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1. Introduction  

The processors in the parallel computer systems are connected in a specific way on the basis of interconnection 

networks. Mathematically, the interconnection network’s structure can be shown as a graph, in which the vertices 

represent processors and the edges represent the communication links between the processors in the network. The 

topology of the interconnection network decides how the processors are connected to one another, in other words, 

how the edges connect the vertices of the graph.  The capacity in efficiently simulating the programs written for 

other architectures is also an important feature of an interconnection network. For simulating different 

interconnection networks, Graph Embedding is used. Thus embedding of graphs from one network into another 

network is mostly prevalent in the field of interconnection parallel architectures. In general, these problems are NP-

complete [1]. This makes the study of wirelength problems in graph embeddings a challenging problem. Inspite of 
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Abstract 

Graph embedding is an important technique used in studying the problem of efficiently implementing parallel algorithms on 

parallel computers. Wirelength is an embedding parameter widely studied in data structures and data representations, electrical 

networks, VLSI network and chemical graphs. This parameter had been studied for embedding complete bipartite graphs into 

complete necklace, star necklace and windmill graphs.  
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the fact that there are many discussions and results on the wirelength problem, many deal with only approximate 

results. In this paper, we find the wirelength of embedding complete bipartite graphs into necklace graphs. 

2. Basic Concepts  

   The basic definitions and preliminaries that are required for the subsequent study are provided in this section. 

 

Definition 2.1  [2] Let 𝐺𝐺 and 𝐻𝐻 be graphs of finite order. An embedding  𝑓𝑓: 𝐺𝐺 → 𝐻𝐻  is defined as follows: 

   

    1.  𝑓𝑓 is a injective map from 𝑉𝑉(𝐺𝐺) → 𝑉𝑉(𝐻𝐻)   

    2.  𝑓𝑓 is an injective map from 𝐸𝐸(𝐺𝐺) to {𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣): 𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣) is a path in 𝐻𝐻 between 𝑓𝑓(𝑢𝑢) and 𝑓𝑓(𝑣𝑣) for (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸(𝐺𝐺)}.     
                      

Definition 2.2  [2]   The edge congestion of an embedding  𝑓𝑓: 𝐺𝐺 → 𝐻𝐻   is the maximum number of edges of the 

graph 𝐺𝐺 that are embedded on any single edge of  𝐻𝐻. Let 𝐶𝐶𝑓𝑓(𝐺𝐺, 𝐻𝐻(𝑒𝑒)) denote the number of edges (𝑢𝑢, 𝑣𝑣) of 𝐺𝐺 such 

that 𝑒𝑒 is in the path 𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣)between 𝑓𝑓(𝑢𝑢) and  𝑓𝑓(𝑣𝑣) in 𝐻𝐻. In other words,  𝐶𝐶𝑓𝑓(𝐺𝐺, 𝐻𝐻(𝑒𝑒)) = |{(𝑢𝑢, 𝑣𝑣) 𝜖𝜖 𝐸𝐸(𝐺𝐺): 𝑒𝑒 𝜖𝜖 𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣)}| 
where 𝑃𝑃𝑓𝑓(𝑢𝑢, 𝑣𝑣) denotes the path between 𝑓𝑓(𝑢𝑢) and 𝑓𝑓(𝑣𝑣) in 𝐻𝐻 with respect to 𝑓𝑓. 

 

Definition 2.3  [3] The wirelength of an embedding 𝑓𝑓 of 𝐺𝐺 into 𝐻𝐻 is given by  

 𝑊𝑊𝑊𝑊𝑓𝑓(𝐺𝐺, 𝐻𝐻) = ∑ 𝑎𝑎𝐻𝐻(𝑓𝑓(𝑢𝑢), 𝑓𝑓(𝑣𝑣)) =(𝑢𝑢,𝑣𝑣)𝜖𝜖𝜖𝜖(𝐺𝐺) ∑ 𝐶𝐶𝑓𝑓(𝐺𝐺, 𝐻𝐻(𝑒𝑒))𝑒𝑒𝜖𝜖𝜖𝜖(𝐻𝐻)  

where ))(),(( vfufdH  denotes the length of the path ),( vuPf  in H . Then, the wirelength of G  into H  is 

defined as  𝑊𝑊𝑊𝑊(𝐺𝐺, 𝐻𝐻) = min 𝑊𝑊𝑊𝑊𝑓𝑓(𝐺𝐺, 𝐻𝐻) 

where the minimum is taken over all embeddings 𝑓𝑓 of 𝐺𝐺 into 𝐻𝐻.  

