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a b s t r a c t

The hypercube network is one of the most popular interconnection networks since
it has simple structure and is easy to implement. The folded hypercube is an
important variation of the hypercube. Interconnection networks play a major role in
the performance of distributed memory multiprocessors and the one primary concern
for choosing an appropriate interconnection network is the graph embedding ability.
A graph embedding of a guest graph G into a host graph H is an injective map on
the vertices such that each edge of G is mapped into a path of H. The wirelength of
this embedding is defined to be the sum of the lengths of the paths corresponding
to the edges of G. In this paper we embed hypercube and folded hypercube onto
Cartesian product of trees such as 1-rooted complete binary tree and path, sibling
tree and path to minimize the wirelength.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of efficiently implementing parallel algorithms on parallel computers has been studied as
a graph embedding problem. The computational structure of a parallel algorithm A is represented by a
graph GA and the interconnection network of a parallel computer N is represented by a graph HN . An
embedding of GA into HN describes the working of the parallel algorithm A when implemented on N [1].
Such a simulation problem can be mathematically formulated as follows: Given a guest graph G and a host
graph H. An embedding of G into H is an ordered pair ≺ f, Pf ≻, where f is an injective map from V (G) to
V (H) and Pf is also an injective map from E(G) to {P (f(u), f(v)) : P (f(u), f(v)) is a path in H between
f(u) and f(v) for (u, v) ∈ E(G)} [2–5]. See Fig. 1. An edge congestion of an embedding ≺ f, Pf ≻ of G
into H is the maximum number of edges of the graph G that are embedded on any single edge of H. Let
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Fig. 1. Embedding the wiring of a ladder into the 1-rooted complete binary tree with f(x) = x and Pf (0, 1) = (0, 1), Pf (0, 2) =
(0, 1, 2), Pf (1, 3) = (1, 3), Pf (1, 5) = (1, 3, 5), Pf (2, 3) = (2, 1, 3), Pf (3, 7) = (3, 7), Pf (4, 5) = (4, 5), Pf (4, 6) =
(4, 5, 6), Pf (5, 7) = (5, 3, 7), Pf (6, 7) = (6, 5, 3, 7).

EC≺f,Pf≻(e) denote the number of edges (u, v) of G such that the path P (f(u), f(v)) contains the edge e
in H [6]. In other words, EC≺f,Pf≻(e) = |{(u, v) ∈ E(G) : e ∈ P (f(u), f(v))}|.

The performance of an embedding can be measured by dilation, expansion and edge congestion sum
(wirelength). The dilation of an embedding ≺ f, Pf ≻ is defined as dil≺f,Pf≻(G,H) = max{|P (f(u), f(v))| :
(u, v) ∈ E(G)}. The smaller the dilation of an embedding is, the shorter the communication delay that the
graph H simulates the graph G. The expansion of an embedding ≺ f, Pf ≻ is defined as Exp≺f,Pf≻(G,H) =
|V (H)| / |V (G)|. Expansion measures the processor utilization. The smaller the expansion of an embedding
is, the more efficient the processor utilization that the graph H simulates the graph G [7].

Combinatorial isoperimetric problems arise frequently in communications engineering, computer science,
physical sciences and mathematics. Layout problems arise in electrical engineering when one takes the wiring
diagram for some electrical circuit and lay it out on a chassis. A wiring diagram is essentially a graph, the
electrical components being the vertices and the wires connecting them being the edges [8]. See Fig. 1.

The wirelength [6,8] of an embedding ≺ f, Pf ≻ of G into H is given by

WL≺f,Pf≻(G,H) =


(u,v)∈E(G)

|P (f(u), f(v))| =

e∈E(H)

EC≺f,Pf≻(e).

The minimum wirelength of G into H is defined as WL(G,H) = minWL≺f,Pf≻(G,H) where the
minimum is taken over all embeddings f and Pf of G into H.

Embedding problems have been considered for binary trees into hypercubes [9–16], binomial trees into
hypercubes [17,18], generalized ladders into hypercubes [19,20], hypercubes into cycles [21,22], hypercubes
into grids [6,23,24], hypercubes into cylinders, snakes and caterpillars [25], hypercubes into certain trees [26],
m-sequential k-ary trees into hypercubes [27], folded hypercubes into grids [28] and complete binary trees
into folded hypercubes [1].

