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Abstract

Emotion recognition system from speech signal is a widely researched topic in the design of the Human—Computer Interface
(HCI) models, since it provides insights into the mental states of human beings. Often, it is required to identify the emotional
condition of the humans as cognitive feedback in the HCI. In this paper, an attempt to recognize seven emotional states from
speech signals, known as sad, angry, disgust, happy, surprise, pleasant, and neutral sentiment, is investigated. The proposed
method employs a non-linear signal quantifying method based on randomness measure, known as the entropy feature, for
the detection of emotions. Initially, the speech signals are decomposed into Intrinsic Mode Function (IMF), where the IMF
signals are divided into dominant frequency bands such as the high frequency, mid-frequency , and base frequency. The
entropy measures are computed directly from the high-frequency band in the IMF domain. However, for the mid- and base-
band frequencies, the IMFs are averaged and their entropy measures are computed. A feature vector is formed from the
computed entropy measures incorporating the randomness feature for all the emotional signals. Then, the feature vector is
used to train a few state-of-the-art classifiers, such as Linear Discriminant Analysis (LDA), Naive Bayes, K-Nearest Neighbor,
Support Vector Machine, Random Forest, and Gradient Boosting Machine. A tenfold cross-validation, performed on a publicly
available Toronto Emotional Speech dataset, illustrates that the LDA classifier presents a peak balanced accuracy of 93.3%,
F1 score of 87.9%, and an area under the curve value of 0.995 in the recognition of emotions from speech signals of native
English speakers.

Keywords Speech signal - Emotion perception - Entropy measures -
decomposition

Linear discriminant analysis - Empirical mode

Introduction

Speech signals have a huge impact on the current modes
of communication, such as emails and text messages. Even
in written messages, emotion representations like emojis
are inserted to reveal our emotional states. Speech com-
munication is more prominent and effective when the text
communication fails to reveal the emotional states.

The speech signal is of research interest over the decades
for various applications such as emotion perception, HCI, bio

B Alex Noel Joseph Raj
jalexnoel @stu.edu.cn

Palani Thanaraj Krishnan
palanithanaraj.k @gmail.com
Vijayarajan Rajangam

viraj2k @gmail.com

Department of Electronics and Instrumentation Engineering,
St. Joseph’s College of Engineering, Chennai, India

Department of Electronic Engineering, Shantou University,
Shantou, China

Division of Healthcare Advancement, Innovation and
Research, Vellore Institute of Technology, Chennai, India

Published online: 25 February 2021

metrics, and so on [1]. Also, emotion analysis from the audi-
tory signal of humans has become more prominent research
due to (a) the availability of fast computing systems, (b) the
effectiveness of various signal processing algorithms, and
(c) the acoustic differences in speech signals that are natu-
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rally embedded in various emotional situations. An in-depth
analysis of speech signals in different domains is helpful
in recognizing the emotions from the auditory signals of
the people who are unable to communicate through proper
speech signals. Furthermore, the speech signal analysis is
also used to study the heart rate of the speaker [2]. The
broader research perspective of Speech Emotion Classifi-
cation (SEC) finds its applications in crime investigation,
psychiatric diagnosis, human—computer interaction, fatigue
detection, auxiliary disease diagnosis, bio metrics, and many
more.

The basic emotions are categorized into sadness, fear, hap-
piness, disgust, surprise, and anger [3]. The combination of
basic emotions leads to other emotions such as love, affec-
tion, amusement, contempt, excitement, embarrassment, and
so on. Over the decades, various studies have been conducted
in the field of SEC where the general pipeline includes feature
extraction, dimensionality reduction, and emotion classifica-
tion. The broad literature for emotion analysis suggests two
preferable features, known as statistical and temporal fea-
tures. [4,5].

Speech Emotion Recognition (SER) system can be struc-
tured by analyzing well-crafted features that effectively
expose each emotion in the speech signals [6]. The vary-
ing length and continuous nature of speech signals require
local and global features for emotion recognition. The
local features represent temporal dynamics, Whereas the
global features expose the statistical aspects like standard
deviation, mean, and minimum and maximum values. The
features of SER system are categorized into prosodic fea-
tures, spectral features, voice quality features, and Teager
energy operator-based features. Prosodic features, such as
rhythm and intonation, are the features based on human’s
perception. These features are based on energy, duration,
and fundamental frequency. Spectral features are extracted
in frequency domain using transforms and have received
wide attention due to their ability of representing vocal card
characteristics [5]. Short-term power spectrum is presented
by Mel-frequency cepstral coefficients, whereas vocal tract
characteristics are presented by linear prediction coefficients.
Logarithmic filtering of auditory system is characterized by
log-frequency power coefficients using Fourier transform [7].
Voice quality measurements, such as jitter, harmonics-to-
noise ratio, and shimmer, exploit the relation between vocal
tract characteristics and emotion content. Teager features
detect stresses happening to the vocal tract muscles in the
form of energy operator [8]. A few spectral and temporal
feature-based SER systems are discussed below.

