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a b s t r a c t

The aim of this paper is to generalize the Congestion Lemma, which has been considered
an efficient tool to compute the minimum wirelength (Manuel et al., 2009) and thereby
obtain the minimum wirelength of embedding hypercubes into sibling trees.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Embeddings are of great importance in the applications of parallel computing. Every parallel application has its intrinsic
communication pattern. The communication pattern graph is mapped onto the topology of multiprocessor structures so
that the corresponding application can be executed with minimal communication overhead.

A graph embedding [21] of a guest graph G into a host graph H is defined by a bijective mapping f : V (G) → V (H)
together with a mapping Pf which assigns to each edge (u, v) of G a path between f (u) and f (v) in H . Let ECf (e) denote
the number of edges (u, v) of G such that e is in the path Pf ((u, v)) between f (u) and f (v) in H [15]. In other words,
ECf (e) =

(u, v) ∈ E(G) : e ∈ E(Pf ((u, v)))
. See Fig. 1. Let S be a subset of the edge set of H . Then ECf (S) =


e∈S ECf (e).

The wirelength [9,15] of an embedding f of G into H is given by

WLf (G,H) =


(u,v)∈E(G)

E(Pf ((u, v)))
 =


e∈E(H)

ECf (e) =

p
i=1

ECf (Si)

where {S1, S2, . . . , Sp} is a partition of E(H).
Theminimum wirelength of embedding G into H is defined as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddings f of G into H . Since our aim is to construct embeddings of minimum
wirelength, we will take Pf to be a mapping that assigns to each edge (u, v) of G a shortest path between vertices f (u) and
f (v) in H .

The wirelength of a graph embedding is used in the study of VLSI designs, data structures and data representations,
networks for parallel computer systems, biologicalmodels that dealwith cloning and visual stimuli, parallel architecture and
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Fig. 1. Wiring diagram of a shuffle–exchange network G into a cycle H with the edge congestions ECf ((0, 1)) = 3, ECf ((1, 2)) = 2, ECf ((2, 3)) = 1,
ECf ((3, 4)) = 2, ECf ((4, 5)) = 3, ECf ((5, 6)) = 2, ECf ((6, 7)) = 1 and ECf ((7, 0)) = 2.

Fig. 2. (a) A = {2, 3} is an optimal set with respect to Problem 2 whereas it is not an optimal set to Problem 1 (b) A = {0, 5} is an optimal set with respect
to Problems 1 and 2.

structural engineering [12,22]. Embedding problems have been considered for complete binary trees into hypercubes [1],
tori and grids into twisted cubes [11], meshes into locally twisted cubes [8], meshes into faulty crossed cubes [23], meshes
into crossed cubes [6], generalized ladders into hypercubes [3], hypercube into cycles [4], hypercubes into grids [15],
hypercubes into cylinders, snakes and caterpillars [14], hypercubes into certain trees [18], m-sequential k-ary trees into
hypercubes [20], enhanced and augmented hypercubes into complete binary trees [13], folded hypercubes into grids [16]
and circulant into certain graphs [17]. In this paper we generalize the Congestion Lemma [15] and obtain the minimum
wirelength of hypercubes into sibling trees.

2. Edge isoperimetric problem

The edge isoperimetric problem [9] is used to solve the wirelength problem. The following two versions of the edge
isoperimetric problem of a graph G(V , E) have been considered in the literature [2] and are NP-complete [7].

Problem 1. Find a subset of vertices of a given graph, such that the edge cut separating this subset from its complement
has minimal size among all subsets of the same cardinality. Mathematically, for a given m, if θG(m) = minA⊆V , |A|=m |θG(A)|
where θG(A) = {(u, v) ∈ E : u ∈ A, v ∉ A}, then the problem is to find A ⊆ V and |A| = m such that θG(m) = |θG(A)|.

Problem 2. Find a subset of vertices of a given graph, such that the number of edges in the subgraph induced by this
subset is maximal among all induced subgraphs with the same number of vertices. Mathematically, for a given m, if
IG(m) = maxA⊆V ,|A|=m |IG(A)| where IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the problem is to find A ⊆ V and |A| = m
such that IG(m) = |IG(A)|.

