
Author’s Accepted Manuscript

Energy-aware Hybrid Fruitfly Optimization for
load balancing in cloud environments for EHR
applications

M. Lawanyashri, Balamurugan Balusamy, S. Subha

PII: S2352-9148(17)30018-7
DOI: http://dx.doi.org/10.1016/j.imu.2017.02.005
Reference: IMU32

To appear in: Informatics in Medicine Unlocked

Received date: 2 January 2017
Revised date: 20 February 2017
Accepted date: 22 February 2017

Cite this article as: M. Lawanyashri, Balamurugan Balusamy and S. Subha,
Energy-aware Hybrid Fruitfly Optimization for load balancing in cloud
environments for EHR applications, Informatics in Medicine Unlocked,
http://dx.doi.org/10.1016/j.imu.2017.02.005

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/imu

http://www.elsevier.com/locate/imu
http://dx.doi.org/10.1016/j.imu.2017.02.005
http://dx.doi.org/10.1016/j.imu.2017.02.005

1

1

Energy-aware Hybrid Fruitfly Optimization for load balancing in cloud

environments for EHR applications.
M.Lawanyashri

*
, Dr. Balamurugan Balusamy, Dr. S.Subha

School of Information Technology and Engineering ,VIT University.

*
Corresponding Author’s. lawanyaraj@gmail.com

Abstract:

Cloud computing has gained precise attention from the research community and management of IT,

due to its scalable and dynamic capabilities. It is evolving as a vibrant technology to modernize and

restructure healthcare organization to provide best services to the consumers. The rising demand for

healthcare services and applications in cloud computing leads to the imbalance in resource usage and

drastically increases the power consumption resulting in high operating cost. To achieve fast

execution time and optimum utilization of the virtual machines, we propose a multi-objective hybrid

fruitfly optimization technique based on simulated annealing to improve the convergence rate and

optimization accuracy. The proposed approach is used to achieve the optimal resource utilization and

reduces the energy consumption and cost in cloud computing environment. The result attained in our

proposed technique provides an improved solution. The experimental results show that the proposed

algorithm efficiently outperforms compared to the existing load balancing algorithms.

Keywords : Cloud computing, Electronic Health Records (EHR),Load balancing, Fruitfly

optimization Algorithm(FOA), Simulated annealing (SA), Energy consumption

Introduction

Cloud Computing is a technology trend that offers utility oriented services to a wide range of users

[1]. It is a thriving paradigm, enables to host pervasive applications from the convergence of scientific

and business domains [2]. The distributed and dynamic access to the virtualized datacenter makes the

users access the IT resources anywhere and anytime using pay-as-you-go model. Recently, cloud

computing has been extensively used and adopted by healthcare industries due to scalable and cost

effective nature [3]. This hastening migration of health care to the cloud evidently signifies a step-

change model for the healthcare industry due to the intrinsic features like rapid provisioning, fast

deployment, elasticity, greater resiliency, lower costs, and data storage solutions. It affords an

ultimate platform for the healthcare industry and thereby providing efficient medical services to the

users [4]. Cloud computing can act as a pervasive and enduring game-changer in all the operations of

the healthcare industry such as service provisioning, collaborative abilities, operating models and end-

user services. The primary purpose of the cloud health care services is to offer healthcare users quick

and easy access to the resources and provide a variety of efficient distributed services. The key

objective of the cloud based health care applications is to improve the availability, scalability and

increase the performance of the healthcare applications [5].

Many cloud healthcare users can get connected to the services offered by several datacenters, server

and storage through an efficient load balancing mechanism. Balancing workloads among multiple

servers, application scaling, routing traffic to the nearest server, scrutinising and minimising heavy

traffic are the vital features of load balancer in cloud computing [6]. The datacenters in cloud

computing are typically comprised of powerful heterogeneous servers, hosting several virtual

machines with possibly different specifications and resource usages; this may lead to the imbalance in

resource usage among virtual machines, which results in performance degradation and SLA violations

2

2

[7]. The workload on the datacenter resources is hoarded massively with the progression of EHR (

Electronic Health Record) applications. However , the availability of healthcare data to the

patients and consumers without causing significant delay is the most promising role in EHR

aplications. To improve the utilization of the cloud resources and increase the performance , a

proficient load balancing approach is predominantly crucial. The healthcare data are real-time data,

with varied size over time. Allocating resources and resizing the resource usage based on critical data

is an important research issue. Thus balancing the load among virtual machines for cloud based health

care services is very essential [8] [9]. Load balancing in the datacenter is to assign the workloads

evenly. Workload Migration from overloaded resources to under-utilized resources is the primary

solution [10] [11].