 

The wirelength problem [2, 3] of a graph 𝐺𝐺 into 𝐻𝐻 is to find an embedding of 𝐺𝐺 into 𝐻𝐻 that induces the 

minimum wirelength 𝑊𝑊𝑊𝑊(𝐺𝐺, 𝐻𝐻).   
 

Definition 2.4  [3] Let G be a graph and ( ).A V G  Denote 

( ) {( , ) ( ) / , },GI A u v E G u v A=  
( ),

( ) max ( ) .G G
A V G A m

I m I A
 =

=  

 

For a given m, where m = 1, 2, … , n, we consider the problem of finding a subset A of vertices of  G such 

that |A|=m. Such subset is called optimal [4, 5]. The problem of finding ( )GI A is called maximum subgraph problem 

[6]. 

 

Lemma 2.5  (Congestion Lemma)  [3]  Let 𝐺𝐺 be an 𝑟𝑟-regular graph and  𝑓𝑓: 𝐺𝐺 → 𝐻𝐻 𝑏𝑏𝑒𝑒 𝑎𝑎𝑎𝑎 𝑒𝑒𝑚𝑚𝑏𝑏𝑒𝑒𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑒𝑒. Let 𝑆𝑆 be an 

edge cut of 𝐻𝐻 such that the removal of edges of  𝑆𝑆  leaves  𝐻𝐻  into 2 components 𝐻𝐻1 and  𝐻𝐻2 and let 𝐺𝐺1 = 𝑓𝑓−1(𝐻𝐻1) 

and 𝐺𝐺2 = 𝑓𝑓−1(𝐻𝐻2). Also 𝑆𝑆 satisfies the following conditions:  

   

1. For every edge (𝑎𝑎, 𝑏𝑏) ∈ 𝐺𝐺𝑖𝑖 , 𝑖𝑖 = 1, 2, 𝑃𝑃𝑓𝑓(𝑎𝑎, 𝑏𝑏)has no edges in 𝑆𝑆. 
2. For every edge (𝑎𝑎, 𝑏𝑏) in 𝐺𝐺 with 𝑎𝑎 ∈ 𝐺𝐺1 and b∈ 𝐺𝐺2 , 𝑃𝑃𝑓𝑓(𝑎𝑎, 𝑏𝑏) has exactly one edge in 𝑆𝑆.  

3. 𝐺𝐺1 is an optimal set.  

 

Then 𝐸𝐸𝐶𝐶𝑓𝑓(𝑆𝑆) is minimum and 𝐸𝐸𝐶𝐶𝑓𝑓(𝑆𝑆) = 𝑟𝑟|𝑉𝑉(𝐺𝐺1)| − 2|𝐸𝐸(𝐺𝐺1)|. 
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Lemma 2.6  (k-Partition Lemma)  [3]  Let 𝑓𝑓: 𝐺𝐺 → 𝐻𝐻 be an embedding. Let |𝑘𝑘𝐸𝐸(𝐻𝐻)| denote the collection of edges of 

H repeated exactly k times, k≥ 1. Let {𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑝𝑝}  be a partition of  |𝑘𝑘𝐸𝐸(𝐻𝐻)| such that each 𝑆𝑆𝑖𝑖 is an edge cut of 𝐻𝐻. 

Then 𝑊𝑊𝑊𝑊𝑓𝑓(𝐺𝐺, 𝐻𝐻) =  1𝑘𝑘 ∑ 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖)𝑝𝑝𝑖𝑖=1 . 
 

Definition 2.7  [7] A complete bipartite graph is a graph whose vertex-set is partitioned into two subsets A and B, 

so that each vertex of A is joined to all vertices of B and vice-versa. Moreover, each edge must have one end vertex 

in A and another in B. It is denoted by Kt,s, where |A| = t and |B| = s. 

 

Lemma 2.8. [8] The maximum subgraph of Kt,s on r vertices is given by 
,

2 2

r r
K    

      

. 