We call such a set A optimal [2,9]. If a subset of vertices is optimal with respect to Problem 1, then its complement is also
an optimal set. However, it is not true for Problem 2 in general. See Fig. 2. The two discrete problems mentioned above are
closely related and for k-regular graphs are equivalent due to the equation |θG(A)| = k × |A| − 2 × |IG(A)|, which implies
θG(m) = k×m−2× IG(m),m = 1, 2, . . . , |V | [2]. In the literature, Problem 2 is called themaximum subgraph problem [7].

Definition 1 ([22]). For r ≥ 1, let Qr denote the r-dimensional hypercube. The vertex set of Qr is the set of all r-dimensional
binary representations. Two vertices x, y ∈ V (Qr) are adjacent if and only if the corresponding binary representations differ
exactly in one bit.

Definition 2 ([10]). An incomplete hypercube on i vertices of Qr is the subcube induced by {0, 1, . . . , i − 1} and is denoted
by Li, 1 ≤ i ≤ 2r .

Theorem 1 ([9]). Let Qr be an r-dimensional hypercube. For 1 ≤ i ≤ 2r , Li is an optimal set.

Lemma 1 ([15]). Let Qr be an r-dimensional hypercube. Let m = 2t1 + 2t2 + · · · + 2tl such that r > t1 > t2 > · · · > tl ≥ 0.
Then |E(Qr [Lm])| = [t1 · 2t1−1

+ t2 · 2t2−1
+ · · · + tl · 2tl−1

] + [2t2 + 2 · 2t3 + · · · + (l − 1)2tl ].
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Fig. 3. f : G → H is an embedding and the dotted lines represent edge cut S in H .

3. Generalized congestion lemma

The wirelength problem of hypercube on a grid has been solved by Manuel et al. [15], using the Congestion Lemma and
is given below.

Lemma 2 (Congestion Lemma [15]). Let G be an r-regular graph and f be an embedding of G into H. Let S be an edge cut of H
such that the removal of edges of S splits H into 2 components H1 and H2 and let G1 = f −1(H1) and G2 = f −1(H2). Also assume
that S satisfies the following conditions:

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pf ((a, b)) has no edges in S.
(ii) For every edge (a, b) in G with a ∈ G1 and b ∈ G2, Pf ((a, b)) has exactly one edge in S.
(iii) G1 is a maximum subgraph on k vertices where k = |V (G1)|.

Then ECf (S) is minimum and ECf (S) =


e∈S ECf (e) = r |V (G1)| − 2 |E(G1)|.

Although the congestion lemma has been considered an efficient tool in the computation of wirelength, this lemma fails
when the edge cut leaves more than two components. This motivates the following result.

Lemma 3 (Generalized Congestion Lemma). Let f be an embedding of G into H. Let S be an edge cut of H such that the removal
of edges of S splits H into k components Hi, 1 ≤ i ≤ k. Let Gi = G[f −1(Hi)], 1 ≤ i ≤ k, be such that the sets Gi are optimal and S
satisfies the following conditions:

(i) For every edge (u, v) ∈ Gi, 1 ≤ i ≤ k, Pf ((u, v)) has no edges in S.
(ii) For every edge (u, v) in Gwith u ∈ Gi and v ∈ Gj for i < j, Pf ((u, v)) has exactly one edge in S.

Then ECf (S) is minimum over all possible embeddings and ECf (S) =
1
2

k
i=1 θG(mi) where mi = |V (Gi)|.

Further when G is an r-regular graph ECf (S) =
r
2 |V (G)| −

k
i=1 |E(Gi)|.

Proof. Let X =

(u, v) ∈ E(G) : u ∈ Gi, v ∈ Gj for i < j


. By condition (i), no edge of Gi, 1 ≤ i ≤ k, contributes to ECf (S).