Fatemeh Daneshfar et al. proposed a hybrid SER system
comprising of feature extraction, dimensionality reduction,
and classification stages. In the feature extraction stage, three
features, such as perceptual minimum variance distortion less
response, perceptual linear prediction coefficient, and Mel-
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frequency cepstral coefficient, are extracted from each frame
of the speech signal [9]. A high-dimensional feature vector
is structured from the first- and second-order derivatives of
the above-said feature vector. The dimension reduction of
the feature vector is carried out by quantum behaved particle
swarm optimization. The reduced feature vector is classified
by a Gaussian elliptical basis function neural network clas-
sifier. Palo et al. proposed an SER system in wavelet domain
based on Mel-frequency coefficients [10]. Both static and
dynamic elements of the coefficients are combined for an
SER system. The above-said feature coefficients are reduced
in dimension using Principal Component Analysis (PCA)
and linear discriminant analysis [11]. Jing et al. suggested an
SER system using prominence features and traditional acous-
tic features [12]. The combined feature vector is reduced in
dimension using PCA and non-parametric discriminant anal-
ysis. The features are classified using four types of supervised
learning classifiers. Wavelet-based features, extracted from
the speech signals, are used for SEC in [13]. In [14], spectral
features with Naive Bayes(NB) classifier is employed.

A set of methods on speech emotion classification is based
on hidden Markov model [15], Gaussian Mixture Model
(GMM) [16], Self-Organizing Map (SOM) [17], and neural
network [18]. Singular Value Decomposition (SVD) clas-
sifier is used in [19], whereas, in [20], ensemble software
regression model is proposed for emotion classification. A
deep belief network based on high- and low-level features is
also proposed for SEC [21]. Pao et al. proposed a method
based on Support Vector Machine (SVM) and neural net-
works to classify five emotions such as anger, surprise,
neutral, happiness, and sadness [22]. Xiao et al. suggested
a classifier that uses several sub classifiers for the classifica-
tion of seven types of emotions [23]. Lin and Wei presented
a method that was experimented on gender-dependent and
gender-independent experiments [24]. More recently, Xie
et al. developed a frame-level emotion recognition system
based on attention model in recurrent neural networks. They
validated their system for English and non-English speech
signals [25]. Demircan and Kahramanli proposed spectral
features based on Mel Cepstral coefficients and linear pre-
diction coefficients for speech emotion detection. Later, they
used Fuzzy c-means for feature dimension reduction which
was further given as input to machine learning classifiers.
They used German speech emotion dataset for their work
[26].

Our contributions are motivated by (a) the non-stationary
nature of speech signals and classical signal processing meth-
ods such as Fourier and wavelet analysis use predefined basis
functions failing to extract relevant information regarding
emotions and (b) the above transformation techniques are
block-based methods, wherein a group of samples surround-
ing the centre element are projected on to the respective
basis function. Selection of an optimum window size is a
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additional requirement for improving the detection accuracy
and elimination of artifacts for slow time-varying emotion
like sadness. Therefore, there is a need to investigate the
classification accuracy of human emotions through data-
driven signal processing methods such as Empirical Mode
Decomposition (EMD) and non-linear features. This paper
investigates an SEC approach where emotions are recog-
nized from speech signals by decomposing them into intrinsic
mode functions. Later, five unique randomness measures
are computed through entropy measures and state-of-the-art
machine learning classifiers are trained on the entropy fea-
tures. Finally, the performance of the model is validated using
standard quantitative metrics on a publicly available emotion
classification dataset.

The rest of the paper is organized as follows. “Materi-
als and methods” elaborates on the proposed methodology,
the extraction of IMFs through EMD, the computation of
the randomness through entropy features, and the detailed
analysis of the need for different entropy measures. Results
and discussion are presented in “Results” and “Discussion”
followed by the conclusion in “Conclusion”.

