids in evaluating the speed up achieved.

Figures 14 and 15 show the individual plot of tabulated values for matrix norm and matrix 
transpose, using logarithmic scale. In case of matrix norm computation, 5 to 6 times speedup has 
been achieved for a 100,000𝛸100,000 size matrix using a single device. Likewise matrix transpose 
computation has exhibited 4 to 5 times increase in the speed up.

3.2. Comparison with Existing CUDA Algorithm for Gauss Jordan Method
Girish Sharma et al. (2013) have developed a fast parallel Gauss Jordan algorithm for Matrix Inversion 
using CUDA. In their work, although they have proved that GPU based parallelization for matrix 
inversion is orders of magnitude faster than CPU based parallelization, they have failed to orchestrate 
a parallel algorithm that would process a matrix too large to be handled directly by the available 
device memory under consideration. Also the results shown pertain to single precision floating-point 

Figure 13. Block matrix multiplication
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arithmetic but in reality most of the scientific and engineering applications necessitate computations 
with much higher precision. Hence to establish a similar test environment for comparison with the 
proposed parallel algorithm, in our work CUDA implementation of Gauss Jordan method also has 
been done to work for double precision floating-point arithmetic and to support out-of-core matrix 
inversion.

3.2.1. CUDA Implementation of Gauss-Jordan Method
Generally, Gauss-Jordan method proceeds by first augmenting the original matrix with the identity 
matrix and then performing the following two transformations repeatedly for all rows.

•	 Ri ←Ri/aii
•	 ∀Rj where j ≠ i, Rj ←Rj - Ri X aji

Table 1. Sequential and Parallel Execution time for Matrix Norm and Matrix Transpose

Matrix Norm Matrix Size 512X 512 1024X 
1024

2048X 2048 4096X 
4096

8192X 8192 16384X16384 32768X 32768

Sequential 
(msec)

5 20 80 296 1237 4885 28959

Parallel﻿
(msec)

4.12 15.23 51.20 197.77 782.51 3134.96 12762

Matrix 
Transpose

Matrix Size 512X 512 1024X 
1024

2048X 2048 4096X 
4096

8192X 8192 16384X16384 32768X 32768

Sequential 
(msec)

5 23 92 373 1542 5907 25304

Parallel﻿
(msec)

0.98 4.86 19.22 77.26 308.23 1231.51 5229.78

Figure 14. Execution Time - Matrix Norm
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The existing work has parallelized both the transformations individually but only for the matrix 
size supported by the GPU architecture considered for the study. But our implementation handles 
out-of-core computation of matrix inverse (Figure 16).

Our proposed approach first identifies the row with a row-number equal to iteration count, i; 
divides the active row of the actual sub-matrix and the augmented matrix by the diagonal element of 
the active row; processes the other rows in such a way that elements along the same column as that 
of the diagonal element reduce to zero; retains the augmented matrix and sends the modified sub-
matrix back to the CPU for all iterations except the last; sends the augmented sub-matrix in the last 
iteration. The code is executed for all the sub-matrices of the original matrix (Figure 17).

The proposed parallel iterative algorithm and parallel Gauss-Jordan algorithm have been 
implemented to perform double-precision floating-point arithmetic and tested using the same GPU 
platform. Execution times of the two methods for matrices of sizes 512X512 and 1024X1024 have 
been tabulated in Table 2. Execution time of the proposed parallel iterative algorithm includes the 
time needed for computation of norm, transpose and then the inverse. It is observed from Figure 18 
that the proposed parallel algorithm requires approximately only half of the time needed for executing 
parallel Gauss-Jordan algorithm.

CONCLUSION

The embarrassingly parallel nature of the algorithm naturally fits the Throughput-oriented architecture 
of GPUs. Experimental results have shown 5X speedup of the sub-tasks for matrices of order 105X105 
by employing GPUs. Thus, the entire process of matrix inversion is accelerated manifold without any 
setback in the accuracy of the results. To facilitate the comparison of our parallel iterative approach 
with a direct method of matrix inversion in a similar test environment, Gauss-Jordan algorithm has 
been parallelized too. Comparative study has shown that the proposed parallel iterative algorithm 
is twice as fast as the parallel Gauss-Jordan algorithm for out-of-core matrix inversion and this 
acceleration is attributed to the division-free design of the algorithm.

Figure 15. Execution Time - Matrix Transpose
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Every subtask of the algorithm has been parallelized in a way that works by splitting up huge 
matrices into several smaller blocks/tiles that can be supported by a specific GPU and iterating the 
kernel for all these blocks. This serves to alleviate to a great extent, the restriction posed by the 
limited device memory size, over the size of the matrices that can be handled. Multiple devices can 
be employed to enhance the performance further. As the algorithm has been designed to be highly 
scalable, with minimal efforts it can be ported to multiple GPU architecture in which case the algorithm 
with its embarrassingly parallel nature will be a boon for the big data climate research community.

Figure 16. Reading of input and storage of intermediate results being altered between two files
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Figure 17. Processing of actual sub-matrix and augmented matrix
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Table 2. Execution Time of Parallel Gauss-Jordan Vs Parallel Iterative Algorithm

Matrix Size 512X512 1024X1024

Parallel Gauss-Jordan Algorithm (In msec) 1432.14 10101.23

Proposed Parallel Iterative Algorithm﻿
[norm + transpose + inverse]﻿
(In msec)

719.99 5849.57

Figure 18. Parallel Gauss-Jordan Vs Parallel Iterative algorithm
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