3. Complete bipartite graph into complete necklace graph 

The exact wirelength of embedding complete bipartite graph into necklace graph is evaluated in this section.  

 

Definition 3.1. Let Km be a complete graphs on m vertices v1, v2, . . . , vm and 
it

K  denote the complete graphs on ti 

vertices, ti  even, 1 ≤ i ≤ m such that t1 + t2 + . . . + tm = 2n. Let *
im tK K denote the graph obtained from Km and 

it
K

by identifying any one vertex of
it

K  with vi, 1 ≤ i ≤ m. The resultant graph
1

*
i

m

m t

i

K K
=

 
 
 

is   a complete necklace 

denoted by 
1 2

( ; , ,... )
mm t t tCN K K K K . See Fig 1. For brevity, the complete necklace 

1 2
( ; , ,... )

mm t t tCN K K K K will be 

represented by CN(Km, K).  
 

 

Embedding Algorithm 

 

Input : The complete bipartite graph, 1 12 ,2n nK − −  and a complete necklace H = CN(Km, K). 

 

Algorithm : The hamiltonian cycle 𝐻𝐻𝐶𝐶2𝑛𝑛   in 1 12 ,2n nK − − are  labeled consecutively  in the clockwise sense from 1 to 2n. 

Let  ∑ 𝑡𝑡𝑗𝑗𝑝𝑝𝑗𝑗=0 = 𝑘𝑘𝑝𝑝, 0≤ 𝑝𝑝 ≤ 𝑚𝑚, where 𝑡𝑡0 = 0. The vertices of 
it

K in H are labeled as  kl−1 + r, r = 0, 1, 2, ..., ti −1 such 

that kl−1 is the label of vi, 1 ≤ i  ≤m.  

 

Output : An embedding f  : 1 12 ,2n nK − −  → H yields  a minimum wirelength for xxf =)( -1. 

 

Proof of correctness : The labels refer to the vertices which have been assigned.  Assume 

{( 1, 1) /1 , },i i rS k k r m i r= − −    1 1{( , ) /1 1, }j

i i r iS k j k p p t j p− −= + +   −   and ' {( 1, 1 ) /1i i rS k k r r= − − −   

1}it − for 1 ≤ i ≤ 𝑚𝑚. See Fig.1.  Now { , '} { : 0 2},1j

i i i iS S S j t i m   −   partitions |2𝐻𝐻|. Clearly for every i, 𝐻𝐻𝑖𝑖1  and 𝐻𝐻𝑖𝑖2 are the two components of 𝐸𝐸(𝐻𝐻)\𝑆𝑆𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, where 𝑉𝑉(𝐻𝐻𝑖𝑖1) = {𝑠𝑠𝑖𝑖−1, 𝑠𝑠𝑖𝑖−1 + 1, … , 𝑠𝑠𝑖𝑖−1}. Let 𝐺𝐺𝑖𝑖1 =𝑓𝑓−1(𝐻𝐻𝑖𝑖1)  and 𝐺𝐺𝑖𝑖2 = 𝑓𝑓−1(𝐻𝐻𝑖𝑖2).  It is clear that 𝐺𝐺𝑖𝑖1  is an optimal set by Lemma 2.8.  Moreover, the conditions (𝑖𝑖), (𝑖𝑖𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖𝑖𝑖) of the Lemma 2.5 are satisfied by each 𝑆𝑆𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚. Hence 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖) is minimum.  

 

          For every i, 𝐻𝐻𝑖𝑖1′  and 𝐻𝐻𝑖𝑖2′  are the two components of 𝐸𝐸(𝐻𝐻)\𝑆𝑆′𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, where V (𝐻𝐻𝑖𝑖1′ )=  {𝑘𝑘𝑖𝑖−1, 𝑘𝑘𝑖𝑖−1 +1, … , 𝑘𝑘𝑖𝑖−1 + 𝑡𝑡𝑖𝑖 − 2}. Let 𝐺𝐺𝑖𝑖1′  = 𝑓𝑓−1(𝐻𝐻𝑖𝑖1′ ) and  𝐺𝐺𝑖𝑖2′  = 𝑓𝑓−1(𝐻𝐻𝑖𝑖2′ ). It is clear that 𝐺𝐺𝑖𝑖1′  is an optimal set by Lemma 2.8.  