Among the interconnection networks of parallel computers, the binary hypercube has received much
attention. An important property of the hypercube which makes it popular, is its ability to efficiently
simulate the message routings of other interconnection networks and hence becomes the first choice of
topological structure of parallel processing and computing systems. The machine based on hypercubes such
as the Cosmic Cube from Caltech, the iPSC/2 from Intel and Connection Machines have been implemented
commercially [1]. For n ≥ 1, let Qn denote the n-dimensional hypercube. The vertex set of Qn is formed
by the collection of all n-string binary representations. Two vertices x, y ∈ V (Qn) are adjacent if and only
if the corresponding binary representations differ exactly in one bit [5]. Equivalently if |V (Qn)| = 2n then
the vertices of Qn can also be identified with integers 0, 1, . . . , 2n − 1 so that if a pair of vertices i and j are
adjacent then i− j = ±2p for some p ≥ 0. An incomplete hypercube on i vertices of Qn is the graph induced
by {0, 1, . . . , i− 1} and is denoted by Li, 1 ≤ i ≤ 2n [29]. See Fig. 2.
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Fig. 2. The 3-dimensional hypercube with vertices labeled (a) binary and (b) decimal.

Fig. 3. The 3-dimensional folded hypercube with dotted lines represent complementary edges.

For two vertices x = x1x2 . . . xn and y = y1y2 . . . yn, (x, y) is a complementary edge if and only if
the bits of x and y are complements of each other, that is, yi = xi for each i = 1, 2, . . . , n. The n-
dimensional folded hypercube, denoted by FQn, is an undirected graph obtained from Qn by adding all
complementary edges [5]. It is easy to see that any n-dimensional folded hypercube FQn can be viewed
as G(0Qn−1, 1Qn−1;C ∪ C) where 0Qn−1 and 1Qn−1 are two (n − 1)-dimensional hypercubes with the
prefix 0 and 1 of each vertex, respectively, and C = {(0u, 1u) : 0u ∈ V (0Qn−1) and 1u ∈ V (1Qn−1)}, C =
{(0u, 1u) : 0u ∈ V (0Qn−1) and 1u ∈ V (1Qn−1)} [30]. See Fig. 3.

A tree is a connected graph that contains no cycles. Trees are the most fundamental graph-theoretic models
used in many fields: information theory, automatics classification, data structure and analysis, artificial
intelligence, design of algorithms, operation research, combinatorial optimization, theory of electrical
networks, and design of network [5]. The most common type of tree is the binary tree.

The importance of the hypercubes and folded hypercubes in the topic of interconnection networks and
the importance of trees in the topic of data structures, motivated the authors to study the embedding
of hypercubes and folded hypercubes into Cartesian product of certain trees. The rest of this paper is
organized as follows. In the next section, some background of the edge isoperimetric problem and a technique
to compute the minimum wirelength are given. Section 3 gives the minimum wirelength of embedding
hypercubes and folded hypercubes into Cartesian product of 1-rooted complete binary tree and path in
linear time. In Section 4, the result of Section 3 is extended to Cartesian product of sibling tree and path.
The last section concludes the whole paper.

2. Background and technique

One of the first needs of edge isoperimetric problems was discovered by Harper [31]. Suppose we have to
send the numbers 0, 1, . . . , 2n − 1 through a binary channel and we have to assign the numbers to vertices
of the hypercube Qn. For example, we may assume that these numbers were taken from the output of an
analog to digital converter. It is assumed that only single errors are likely in a transmitted word and each
of the n positions may be disturbed with probability p. If the n-tuple assigned to i was transmitted and
the n-tuple assigned to j was received, then |i− j| is the absolute value of the error. The goal is to find
an assignment so that the average absolute error in transmission is minimized under the condition that the
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choice of the 2n numbers is equally probable. Thus one comes to the problem of constructing a bijective
mapping ϕ : V (Qn)→ {0, 1, . . . , 2n−1} so that the sum


(u,v)∈E(Qn) |ϕ(u)− ϕ(v)| is minimized. Such type

of problems can be formulated for an arbitrary connected graph G and the sum above may be referred to
the total wirelength in a linear layout of the graph G.

The following two versions of the edge isoperimetric problems (NP -complete) of a graph G(V,E) have
been considered in the literature [32,33].
Version 1 (Minimum cut problem): Find a subset of vertices of a given graph, such that the edge
cut separating this subset from its complement has minimal size among all subsets of the same cardinality.
Mathematically, for a givenm, if θG(m) = minA⊆V,|A|=m |θG(A)| where θG(A) = {(u, v) ∈ E : u ∈ A, v ̸∈ A},
then the problem is to find A ⊆ V such that θG(m) = |θG(A)|.

It is interesting to note that θG(⌊|V | /2⌋) yields bisection width of G [33].
Version 2 (Induced edge problem): Find a subset of vertices of a given graph, such that the number of
edges in the subgraph induced by this subset is maximal among all induced subgraphs with the same number
of vertices. Mathematically, for a given m, if IG(m) = maxA⊆V,|A|=m |IG(A)| where IG(A) = {(u, v) ∈ E :
u, v ∈ A}, then the problem is to find A ⊆ V such that IG(m) = |IG(A)|.