Natural Computation has fascinated extensively with emergent concern among researchers in the field

of optimisation. Nature-inspired algorithms are meta-heuristics and computationally fast that

proficiently imitates the nature. Metaheuristic approaches are used to solve optimization problems.

Optimisation is the progression of hunting the best conceivable solution to a given complex issue with

certain limitations [12]. It is apprehensive to find best solutions which could be maximising the

efficacy of a particular system or minimising the cost of processing. Hybridization can improve the

convergence speed and quality of the solution attained by the metaheuristic techniques[13].

In our proposed approach, the balancing of workloads among the resources(VMs) can be achieved by

the fruitfly foraging behavior. Compared to other species, sense of smell and vision of the fruitflies

sensory acuity is healthier. The algorithm is easily understandable based on the simplest structure of

the Fruitfly optimization (FOA). Due to very few number of parameters in fruitfly and easy to

implement the nature makes the FOA suitable for load balancing problem in cloud computing. FOA

approach is competitive to other optimization algorithms. There are some defects which make the

technique with low accuracy of optimization, and it easily falls into a local optimum. To solve the

drawbacks, we propose a hybrid FOA approach with SA. The hybridization proves that, the Simulated

annealing based Fruitfly optimization algorithm for load balancing (FOA-SA-LB). It has a greater

ability of global optimum searching. The convergence rate and accuracy of optimization are enriched

greatly.

Here, we propose to apply FOA-SA-LB for load balancing in a cloud environment. In this approach,

the fruitflies act like a collaborative agent which is used to balance the workloads among virtual

machines. The FOA has two stages such as smell and vision based search. Whenever virtual machines

are overloaded, the task of the overloaded virtual machine will be removed and placed in a different

virtual machine which is not overloaded or underutilised. The searching stages in FOA-SA-LB is used

to find an appropriate virtual machine which is suitable for the removed task to be allocated. The

multi-objective function is defined, and load balancing model can follow the constraints subjected to

the objective function. The approach uses a threshold value to identify the load of a virtual machine. If

a particular virtual machine is overloaded, the task is removed and assigned to the identified virtual

machine based on the deadline of the task execution. The comparison of FOA and FOA-SA-LB is

depicted in figure.1 . A virtual machine having minimum deadline task will be chosen to improve the

performance of the datacenter. The smell based search is used to find the locations or virtual machines

available, and vision based search is used to find the best location or virtual machine to migrate the

task from the overloaded one.

In this paper, we propose a hybrid Fruitfly optimization algorithm with a Simulated annealing

approach to improve the convergence speed and quality of the solution. The main contribution of the

paper is:

3

3

1. Hybridization of FruitFly optimisation algorithm with simulated annealing to find the

optimum solution.

2. Design and implementation of the Hybrid FruitFly optimisation algorithm for balancing the

tasks in a cloud environment.

3. A Multi objective function is defined for efficient load balancing of tasks among virtual

machines to minimise makespan, energy and cost.

4. Performance analysis of the proposed approach with existing load balancing algorithm.

Rest of this paper is structured as follows: Section 2 discuss about the background work required for

understanding the concepts. Section 3 gives the basic Fruitfly optimization and Simulated annealing

approach. Section 4 presents the proposed approach. Section 5 focuses on the simulation results.

Lastly, Section 6 concludes our work and delineates the future enhancement.

2. Related work:

Load balancing in cloud computing is an NP-hard problem. Many researchers have recently addressed

load balancing issues in cloud computing. The amount of computation time , needed to find the best

optimum solution is based on the size of the problem. In this section, we have discussed some current

load balancing mechanism in cloud computing. Goyal et al. [14] efficiently proposed a dynamic load

balancing algorithm using ant colony optimisation in grid computing. This paper associates the

pheromone with the resources. The major goal is to balance the workload and improve resource

utilization. Ajit et al. [15] presented a VM level load balancing approach using weighted signature.

This paper considers the analysis of three existing algorithms as the preparation phase to reduce the

response time of the user. Moradi et al. [16] Proposed a New Time probabilistic optimising

algorithm; it elects the cloud resources grounded on best past status and the minimum completion

time. The major goal of this optimised load balancing algorithm is to reduce the overall response time.