Moreover, the conditions (𝑖𝑖), (𝑖𝑖𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖𝑖𝑖) of the Lemma 2.5 are satisfied by each 𝑆𝑆′𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚. Hence 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖′) is 
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minimum. 

 

        For every i, j,  𝐻𝐻𝑖𝑖1𝑗𝑗  and 𝐻𝐻𝑖𝑖2𝑗𝑗  are the two components of 𝐸𝐸(𝐻𝐻)\𝑆𝑆𝑖𝑖𝑗𝑗, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚  and 0 ≤  j ≤  𝑡𝑡𝑖𝑖−2  where V 

(𝐻𝐻𝑖𝑖1𝑗𝑗 )= {𝑠𝑠𝑖𝑖−1 + 𝑗𝑗}. Let 𝐺𝐺𝑖𝑖1𝑗𝑗  = 𝑓𝑓−1(𝐻𝐻𝑖𝑖1𝑗𝑗 ) and 𝐺𝐺𝑖𝑖2𝑗𝑗  = 𝑓𝑓−1(𝐻𝐻𝑖𝑖2𝑗𝑗 ). It is clear that 𝐺𝐺𝑖𝑖1𝑗𝑗  is an optimal set by Lemma 2.8. 

Moreover, the conditions (𝑖𝑖), (𝑖𝑖𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖𝑖𝑖𝑖𝑖) of the Lemma 2.5 are satisfied by each 𝑆𝑆𝑖𝑖𝑗𝑗,   1 ≤ 𝑖𝑖 ≤ 𝑚𝑚 and 0 ≤ j ≤ 𝑡𝑡𝑖𝑖−2.  Hence 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖𝑗𝑗) is minimum. Therefore the wirelength is minimum by the Lemma 2.6. 

 
 

Fig. 1.  Edge cut of CN(𝐾𝐾𝑚𝑚, 𝐾𝐾) 

 

 

 

Theorem 3.2. The wirelength of embedding complete bipartite graph 𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1   into complete necklace 

CN(𝐾𝐾𝑚𝑚, 𝐾𝐾) is given by 

      WL(𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1 , CN(𝐾𝐾𝑚𝑚, 𝐾𝐾))  = 12 (∑ (2𝑛𝑛−1𝑡𝑡𝑖𝑖 − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖=1 )) + 12 (∑ (2𝑛𝑛−1(𝑡𝑡𝑖𝑖 − 1)) − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖−)𝑚𝑚𝑖𝑖=1 )+2𝑛𝑛−2(𝑆𝑆𝑚𝑚 − 𝑚𝑚). 

 

Proof:  By congestion lemma, 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖)  =2𝑛𝑛−1𝑡𝑡𝑖𝑖 − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖), for i = 1, 2, ..., m. 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖′) =2𝑛𝑛−1(𝑡𝑡𝑖𝑖 − 1) − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖 − 1) for i= 1, 2, …, m and 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖𝑗𝑗) = 2𝑛𝑛−1(𝑆𝑆𝑚𝑚 − 𝑚𝑚), for i = 1, 2, …, m and  j =0, 1, 

2,…, 𝑡𝑡𝑖𝑖 − 2. 

 

WL(𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1 , CN(𝐾𝐾𝑚𝑚, 𝐾𝐾))  =  12 (∑  𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖) +𝑚𝑚𝑖𝑖=1 ∑ 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖′) 𝑚𝑚𝑖𝑖=1 ) +  12 (∑ ∑ 𝐶𝐶𝑓𝑓(𝑆𝑆𝑖𝑖𝑗𝑗))𝑡𝑡𝑖𝑖−2𝑗𝑗=0𝑚𝑚𝑖𝑖=1  

                                  = 12 (∑ (2𝑛𝑛−1𝑡𝑡𝑖𝑖 − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖=1 )) + 12 (∑ (2𝑛𝑛−1(𝑡𝑡𝑖𝑖 − 1)) − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖 − 1)𝑚𝑚𝑖𝑖=1 )+2𝑛𝑛−2(𝑆𝑆𝑚𝑚 − 𝑚𝑚). 
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4. More Results 