We call such a set A optimal. Clearly, if a subset of vertices is optimal with respect to Version 1, then its
complement is also an optimal set. However, it is not true for Version 2 in general, although this is indeed
the case if the graph is regular [32].

Theorem 1 ([8,31,34,35]). For 1 ≤ i ≤ 2n, Li = {0, 1, . . . , i− 1} is an optimal set in the hypercube Qn.

Theorem 2 ([28]). For 1 ≤ i ≤ 2n, Li = {0, 1, . . . , i− 1} is an optimal set in the folded hypercube FQn.

Lemma 1 ([6,28,36]). Let m = 2t1 + 2t2 + · · ·+ 2tl be such that n ≥ t1 > t2 > · · · > tl ≥ 0. Then

(a) |E(Qn[Lm])| = [t1 · 2t1−1 + t2 · 2t2−1 + · · ·+ tl · 2tl−1] + [2t2 + 2 · 2t3 + · · ·+ (l − 1)2tl ]

(b) |E(FQn[Lm])| =

|E(Qn[Lm])| if m ≤ 2n−1

|E(Qn[Lm])|+m− 2n−1 if m > 2n−1.

Let Ek(G) denote a collection of edges of a graph G with each edge in G repeated exactly k times. This
type of partitioning the edges of a graph is called generalized edge partition. The following lemma provides
the general method of partitioning the edges of a graph and how this method can be effectively used to solve
the wirelength problem [6,37,38].

Lemma 2 (k-Partition Wirelength Lemma). Let ≺ f, Pf ≻ be an embedding of an r-regular graph G into
a graph H. Let {S1, S2, . . . , Sm} be a partition of Ek(H) such that each Si is an edge cut of H. For
1 ≤ i ≤ m, the removal of edges of Si splits H into 2 components Hi1 and Hi2 and let Gi1 = G[f−1(Hi1)]
and Gi2 = G[f−1(Hi2)], where each Si satisfies the following conditions.

(i) For every edge (a, b) ∈ Gij , j = 1, 2, P (f(a), f(b)) has no edges in Si.
(ii) For every edge (a, b) in G with a ∈ Gi1 and b ∈ Gi2, P (f(a), f(b)) has exactly one edge in Si.
(iii) Either Gi1 or Gi2 is an optimal set.

Then EC≺f,Pf≻(Si) is minimum where

EC≺f,Pf≻(Si) =

e∈Si

EC≺f,Pf≻(e) = r |V (Gi1)| − 2 |E(Gi1)| = r |V (Gi2)| − 2 |E(Gi2)|
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and

WL(G,H) = 1
k

m
i=1
EC≺f,Pf≻(Si).

3. Embedding hypercubes and folded hypercubes into Cartesian product of 1-rooted complete binary trees
and paths

In this section we embed hypercubes and folded hypercubes into Cartesian product of 1-rooted complete
binary trees and paths to minimize the wirelength.

Let T be a rooted tree. Suppose that vertex u of T adjacent to v lies in the level below v, we say that u
is a child of v and v is the parent of u. Suppose that there is a path from v to w in T such that w lies below
v, we say that w is a descendant of v and v is an ancestor of w. A vertex with no children is called a leaf.
All other vertices are called internal vertices. A binary tree is a rooted tree in which each vertex has at most
two children and each child is designated as its left child or right child. Binary trees are widely used in data
structures because they are easily stored, easily manipulated, and easily retrieved. Also, many operations
such as searching and storing can be easily performed on tree data structures. Furthermore, binary trees
appear in communication pattern of divide-and-conquer type algorithms, functional and logic programming,
and graph algorithms [5].

For any non-negative integer n, the complete binary tree of height n, denoted by Tn, is the binary tree
where each internal vertex has exactly two children and all the leaves are at the same level. Clearly, a
complete binary tree Tn has n levels and level i, 1 ≤ i ≤ n, contains 2i−1 vertices. Thus Tn has exactly
2n − 1 vertices. The 1-rooted complete binary tree BTn is obtained from a complete binary tree Tn by
attaching to its root a pendant edge. The new vertex is called the root of BTn and is considered to be at
level 0 [26]. Hence BTn has 2n vertices.

We first prove a few basic lemmas to attain the main result.

Lemma 3. Let n1 be a fixed positive integer such that n1 ≤ n. For j = 1, 2, . . . , n1 and i = 0, 1, . . . , 2n1−j −
1, TXji = {k · 2n1 + i · 2j + l : 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2j − 2} is an optimal set on 2n−n1(2j − 1) vertices
in Qn and also in FQn.