Abdullah et al. [17] proficiently designed and proposed symbiotic organism optimisation algorithm

for scheduling of tasks among virtual machines in the cloud datacenter. The primary goal of their

suggested approach is to schedule the task efficiently and to minimise the makespan, response time

and degree of imbalance. Maguluri et al. [18] proposed a stochastic model for balancing the load in a

cloud environment, where the task arrives based on stochastic process. The author designates the

model that achieves any random fraction of the capacity region of the datacenter in the cloud

environment. They define through user constraints and optimisation conditions that the BestFit

Scheduling approach is not throughput optimal. Shanthi et al.[19] proposed firefly algorithm for load

balancing in cloud computing. In their approach, the algorithm adjusts the load, and the results show

that their approach increases the performance on task migration, job arrival rate and reduced

computational time. Ali et al. [20] proposed a guide for dynamic methods in which the task moves

dynamically from overload machine to the underutilised virtual machine, by changing dynamically

and continuously based on the current state of the system. The results show that it improves the

performance compared to static load balancing methods. However, implementing dynamic load

balancing approach effects in the more accurate result.Ramazani et al.[21] presented a task based load

balancing algorithm. They removed only the additional tasks which make the virtual machine to be

overloaded and placed to the underloaded virtual machine using particle swarm optimisation. Krishna

et al.[22] proposed another solution for balancing the load in a cloud environment. They used honey

bee load balancing algorithm to migrate the task from one virtual machine to the other using three

types of priority. The task which is removed from one virtual machine updates the status of the task in

4

4

that particular virtual machine. The load balancing technique increases the throughput and reduces the

waiting time and makespan.The computational approach inspired from nature represents a source for

researchers to build algorithms for complex optimisation methods that are usually infeasible to solve

based on traditional approaches

The computational approach inspired from nature poses a source for researchers to create algorithms

for complex optimization methods that are usually infeasible to solve based on traditional approaches.

The metaheuristic optimization algorithm, like Genetic Algorithm (GA) [16], artificial bee colony

(ABC) [17], particle swarm optimization (PSO) [18], tabu search [19], firefly optimization (FA) [20],

ant colony optimization (ACO) [21] and so on are proposed by many researchers to find multi-

objective solutions,. A Significant count of them is nature inspired to find the best optimal solutions.

Each will find the candidate solutions for the problem and the quality of the solution is determined by

the fitness function [22]. Genetic algorithm fits the greater class of evolutionary algorithms, and

chromosomal principles used to generate better solutions to the optimization problems mostly coded

in the binary string. However, the genetic operations are more complicated and time-consuming [23].

PSO and ABC algorithms are a powerful optimization technique which has relatively rapid iteration

time, On the other hand, they can certainly fall into local extremes [24]. The hybrid algorithms were

proposed by many authors to overcome the drawbacks of single optimization techniques. The hybrid

mechanism in cloud computing is receiving increasing attention in the research community. It prevails

the existing static and dynamic load balancing algorithm drawbacks by coalescing them and retaining

each of the algorithm’s benefits. By compounding more than one metaheuristic approach, the

inherited disadvantages can be circumvented. In [25], a hybrid PSO-GA (particle swarm optimization-

genetic algorithm) algorithm was presented for scheduling in machine tool production. GA-ACO

(Genetic algorithm - particle swarm optimization) was suggested in [26] for electricity load

forecasting.

Buyya et al. [32] presented a simulation –driven energy efficient model to evaluate the heuristics

using active migration approach to dynamically reallocating the virtual machines based on the current

desires of CPU performance. The result showed that the energy consumption is reduced substantially

with QOS (Quality of Service) metrics. Zomaya et al. [33] present an energy efficient technique for

task consolidation to increase utilization of resources. This approach maps each task to the virtual

machine so that the energy consumed to execute the task is reduced without the performance

degradation. Wang et al. [34] presented an adaptive-model-free technique for allocating resources and

minimizing power consumption based on time-varying loads with QOS metrics such as queuing state,

throughput and rejection amount for designing the scheme for resource tuning. Gregory et al. [35]

investigated a service energy framework for virtual machine management in the cloud. The model

monitors and calculates the power consumption of the cloud infrastructure and the gathered data are

evaluated to make an efficient virtual management.

5

5

Figure.1(a) FOA technique. (b) FOA-SA-LB technique

From the above analysis to the best of our knowledge, only handful work considers the availability of

the service and the energy efficiency metrics for load balancing in a cloud environment. The proposed

approach uses hybrid Fruitfly optimization with simulated annealing to attain the best optimum

solution. The aim of our technique is to define a multi-objective function for optimal use of resources

by reducing the three-dimensional aspects such as makespan, energy and cost optimization. From the

simulation results conducted, we could show that our proposed approach outperforms better and

overcomes the drawbacks such as the convergence rate in the FOA. Our approach outperforms the

other existing algorithms like Honeybee load balancing algorithm (HBB-LB), Particle Swarm

Optimization (PSO) and EFOA-LB (Energy-aware Fruitfly optimization for load balancing).