By condition (ii), every edge (u, v) of S increments ECf (S) by 1. Therefore ECf (S) = |X |. For 1 ≤ i ≤ k, Gi is an optimal
set and hence ECf (S) is minimum. We compute |X | in the following way. Let E(Gi ∧ Gj) denote the set of edges in G with
one end in Gi and the other end in Gj. See Fig. 3. Then |X | = θG(m1) + θG(m2) − |E(G1 ∧ G2)| + θG(m3) − |E(G1 ∧ G3)| −

|E(G2 ∧ G3)| + · · · + θG(mi) −
i−1

j=1

E(Gj ∧ Gi)
 + · · · + θG(mk) −

k−1
j=1

E(Gj ∧ Gk)
 wheremi = |V (Gi)|. This implies that

|X | =
k

i=1 θG(mi)−|X |. Therefore |X | =
1
2

k
i=1 θG(mi). FurtherwhenG is an r-regular graph, θG(mi) = r |V (Gi)|−2 |E(Gi)|,

implies |X | =
r
2 |V (G)| −

k
i=1 |E(Gi)|. �

4. Wirelength of hypercubes into sibling trees

The most common type of tree is the binary tree. It is so named because each node can have at most two descendants.
A binary tree is said to be a complete binary tree if each internal node has exactly two descendants. These descendants are
described as left and right children of the parent node. Binary trees arewidely used in data structures because they are easily
stored, easily manipulated, and easily retrieved [22].

For any non-negative integer r , the complete binary tree of height r , denoted by Tr , is the binary tree where each internal
vertex has exactly two children and all the leaves are at the same level. Clearly, a complete binary tree Tr has r levels and level
i, 1 ≤ i ≤ r , contains 2i−1 vertices. Thus Tr has exactly 2r

−1 vertices. The 1-rooted complete binary tree T 1
r is obtained from

a complete binary tree Tr by attaching to its root a pendant edge. The new vertex is called the root of T 1
r and is considered to

be at level 0. A sibling tree STr is obtained from the 1-rooted complete binary tree T 1
r by adding edges (sibling edges) between

left and right children of the same parent node. See Fig. 4.
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Fig. 4. Sibling tree with levels.

Fig. 5. (a) 1-rooted complete binary tree T 1
4 with inorder labeling (b) Sibling tree ST4 .

There are several useful ways in which we can systematically order all nodes of a tree [5,19]. The three most important
ordering are called preorder, inorder and postorder. To achieve these orderings the tree is traversed in a particular fashion.
Starting from the root, the tree is traversed counter clockwise staying as close to the tree as possible. For preorder, we list
a node the first time we pass it. For inorder, we list a leaf the first time we pass it, but list an interior node the second time
we pass it. For postorder, we list a node the last time we pass it.
Embedding Algorithm (LexIn)
Input: The r-dimensional hypercube Qr and the sibling tree STr on 2r vertices.
Algorithm: Label the vertex x1x2 . . . xr of Qr as

r
i=1 xi ·2

r−i and label the vertices of T 1
r by inorder traversal from 0 to 2r

−1.
As V (T 1

r ) = V (STr), we consider the vertex label of STr is same as T 1
r . See Fig. 5.

Output: An embedding f of Qr into STr given by f (x) = xwith minimum wirelength.

Theorem 2. The minimum wirelength of Qr into STr is given by

WL(Qr , STr) = 2r−1(r2 − 4r + 10) − r − 5.

Proof. For j = 1, 2, . . . , r − 1 and i = 1, 2, . . . , 2r−j−1, let Sij be the edge cut of the sibling tree STr consisting of triangles
induced by the ith parent vertex from left to right in level r − jwith its left and right child such that Sij disconnects STr into
three components H1

ij , H
2
ij and H3

ij .

Weprove that for j = 1, 2, . . . , r and i = 1, 2, . . . , 2r−j, Tcut2
j
−1

i = {2j(i−1), 2j(i−1)+1, 2j(i−1)+2, . . . , 2j(i−1)+(2j
−

2)} is an optimal set in Qr . Further for j = 1, 2, . . . , r − 1 and i = 1, 2, . . . , 2r−j−1, the set TTcut2(2
j
−1)

i = Tcut2
j
−1

2i−1 ∪ Tcut2
j
−1

2i

is an optimal set in Qr and also V (Qr)�TTcut2(2
j
−1)

i is an optimal set in Qr .