Proof. Define ϕ : TXji → L2n−n1 (2j−1) by ϕ(k · 2n1 + i · 2j + l) = k+ l · 2n−n1 . If the binary representation of

x = k · 2n1 + i · 2j + l

is

α1α2 . . . αn−n1β1β2 . . . βn1−jγ1γ2 . . . γj

then we prove that the binary representation of

ϕ(x) = k + l · 2n−n1

is

000 . . . . . . .000  
n1−j times

γ1γ2 . . . γjα1α2 . . . αn−n1 .
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For instance, n = 6, n1 = 4, j = 2 and i = 0 is shown as follows:

TX2
0 =


0 1 2
16 17 18
32 33 34
48 49 50


with binary representation

TX2
0 =


000000 000001 000010
010000 010001 010010
100000 100001 100010
110000 110001 110010

 .

Then

ϕ(TX2
0 ) =


0 4 8
1 5 9
2 6 10
3 7 11


with binary representation

ϕ(TX2
0 ) =


000000 000100 001000
000001 000101 001001
000010 000110 001010
000011 000111 001011

 .

Suppose k = 0, i = 0 in x. Then x = l. Since 0 ≤ l ≤ 2j − 2, the binary representation of x is

000 . . . . . . .000  
n−n1 times

000 . . . . . . .000  
n1−j times

γ1γ2 . . . γj .

This implies that the binary representation of ϕ(x) = l · 2n−n1 is

000 . . . . . . .000  
n1−j times

γ1γ2 . . . γj 000 . . . . . . .000  
n−n1 times

.

Suppose k = 0 in x. Then x = i · 2j + l. Since j = 1, 2, . . . , n1, i = 0, 1, . . . , 2n1−j − 1, 0 ≤ l ≤ 2j − 2, the
binary representation of x is

000 . . . . . . .000  
n−n1 times

β1β2 . . . βn1−jγ1γ2 . . . γj .

This implies that the binary representation of ϕ(x) = l · 2n−n1 is

000 . . . . . . .000  
n1−j times

γ1γ2 . . . γj 000 . . . . . . .000  
n−n1 times

.

Suppose i = 0 in x. Then x = k · 2n1 + l. Since 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2j − 2, the binary representation
of x is

α1α2 . . . αn−n1 000 . . . . . . .000  
n1−j times

γ1γ2 . . . γj .
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This implies that the binary representation of ϕ(x) = k + l · 2n−n1 is

000 . . . . . . .000  
n1−j times

γ1γ2 . . . γjα1α2 . . . αn−n1 .

Similarly we can discuss all other cases.

We now show that the sets TXji and L2n−n1 (2j−1) are isomorphic by considering into three parts.

Part A: Let the binary representations of two numbers x and y be respectively

����� 0(resp.1) �����  
n−n1 bits

�������  
n1−j bits

������  
j bits

and

����� 1(resp.0) �����  
n−n1 bits

�������  
n1−j bits

������  
j bits

Then the binary representations of numbers ϕ(x) and ϕ(y) are respectively

000......000  
n1−j bits

������  
j bits

����� 1(resp.0) �����  
n−n1 bits

and

000......000  
n1−j bits

������  
j bits

����� 0(resp.1) �����  
n−n1 bits

Hence the binary representations of two numbers x and y differ in exactly one bit if and only if the binary
representations of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x,y) is an edge in TXji if and only if
(ϕ(x), ϕ(y)) is an edge in L2n−n1 (2j−1). Hence TXji and L2n−n1 (2j−1) are isomorphic. By Theorem 1, TXji
is an optimal set in Qn for j = 1, 2, . . . , n1 and i = 0, 1, . . . , 2n1−j − 1.

When j = 1, 2, . . . , n1−1 and i = 0, 1, . . . , 2n1−j−1, the above argument holds for FQn and by Theorem 2,
TXji is an optimal set in FQn. Suppose j = n1 then i = 0. In this case the binary representations of two
numbers x and y differ in exactly one bit or the sum of the binary representations of x and y is 111 . . . 11
(n bits) if and only if the binary representations of ϕ(x) and ϕ(y) differ in exactly one bit or the sum of
the binary representations of ϕ(x) and ϕ(y) is 111 . . . 11 (n bits). Therefore (x,y) is an edge in TXji if and
only if (ϕ(x), ϕ(y)) is an edge in L2n−n1 (2j−1). By Theorem 2, TXji is an optimal set in FQn.

Part B: Let the binary representations of two numbers x and y be respectively

��������  
n−n1 bits

�������  
n1−j bits

��� 0(resp.1) ���  
j bits

and

��������  
n−n1 bits

�������  
n1−j bits

��� 1(resp.0) ���  
j bits

Then the binary representations of numbers ϕ(x) and ϕ(y) are respectively

000......000  
n1−j bits

��� 0(resp.1) ���  
j bits

��������  
n−n1 bits
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and

000......000  
n1−j bits

��� 1(resp.0) ���  
j bits

��������  
n−n1 bits

By proceeding as in Part A, we get TXji is an optimal set in Qn and FQn.