Definition 4.1. Let 𝐾𝐾1,𝑚𝑚be a star graphs on m+1 vertices 𝑣𝑣0 v1, v2, . . . , vm and 𝐾𝐾𝑡𝑡𝑖𝑖 denote the complete graphs on ti 

vertices, ti  even, i=1,2,…m-1. Let 𝐾𝐾1,𝑚𝑚 ∗ 𝐾𝐾𝑡𝑡𝑖𝑖  denote the graph obtained from 𝐾𝐾1,𝑚𝑚 and 𝐾𝐾𝑡𝑡𝑖𝑖  by identifying any one 

vertex of
it

K  with i=1,2,…m-1 The resultant graph 𝐾𝐾1,𝑚𝑚 ∗ (⋃ 𝐾𝐾𝑡𝑡𝑖𝑖)𝑚𝑚𝑖𝑖=1  is a star necklace denoted by 𝑆𝑆𝑆𝑆(𝐾𝐾1,𝑚𝑚: 𝐾𝐾𝑡𝑡1 , 𝐾𝐾𝑡𝑡2 , … . 𝐾𝐾𝑡𝑡𝑚𝑚).  
 

Theorem 4.2. The wirelength of embedding complete bipartite graph 𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1   into star necklace 𝑆𝑆𝑆𝑆(𝐾𝐾1,𝑚𝑚: 𝐾𝐾𝑡𝑡1 , 𝐾𝐾𝑡𝑡2 , … . 𝐾𝐾𝑡𝑡𝑚𝑚)  is given by 

         WL(𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1 , 𝑆𝑆𝑆𝑆(𝐾𝐾1,𝑚𝑚: 𝐾𝐾𝑡𝑡1 , 𝐾𝐾𝑡𝑡2 , … . 𝐾𝐾𝑡𝑡𝑚𝑚))  = 12 (∑ (2𝑛𝑛−1𝑡𝑡𝑖𝑖 − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖)𝑚𝑚𝑖𝑖=1 )                                                                                                 + ∑ (2𝑛𝑛−1(𝑡𝑡𝑖𝑖 − 1) − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖 − 1)))𝑚𝑚𝑖𝑖=1   +2𝑛𝑛−2(𝑆𝑆𝑚𝑚 − 𝑚𝑚 − 1). 

 

Definition 4.3. Let 𝐾𝐾𝑡𝑡𝑖𝑖be a complete graphs on ti vertices and ti,even for i=2,3,…,m-1. If one vertex from each 𝐾𝐾𝑡𝑡𝑖𝑖 is 
merged to a single vertex 𝑣𝑣1  then the resultant graph ⋃ 𝐾𝐾𝑡𝑡𝑖𝑖𝑚𝑚𝑖𝑖=1  is a windmill graph incident with a common vertex 𝑣𝑣1 denoted by 𝑊𝑊𝑊𝑊(𝐾𝐾𝑡𝑡1 , 𝐾𝐾𝑡𝑡2 , … , 𝐾𝐾𝑡𝑡𝑚𝑚). 
 

Theorem 4.4. The wirelength of embedding complete bipartite graph 𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1   into wind mill graph 𝑊𝑊𝑊𝑊(𝐾𝐾𝑡𝑡1 , 𝐾𝐾𝑡𝑡2 , … , 𝐾𝐾𝑡𝑡𝑚𝑚) is given by 

                WL(𝐾𝐾2𝑛𝑛−1,2𝑛𝑛−1 , 𝑊𝑊𝑊𝑊(𝐾𝐾𝑡𝑡1 , 𝐾𝐾𝑡𝑡2 , … , 𝐾𝐾𝑡𝑡𝑚𝑚))  = 12 (∑ (2𝑛𝑛−1𝑡𝑡𝑖𝑖 − 2𝐼𝐼𝐺𝐺(𝑡𝑡𝑖𝑖)𝑚𝑚𝑖𝑖=2 )) + 2𝑛𝑛−2(𝑆𝑆𝑚𝑚 − 1). 

 

5. Concluding Remarks 

       In this paper, we have embed complete bipartite graphs into graphs like complete necklace, star necklace and 

windmill graphs to obtain exact wirelength. 
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