Define ϕ : Tcut2
j
−1

i → L2j−1 by ϕ(2j(i − 1) + k) = k. If the binary representation of 2j(i − 1) + k is α1α2 . . . αr then the
binary representation of k is 00 . . . 00  

r−j times

αr−j+1αr−j+2 . . . αr . Thus the binary representations of two numbers x and y differ in

exactly one bit if and only if the binary representation of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in
Tcut2

j
−1

i if and only if (ϕ(x), ϕ(y)) is an edge in L2j−1. Hence Tcut2
j
−1

i and L2j−1 are isomorphic. By Theorem 1, Tcut2
j
−1

i is an
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optimal set in Qr . By Lemma 1, we have for j = 1, 2, . . . , r and i = 1, 2, . . . , 2r−j,
E(Qr [Tcut2

j
−1

i ])

 = j(2j−1
− 1). Further,

we have

TTcut2(2
j
−1)

i =

2j(2i − 2), 2j(2i − 2) + 1, 2j(2i − 2) + 2, . . . 2j(2i − 2) + 2j

− 2,

2j(2i − 1), 2j(2i − 1) + 1, 2j(2i − 1) + 2, . . . 2j(2i − 1) + 2j
− 2


.

The sets {2j(2i− 2), 2j(2i− 2) + 1, 2j(2i− 2) + 2, . . . , 2j(2i− 2) + 2j
− 2} and {2j(2i− 1), 2j(2i− 1) + 1, 2j(2i− 1) +

2, . . . , 2j(2i− 1) + 2j
− 2} are isomorphic to L2j−1. Also the binary representation of 2j(2i− 2) and 2j(2i− 1) differ exactly

in one bit. Therefore
E(Qn[TTcut

2(2j−1)
i ])

 = 2
E(Qn[L2j−1])

 + 2j
− 1 = 2j(2j−1

− 1) + 2j
− 1 = (j + 1)2j

− 2j − 1. But by

Lemma 1,
E(Qn[L2(2j−1)])

 = (j + 1)2j
− 2j − 1 and hence by Theorem 1, TTcut2(2

j
−1)

i is an optimal set in Qr . Since Qr is an

r-regular graph, V (Qr)�TTcut2(2
j
−1)

i is an optimal set in Qr .

Clearly V (H1
ij ) = Tcut2

j
−1

2i−1 , V (H2
ij ) = Tcut2

j
−1

2i and V (H3
ij ) = V (Qr)�TTcut2(2

j
−1)

i . Let Gk
ij = G[f −1(Hk

ij)],1 ≤ k ≤ 3. Then
the sets Gk

ij are optimal in Qr . Thus the edge cut Sij satisfies the conditions of the Generalized Congestion Lemma. Therefore
ECf (Sij) is minimum for j = 1, 2, . . . , r − 1 and i = 1, 2, . . . , 2r−j−1. Let S1r be the set containing only the cut edge of the
sibling tree STr that disconnects STr into two components H1r and H2r where V (H1r) = L2r−1 and V (H2r) = {2r

− 1}. Let
G1r = G[f −1(H1r)] and G2r = G[f −1(H2r)]. By Theorem 1, G1r is an optimal set in Qr . Thus S1r satisfies the conditions of the
Generalized Congestion Lemma. Therefore ECf (S1r) is minimum. Hence

WL(Qr , STr) =
1
2

 r−1
j=1

2r−j−1
i=1

{2θQr (2
j
− 1) + θQr (2

r
− 2j+1

+ 2)} + θQr (2
r
− 1) + θQr (1)

 .

Since θQr (2
r
− 2j+1

+ 2) = θQr (2
j+1

− 2) and θQr (2
r
− 1) = θQr (1).

We have

WL(Qr , STr) =
1
2

 r−1
j=1

2r−j−1
i=1

{2θQr (2
j
− 1) + θQr (2

j+1
− 2)} + 2θQr (1)


=

1
2

 r−1
j=1

2r−j−1
i=1

{2r(2j
− 1) − 4j(2j−1

− 1) + 2r(2j
− 1) − 2[(j + 1)2j

− 2j − 1]} + 2r


= 2r−1(r2 − 4r + 10) − r − 5. �

5. Concluding remarks

We have obtained the minimumwirelength of hypercubes into sibling trees by generalizing the Congestion Lemma [15]
and the interested readers may refer to our earlier publication [18] for alternative proof. Also it is known that the set of
vertices Li = {0, 1, . . . , i − 1}, 1 ≤ i ≤ 2r , is optimal in folded hypercubes [16] and hence it is easy to compute the
minimum wirelength of folded hypercubes into sibling trees.
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