Part C: Let the binary representations of two numbers x and y be respectively

��������  
n−n1 bits

��� 0(resp.1) ����  
n1−j bits

������  
j bits

and

��������  
n−n1 bits

��� 1(resp.0) ����  
n1−j bits

������  
j bits

Since i and j are fixed for TXji , this part does not occur. �

Lemma 4. For j = 1, 2, . . . , n1 and i = 0, 1, . . . , 2n1−j − 1,
E(Qn[TXji ])

 = 2n−n1−1{2j(n− n1 + j)− (n−
n1 + 2j)} where n1 ≤ n.

Proof. By Lemma 3, TXji is an optimal set on 2n−n1(2j − 1) vertices in Qn and hence
E(Qn[TXji ])

 =E(Qn[L2n−n1 (2j−1)])
. Since 2n−n1(2j − 1) = 2n−n1 + 2n−n1+1 + · · · + 2n−n1+j−1, by Lemma 1,E(Qn[TXji ])

 = 2n−n1−1{2j(n− n1 + j)− (n− n1 + 2j)}. �

Lemma 5. Let n1 be a fixed positive integer such that n1 ≤ n. (a) For j = 1, 2, . . . , n1 − 1 and i = 0, 1,
. . . , 2n1−j−1,

E(FQn[TXji ])
 = E(Qn[TXji ])

 (b) For j = n1 and i = 0,
E(FQn[TXji ])

 = E(Qn[TXji ])


+ 2n−1 − 2n−n1 .

Proof. By Lemma 3, TXji is an optimal set on 2n−n1(2j − 1) vertices in FQn and hence
E(FQn[TXji ])

 =E(FQn[L2n−n1 (2j−1)])
. The proof follows from Lemmas 1 and 4. �

Theorem 3. Let n1 be a fixed positive integer such that n1 ≤ n. The minimum wirelength of Qn and FQn
into BTn1 × Pm, m = 2n−n1 are given by (a) WL(Qn, BTn1 × Pm) = 2n−1{n21 − 3n1 + 8 + n(2n−n1 − 1)} −
2n−n1(n1 +4)−2

m−1
k=1 |E(Qn[Lk2n1 ])| and (b)WL(FQn, BTn1×Pm) = 2n−1{n21−n1 +4+(n+1)(2n−n1−

1)} − 2n−n1(n1 + 1)− 2
m−1
k=1 |E(FQn[Lk2n1 ])|.

Proof. The proof consists of three parts namely (1) embedding Algorithm (2) proof of correctness and (3)
computation of wirelength.

(1) Embedding algorithm: Label the vertex x1x2 . . . xn ofQn as
n
i=1 xi·2n−i (equivalent to lexicographic

order [39] from 0 to 2n−1). As V (FQn) = V (Qn), the label of FQn is same as that of Qn. Label the vertices
of BTn1 ×Pm, m = 2n−n1 , as follows: Let BT 1

n1 , BT
2
n1 , . . . , BT

m
n1 be the m vertex disjoint copies of 1-rooted

complete binary tree BTn1 in BTn1 × Pm. Label the vertices of BT in1 , 1 ≤ i ≤ m, by inorder traversal
[40,41] from (i− 1)2n1 to i2n1 − 1. See Fig. 4.
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Fig. 4. Embedding of Q4 with vertices labeled by lexicographic order into BT3 × P2 with vertices labeled by inorder traversal.

Define Lexicographic embedding Lex =≺ f, Pf ≻, where

(a) f is a bijective map from V (Qn) (resp. V (FQn)) to V (BTn1 × Pm) by f(x) = x and
(b) Pf is an injective map from E(Qn) (resp. E(FQn)) to {P (f(u), f(v)) : P (f(u), f(v)) is a shortest path

in BTn1 × Pm between f(u) and f(v) for (u, v) ∈ E(Qn) (resp. E(FQn))}. (Note that if the shortest
path is not unique, then fix any one of the paths.)

(2) Proof of correctness: For j = 1, 2, . . . , n1 and i = 0, 1, . . . , 2n1−j − 1, let Sji be the set of edges of
BTn1 × Pm such that each edge has one vertex in level n1 − j and the other vertex in level n1 − j + 1 of
BT kn1 , 1 ≤ k ≤ m. Removal of Sji leaves BTn1 ×Pm into two components Xji and Xji where V (Xji ) is TXji .
Let Gji and Gji be the inverse images of Xji and Xji under f respectively. By Lemma 3, V (Gji ) is an optimal
set in Qn and FQn. For k = 1, 2, . . . ,m−1, let Ek be the set of edges of BTn1 ×Pm such that each edge has
one vertex in BT kn1 and the other vertex in BT k+1

n1 . Removal of Ek leaves BTn1 × Pm into two components
Yk and Y k where V (Yk) is Lk2n1 . Let Hk and Hk be the inverse images of Yk and Y k under f respectively.
By Theorems 1 and 2, V (Hk) is an optimal set in Qn and FQn.