Materials and methods

Speech signal is a time-varying signal and requires proper
selection of a signal processing method to extract the rel-
evant features for emotion recognition. In this paper, the
speech signals are analyzed in IMF domain using EMD.
Unlike conventional signal processing methods using prede-
fined basis function such as Fourier transform and Wavelet
transform, EMD relies on the extraction of inherent patterns
in the data for decomposing a signal into intrinsic signals
[27]. Figure 1 shows the block diagram of the proposed
speech recognition system. The speech signals of duration ~
2 s are initially decomposed into dominant, mid-, and base-
band IMF frequencies. Here, windowing techniques are not
involved, and hence, inherent features corresponding to the
emotions are extracted with a higher confidence. Non-linear
features based on entropy are extracted from the decomposed
IMF signals. A feature vector is constructed from the entropy
features and used to train a set of classifiers such as LDA,
Naive Bayes (NB), K-Nearest Neighbor (K-NN), Support
Vector Machine (SVM), Random Forest (RF), and Gradi-
ent Boosting machine (GB). Finally the performance of the
classifiers is evaluated through balanced accuracy, F1 score,
recall, area under the curve, specificity, and precision.

Emotion dataset
To present a realistic comparison, the proposed emotion

recognition system from speech signals was trained and
tested on publicly available dataset provided by University of

Toronto, known as, Toronto Emotional Speech Set (TESS)
[28]. The dataset consists of speech signals recorded from
two native English participants of age 26 and 64 respectively
speaking about 200 target words which completes the phrase
”Say the word—-"". These phrases are captured with seven
different emotions of the speakers, namely anger, disgust,
fear, happiness, pleasant surprise, sadness, and neutral. The
duration of the records vary between 2 and 3 s and is sampled
at 22 KHz. Figure 2 illustrates the speech signals for different
emotions from the TESS dataset. For analysis, 200 record-
ings of each emotion class were taken for the development
of the speech recognition system. It should be noted that the
original recordings are of high quality (recorded in a noise
less environment) and, therefore, do not require additional
pre-processing steps.

Empirical mode decomposition

In this section, the EMD of a signal is analyzed. Suppose
x(t) be a time-series speech signal that delivers the IMF sig-
nals c¢(¢) and the residue function r(¢) when decomposed by
the EMD method. Equation (1) illustrates the decomposition
process: [27]:

d

x(t) =Y ct)+r@), ()

i=1

where ‘d’ is the number of IMFs generated for the input sig-
nal x (7).

For the experiments, d is preset to a value of 10 com-
ponents. Preliminary analysis illustrates that setting a lower
value to ‘d’ leads to less number of decomposed IMFs result-
ing in the loss of information. On contrary, a large value for
‘d’ leads to higher levels of decomposition but at a consider-
able computational cost. Hence, an optimal value of 10 was
chosen based on the ad hoc analysis at different levels of
decomposition. Figure 3 shows the decomposed speech sig-
nal using EMD. The decomposed signal captures different
oscillatory features of the speech signal in both temporal and
frequency domain.

Principal frequency modes

EMD decomposes a time-series signal into IMFs that are
localized in time and frequency domains. Since different
emotions are captured in distinct frequency components of
the IMF signal, the information content in each IMF sig-
nal is not uniform and varies depending on the input speech
signal. Speech signals pertaining to happy and pleasant sur-
prise are positive emotions. Meanwhile, negative emotions
such as angry, fear, disgust, and sad are captured in different
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Fig.1 Proposed method for
speech signal recognition
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frequency scales [29]. Hence, predefined selection of any
IMF component or frequency scale will lead to a loss of
information. The IMF signals are decomposed into three
frequency groups, namely, the High-Frequency (HF), the
Mid-Frequency (MF), and the Low-Frequency (LF) modes
based on the frequency content, as shown in Fig. 3, to han-
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E3 - SVD Entropy

E4 - Sample Entropy
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(b)

dle the loss of information. The categories are represented
as follows: (a) the lower order IMFs starting from IMF-1 to
IMF-6 represent the high-frequency modes Hgqi-6, (b) IMF-7
and IMF-8 correspond to mid-frequency modes Mzq7-3, and
(c) the higher order IMFs, namely, IMF-9 and IMF-10, corre-
spond to low-frequency modes Lqg-1¢. The last component r;
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Fig.2 Speech Signals for different emotions: a angry, b disgust, ¢ fear, d happy, e neutral, f pleasant surprise, and g sad

is the residue mode which corresponds to the baseline activ-
ity of the signal. To enhance the discrimination ability of the
speech signals, especially for negative emotions such as sad,
fear, and disgust, with reduced number of trainable features,
an averaging scheme is proposed for mid-frequency, low-
frequency, and residual modes based on the power spectral
density distribution.