Clearly E(BTn1 × Pm) = {Sji : j = 1, 2, . . . , n1, i = 0, 1, . . . , 2n1−j − 1} ∪ {Ek : k = 1, 2, . . . ,m − 1}.
Moreover, each edge cut Sji and as well as Ek satisfies conditions (i)–(iii) of the 1-partition wirelength
lemma. Therefore WLLex(Qn, BTn1 × Pm) = WL(Qn, BTn1 × Pm) and WLLex(FQn, BTn1 × Pm) =
WL(FQn, BTn1 × Pm).

(3) Computation of wirelength: We divide this part into two cases.

Case A (Hypercube): For j = 1, 2, . . . , n1, i = 0, 1, . . . , 2n1−j − 1, ECLex(Sji ) = n · 2n−n1(2j − 1) −
2 · 2n−n1−1{2j(n − n1 + j) − (n − n1 + 2j)} = 2n−n1{2j(n1 − j) + 2j − n1} and for k = 1, 2, . . . ,m − 1,
ECLex(Ek) = n · k2n1 − 2 |E(Qn[Lk2n1 ])|.

Therefore WL(Qn, BTn1 ×Pm) =
n1
j=1
2n1−j−1
i=0 ECLex(Sji ) +

m−1
k=1 ECLex(Ek) =

n1
j=1 2n−j{2j(n1−

j) + 2j − n1}+
m−1
k=1 {n · k2n1 − 2 |E(Qn[Lk2n1 ])|} = 2n−1{n21− 3n1 + 8 + n(2n−n1 − 1)}− 2n−n1(n1 + 4)−

2
m−1
k=1 |E(Qn[Lk2n1 ])|.

Case B (Folded hypercube): For j = 1, 2, . . . , n1 − 1, i = 0, 1, . . . , 2n1−j − 1, ECLex(Sji ) = (n + 1) ·
2n−n1(2j−1)−2·2n−n1−1{2j(n−n1+j)−(n−n1+2j)} = 2n−n1{2j(n1−j+1)+2j−n1−1} and for j = n1, i =
0, ECLex(Sji ) = (n1 + 1)2n−n1 and k = 1, 2, . . . ,m− 1, ECLex(Ek) = (n+ 1) · k2n1 − 2 |E(FQn[Lk2n1 ])|.

Therefore WL(FQn, BTn1 × Pm) =
n1−1
j=1
2n1−j−1
i=0 ECLex(Sji ) + ECLex(Sn1

0 ) +
m−1
k=1 ECLex(Ek) =n1−1

j=1 2n−j {2j(n1 − j + 1) + 2j − n1 − 1}+ (n1 + 1)2n−n1 +
m−1
k=1 {(n + 1) · k2n1 − 2 |E(Qn[Lk2n1 ])|} =

2n−1{n21 − n1 + 4 + (n+ 1)(2n−n1 − 1)} − 2n−n1(n1 + 1)− 2
m−1
k=1 |E(FQn[Lk2n1 ])|. �
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Fig. 5. Embedding of Q4 with vertices labeled by lexicographic order into ST3×P2 (resp. ST2×P4) with vertices labeled by inorder
traversal.

4. Embedding hypercubes and folded hypercubes into Cartesian product of sibling trees and paths

The sibling tree STn is obtained from the 1-rooted complete binary tree BTn by adding edges (sibling
edges) between left and right children of the same parent node [26]. Since V (STn) = V (BTn), we show that
the Embedding Algorithm of Theorem 3 gives the minimum wirelength of hypercube Qn (resp. FQn) onto
Cartesian product tree STn1×Pm, m = 2n−n1 . See Fig. 5. To show this result, we need the following lemma.

Lemma 6. For j = 1, 2, . . . , n1− 1 and i = 0, 1, . . . , 2n1−j−1− 1, STXji = {k · 2n1 + 2i · 2j + l, k · 2n1 + (2i+
1) · 2j + l : 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2j − 2} is an optimal set on 2n−n1+1(2j − 1) vertices in Qn and FQn
where n1 ≤ n.

Proof. We divide the proof into two parts.

Part 1 (Hypercube): By Lemma 3, the sets {k · 2n1 + 2i · 2j + l : 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2j − 2} and
{k · 2n1 + (2i + 1) · 2j + l : 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2j − 2} are isomorphic to L2n−n1 (2j−1). Also the
binary representation of k · 2n1 + 2i · 2j + l and k · 2n1 + (2i+ 1) · 2j + l differ exactly in one bit. ThereforeE(Qn[STXji ])

 = 2
E(Qn[L2n−n1 (2j−1)])

+ 2n−n1(2j − 1) = 2n−n1{2j(n− n1 + j + 1)− (n− n1 + 2j + 1)}.
But by Lemma 1,

E(Qn[L2n−n1+1(2j−1)])
 = 2n−n1{2j(n − n1 + j + 1) − (n − n1 + 2j + 1)} and hence by

Theorem 1, STXji is an optimal set in Qn.

Part 2 (Folded hypercube): For j = 1, 2, . . . , n1 − 2 and i = 0, 1, . . . , 2n1−j−1 − 1, the argument of Part
1 holds for FQn and by Theorem 2, STXji is an optimal set in FQn. Suppose j = n1 − 1 and i = 0. Then
STXji = {k · 2n1 + l, k · 2n1 + 2n1−1 + l : 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2n1−1 − 2}. By Lemma 3, the sets
{k·2n1 +l : 0 ≤ k ≤ 2n−n1−1, 0 ≤ l ≤ 2n1−1−2} and {k·2n1 +2n1−1+l : 0 ≤ k ≤ 2n−n1−1, 0 ≤ l ≤ 2n1−1−2}
are isomorphic to L2n−n1 (2n1−1−1). Also for 0 ≤ k ≤ 2n−n1 − 1, 0 ≤ l ≤ 2n1−1 − 2, the binary representation
of k ·2n1 + l and k ·2n1 + 2n1−1 + l differ exactly in one bit. Further for 0 ≤ k ≤ 2n−n1 −1, 1 ≤ l ≤ 2n1−1−2,
the sum of the binary representations of k · 2n1 + l and (2n−n1 − 1− k) · 2n1 + 2n1−1 + 2n1−1 − 2− (l − 1)
is n. Therefore

E(FQn[STXji ])
 = 2

E(Qn[L2n−n1 (2n1−1−1)])
 + 2n−n1(2n1−1 − 1) + 2n−n1(2n1−1 − 2) =

2n−1(n+1)−2n−n1(n+n1+1). But by Lemma 1,
E(Qn[L2n−n1+1(2n1−1−1)])

 = 2n−1(n+1)−2n−n1(n+n1+1)
and hence by Theorem 2, STXji is an optimal set in FQn. �
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Theorem 4. Let n1 be a fixed positive integer such that n1 ≤ n. The minimum wirelength of Qn and FQn
into STn1 × Pm, m = 2n−n1 are given by (a) WL(Qn, STn1 × Pm) = 2n−1{n21 − 4n1 + 10 + n(2n−n1 −
1)} − 2n−n1(n1 + 5)− 2

m−1
k=1 |E(Qn[Lk2n1 ])| and (b) WL(FQn, STn1 × Pm) = 2n−1{n21 − 2n1 + 5 + (n+

1)(2n−n1 − 1)} − n12n−n1 − 2
m−1
k=1 |E(FQn[Lk2n1 ])|.

Proof. The proof contains three parts namely (1) embedding Algorithm (2) proof of correctness and (3)
computation of wirelength.

(1) Embedding algorithm: Since V (FQn) = V (Qn) and V (BTn1 × Pm) = V (STn1 × Pm), we call the
embedding algorithm as in Theorem 3.

(2) Proof of correctness: Let ST 1
n1 , ST

2
n1 , . . . , ST

m
n1 be the m vertex disjoint copies of sibling tree STn1 in

STn1 × Pm. For j = 1, 2, . . . , n1 and i = 0, 1, . . . , 2n1−j , let Sji be the set of edges of STn1 × Pm induced by
the ⌈i/2⌉th parent vertex from left to right in level n1 − j with its left child if i is odd and its right child if
i is even of ST kn1 , 1 ≤ k ≤ m, together with the corresponding sibling edge which is the same edge in either
case. Removal of Sji leaves STn1 × Pm into two components Xji and Xji where V (Xji ) is TXji . Let Gji and
G
j

i be the inverse images of Xji and Xji under f respectively. By Lemma 3, V (Gji ) is an optimal set in Qn
and FQn.

For j = 1, 2, . . . , n1 − 1 and i = 0, 1, . . . , 2n1−j−1 − 1, let SSji be the set of edges of STn1 × Pm induced
by the ith parent vertex from left to right in level n1− j and its two children of ST kn1 , 1 ≤ k ≤ m. Removal
of SSji leaves STn1 × Pm into two components Y ji and Y ji where V (Y ji ) is STXji . Let Hji and Hji be the
inverse images of Y ji and Y ji under f respectively. By Lemma 6, V (Hji ) is an optimal set in Qn and FQn.
Let SSn1

0 = Sn1
0 . For k = 1, 2, . . . ,m − 1, let EEk = Ek be the set of edges of STn1 × Pm such that each

edge has one vertex in BT kn1 and the other vertex in BT k+1
n1 . Removal of Ek leaves STn1 × Pm into two

components Zk and Zk where V (Zk) is Lk2n1 . Let Ik and Ik be the inverse images of Zk and Zk under f
respectively. By Theorems 1 and 2, V (Ik) is an optimal set in Qn and FQn.