Equations (2), (3), and (4) mathematically represent the
different modes of IMFs: Here Hyqi.¢, M4, and Lgg denote
the high-frequency mode, mid-frequency, and low-frequency
modes respectively:

Hia16 = ci(t),i =1,2,3,4,5,6 (2)

8
1
Mg = ; ¢i(t) 3)
1 10
L=~ gc"(’) +r(1). 4)

The proposed frequency-based categorization technique
can be validated by observing the Power Spectral Density
(PSD) plot of IMFs, as shown in Fig. 4, of speech emo-
tions like happy, angry, and sad. From the figure, it could be
discerned that the IMF modes from IMF-1 to IMF-6 show
unique power spectral density patterns compared to other
higher order IMFs. Therefore, IMF-1-IMF-6 are considered
separately and directly used for feature extraction. Mean-
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Fig.3 Decomposed IMFs of speech signals: a angry, b happy, and ¢ sad. Here, x axis represents the sample number and the y axis denotes the IMF
amplitude. We could observe that different emotions show distinct IMF signals

while, mid-frequency, low-frequency modes, and the residue
functions show similar PSD patterns. Therefore, these modes
are averaged as explained in Egs. (3) and (4), respectively.
Hence, eight unique IMFs from the input speech signals for
feature extraction process are selected based on the PSD dis-
tribution.

Feature extraction

Non-linear features based on randomness measure and chaos
theory have been widely used in signal classification prob-
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lems. They have been reported with good classification
performance for many biomedical applications that involves
ECG and EEG signals. Though the speech signals are inher-
ently different from biological signals, the oscillations within
the signals define each emotions. Here, it is attempted to
quantify the randomness measure by computing entropy
functions. Thus, five entropy measures such as Approximate
entropy (ApEnt), Sample entropy (SamEnt), singular value
decomposition entropy (SVDEnt), Permutation entropy (Per-
mEnt), and Spectral entropy (SpecEnt) are used for extracting
randomness features from the speech signals. For each IMF,
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atotal of 5 different entropy measures are computed resulting

to 40 different trainable features:

Hiar6 € RV My € RV Ly € RVS. (%)
The proceeding sections present (a) the different entropy

measures, (b) adetailed investigation on the need for different

entropy measures, and (c) a brief analysis of the different
types of classifiers used in this study.

Approximate entropy

Approximate entropy is a complexity measure widely used
in the regularity analysis of time-series signal. It quantifies
the amount of randomness based on signal fluctuations. A
lower value of ApEnt suggests that the time-series signal
is regular and a higher value demonstrates the randomness.
The parameters ‘m’ and ‘r’ define the delay parameter and

similarity value, respectively. ApEnt be computed through
Eq. (6) [30]:

ApEnt, ) = ¢ — ¢ ©)
Here, x(¢) is the speech signal and ¢, is the correlation
integral function for the phase space vectors (embedded sig-
nal). For experiments, the chosen values are m = 3 and

r = 0.2std(x(¢)) based on the work of [31]. Here, ‘std’ refers
to the standard deviation of the input signal.

Sample entropy

Sample entropy is a modified version of approximate entropy
where the limitations such as self-similar pattern bias are
overcome [32]. Here, the similarity measure is computed
based on various embedded time-series samples and avoids
computing the self-similarity measure between the samples.
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It reduces the bias which is inherent in approximate entropy.
The representation of sample entropy is provided in Eq. 7
[32]:

]1
SamEnt, ;) = —log % (7

Here, ‘7’ is the measure of similarity of a embedded time-
series for ‘m’ and ‘m + 1’ and r is the tolerance level. The
values of ‘m’ and ‘r’ are identical to the values used for
approximate entropy.

SVD entropy

Singular value decomposition represents the dimensionality
of the data. It decomposes the high-dimensional data into
orthogonal matrices based on the singular values ‘c’. The
time-series signal is converted to aembedded matrix based on
different time delayed template vector taken from the speech
signal. The embedded matrix is decomposed into various
orthogonal matrices. However, the SVD entropy measure is
computed only on the diagonal matrix which contain the sin-
gular values. Equation (8) represents the SVD computation
[33]:

L
SVDEnt, () = — »  0ilog,(07). )
i=1

Here, ‘L’ represents the number of singular values of the
embedded matrix and ‘o;’ denote the singular values.

Spectral entropy

Spectral entropy measures the randomness by employing
Fourier transform to the time-series signal. For the compu-
tation of this entropy measure, the power spectral density,
S(f), of the speech signal is obtained. The spectral entropy
is calculated using the formulation of Shannon entropy mea-
sure as given below [34]:

Jn
SpecEnt, ) = — Y S(f) log;[S(f)]. ©)
F=0

Here,  f,,” is the sampling frequency of the signal.
Permutation entropy

Permutation entropy computes the randomness of the time-
series signal based on ordinal patterns of the signal. It is a
non-parametric approach and provides a robust estimation of
irregularity information of the signal. The approach involves
creating a embedded time delayed matrix based on t and D
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Table 1 Entropy measure and its attributes in speech analysis

Randomness measure Implication

Approximate entropy Computes irregularity in the
speech signal, however considers
self-similar patterns in the input

signal

Sample entropy Modification of Approximate
entropy with no bias of

self-similar patterns

SVD entropy Computes the randomness measure
based on decomposition of
high-dimensional data using

singular values

Spectral entropy computes the randomness in the
power spectral density function

of the speech signal

Permutation entropy Uses ordinal patterns in the speech

signal to detect the emotions

denotes the size of the embedded matrix. Usually, T and D are
set to 1 and 3, respectively. The different ordinal patterns are
tabulated and verified with the column vector of the embed-
ded matrix. The number of occurrence of the ordinal patterns
in the matrix is counted and the probability of occurrence,
‘;°, of each pattern is tabulated. The permutation entropy
is computed as given below [35] :

PermEnt, () = — »  p(¥;) logy p(¥1). (10)

The following section briefly explains the contribution of
each entropy toward the calculation of randomness attribute
which plays a significant role in the analysis of the speech
emotions. Table 1 provides a summary of each entropy mea-
sure and its implications in speech analysis.

Entropy and their relation with IMFs

As explained in the previous section, the entropy features
are extracted from the principal mode IMFs through decom-
position of the original speech signal. Figure 5 illustrates
the box-plot of different emotions captured by non-linear
entropy features. From the figure, It is observed that the
median values of all the entropy features differ for differ-
ent class of emotions, and therefore, the computed entropy
features could be readily used as discriminators for classifi-
cation of emotions. We analyzed the emotion classification
accuracy of different entropy features by varying the num-
ber of extracted IMFs. Figure 6 illustrates the variation of
classification accuracy of each of the entropy measure for
different IMF lengths. It could be observed that no single
entropy measure provides good classification accuracy for
all the speech signal emotions and the classification accuracy
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Fig.5 Distribution of
randomness value based on
entropy of different speech
emotion signals: a approximate
entropy, b sample entropy, ¢
SVD entropy, d permutation
entropy, and e spectral entropy
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entropy provides good discrimination of sad, angry, neutral,
and pleasant surprise and less accuracy for other emotions.
Likewise, entropies such as approximate, SVD, and spectral
provide higher discrimination abilities from IMF-3 to IMF-
6, respectively. Therefore, the experimental analysis suggests
that entropy feature extracted from the EMD of speech sig-
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Fig. 6 Performance of different entropy measures of speech emotion signals for different IMF modes: a approximate entropy, b permutation
entropy, ¢ SVD entropy, d sample entropy, e spectral entropy, and f average accuracy of each entropy measure for all emotions

nals present complimentary information at different IMFs.
Thus, it is prudent to include all the IMFs to improve the
classification accuracy.

Subsequently, Fig.6f illustrates the average emotion clas-
sification accuracy for different entropies considered for
IMFs 1-8 (only 8 features). the entropies present com-
plementary information at different decomposition levels,
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employing them individually for emotion classification
presents a peak accuracy of only ~ 79% for the 7 different
emotions considered in this study. Hence, the entropy fea-
tures computed from different IMFs are combined as a feature
vector (considering 40 features) and presented to the classi-
fier for improved signal classification which is explained in
the proceeding section.
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Feature classification

State-of-the-Art (SoA) classifie