We note that the sets {Sji : j = 1, 2, . . . , n1, i = 0, 1, . . . , 2n1−j} ∪ {SSji : j = 1, 2, . . . , n1 − 1, i =
0, 1, . . . , 2n1−j−1 − 1} ∪ {SSn1

0 } ∪ {EEk, Ek : k = 1, 2, . . . ,m − 1} form a partition of E2(STn1 ×
Pm). Moreover, each edge cut satisfies conditions (i)–(iii) of the 2-partition wirelength lemma. Hence
WLLex(Qn, STn1 × Pm) =WL(Qn, STn1 × Pm) and WLLex(FQn, STn1 × Pm) =WL(FQn, STn1 × Pm).

(3) Computation of wirelength: We divide this part into two cases.

Case A (Hypercube): For j = 1, 2, . . . , n1, i = 0, 1, . . . , 2n1−j − 1, ECLex(Sji ) = n · 2n−n1(2j − 1) − 2 ·
2n−n1−1{2j(n − n1 + j) − (n − n1 + 2j)} = 2n−n1{2j(n1 − j) + 2j − n1}. For j = 1, 2, . . . , n1 − 1, i =
0, 1, . . . , 2n1−j−1− 1, ECLex(SSji ) = n · 2n−n1+1(2j − 1)− 2 · 2n−n1{2j(n−n1 + j+ 1)− (n−n1 + 2j+ 1)} =
2n−n1+1{2j(n1 − j − 1) + (2j − n1 + 1)} and ECLex(SSn1

0 ) = n12n−n1 . For k = 1, 2, . . . ,m− 1, ECLex(Ek)
= ECLex(EEk) = n · k2n1 − 2 |E(Qn[Lk2n1 ])|.

Therefore WL(Qn, STn1 × Pm) = 1
2{
n1
j=1
2n1−j−1
i=0 ECLex(Sji ) +

n1−1
j=1
2n1−j−1−1
i=0 ECLex(SSji ) +

ECLex (SSn1
0 ) +

m−1
k=1 [ECLex(Ek) + ECLex(EEk)]} = 2n−1{n21 − 4n1 + 10 + n(2n−n1 − 1)} − 2n−n1(n1 +

5)− 2
m−1
k=1 |E(Qn[Lk2n1 ])|.

Case B (Folded hypercube): For j = 1, 2, . . . , n1 − 1, i = 0, 1, . . . , 2n1−j − 1, ECLex(Sji ) = (n + 1) ·
2n−n1(2j − 1) − 2 · 2n−n1−1{2j(n − n1 + j) − (n − n1 + 2j)} = 2n−n1{2j(n1 − j + 1) + 2j − n1 − 1}
and for j = n1, i = 0, ECLex(Sji ) = (n1 + 1)2n−n1 . For j = 1, 2, . . . , n1 − 2, i = 0, 1, . . . , 2n1−j−1 −
1, ECLex(SSji ) = (n + 1) · 2n−n1+1(2j − 1) − 2 · 2n−n1{2j(n − n1 + j + 1) − (n − n1 + 2j + 1)}
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= 2n−n1+1{2j(n1 − j) + 2j − n1}, ECLex(SSn1−1
0 ) = n12n−n1+1 and ECLex(SSn1

0 ) = (n1 + 1)2n−n1 . For
k = 1, 2, . . . ,m− 1, ECLex(Ek) = ECLex(EEk) = n · k2n1 − 2 |E(Qn[Lk2n1 ])|.

HenceWL(FQn, BTn1×Pm) = 1
2{
n1−1
j=1
2n1−j−1
i=0 ECLex(Sji )+ECLex(Sn1

0 )+
n1−2
j=1
2n1−j−1−1
i=0 ECLex

(SSji ) +ECLex(SSn1−1
0 ) +ECLex(SSn1

0 ) +
m−1
k=1 [ECLex(Ek) +ECLex(EEk)]} = 2n−1{n21 − 2n1 + 5 + (n+

1)(2n−n1 − 1)} − n12n−n1 − 2
m−1
k=1 |E(FQn[Lk2n1 ])|. �

5. Conclusion

In this paper we have computed the minimum wirelength of hypercubes and folded hypercubes into
Cartesian product of 1-rooted complete binary tree and path, sibling tree and path. The minimum wirelength
of hypercubes and folded hypercubes into Cartesian product of paths have been computed in [6,28]. We would
like to take up the computation of minimum wirelength of hypercubes and folded hypercubes into Cartesian
product of cycles as future research.
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