3 Fruit Fly Optimization Algorithm

Fruit fly optimisation is the new metaheuristic intelligent optimisation algorithm, proposed by Pan

[36]. The simplest procedure and operative searching capability make the algorithm popular among

researchers. The fruit fly optimisation algorithm is enthused by the scavenging behaviour of fruit flies.

Recently it is used in many research fields , like web auction logistic services [37] , multidimensional

knapsack problem [38], annual power load forecasting model [39], lot-streaming Flow-shop

scheduling[40], financial distress [41], PID controller tuning [42], Travelling Salesman problem

[43],steel making casting problem [44], location allocation inventory problem [45], Service

composition [46]. The Fruit fly is superior, compared to other species in vision and osphresis. The

following is the fruit fly searching process, and Algorithm.1 defines the procedure for FOA.

Step1: It uses Osphresis organ to smell the food sources and start to fly towards that direction.

Step2: It uses sensitive vision to find the best food and flocking location.

Algorithm1: The basic procedure for FOA

INPUT: Population size, initial Fruit fly location, maximum number of iterations

OUTPUT: Optimal Solution

1. Do

2. For (All food in various location)

3. Initialization

6

6

4. Assign direction and distance to move

5. Evaluate smell concentration fitness value

6. Substitute the smell-concentration fitness value into fitness function

7. Find the best smell by maximal smell concentration

8. Use vision search to fly towards the best smell value location.

9. End For

10. While stopping condition is not exceeded.

It is an efficient method for finding global optimisation using Osphresis organ to smell the food and

move towards that direction. It communicates information through its neighbours, equates and finds

the perfect location using its desperate vision and fitness by taste.

Initialization Phase:

Initialization of the parameters, Assign the population size, Random Fruit fly location (X, Y) and a

maximum number of iterations.

Assignment Phase: Give arbitrary direction and distance to fly for searching food.

_ (tan)

_ (tan)

k axis

k axis

X X Random Value dis ce

Y Y Random Value dis ce

 (1)

Evaluation Phase: Evaluate the smell judgement value based on food location of each Fruit fly and

estimate the distance of food source.

2 2

() 1/

k k k

k k

Dis X Y

SmellConcentration S Dis

 (2)

Substitution Phase: Substitute the smell fitness value to fitness function to determine the smell

concentration of each fruit fly.

 (3)

Identification Phase: Identify the best smell concentration which has a maximum value of smell.

[_ , _] max()kBest Smell Best index Smell (4)

Selection Phase: Using vision-based search, it flies towards the direction of food location based on

max()kSmell

_ _

_ (_)

_ (_)

Smell Best Best Smell

X axis X Best index

Y axis Y Best index

 (5)

Simulated Annealing:

Simulated annealing is a metaheuristic approach, inspired by the annealing process in metallurgy. It is

a simple optimisation method comprising heating and cooling controller of material to intensify the

size of its crystal. The energy is reduced according to the room temperature to lessen the defects in

_ ()k kSmell Smell Function S

7

7

metallic structures. The simulated annealing technique uses its temperature progress as the control

factor and its internal energy as the objective function. The simulated annealing process starts with a

primary solution S and an updated solution created as S’ . The solution for the procedure is generated

if the fitness function F(S
*
) value is lesser than F(S).

*(() ())

expb

m

f S f S
P

T

 (6)

The higher fitness value of S
*
 is accepted with the defined probability in equation (). This particular

policy enables the searching process to avoid the entangle in local optima. Here F(S
*
) is the fitness

function of the neighbour solution, and F(S) is the fitness function of the current solution.

Temperature Tm defines the control parameter. The equilibrium state is attained based on the

succession of moves and based on the cooling rate, the temperature control parameter is determined.

The control parameter Tm affects the performance of the global search. If the temperature obtains a

high initial value, then the simulated anneal process will have a greater chance. After a succession of a

decrease in the temperature, the SA procedure will be terminated, if there are no improvements. The

possibility of locating global solution is further limited, if the initial temperature is low, and the

computation time will be shorter.
k

m o fnT T T (7)

Where
k is the descending rate of the Tm, 0< <1, k is the number of stints, the neighbour solutions

produced; To is the initial value of temperature, and Tfn is the final value of temperature. Algorithm. 2

defines the procedure for SA.

Algorithm 2: The basic procedure for Simulated Annealing

INPUT: Initial Value of Temperature, Final value of Temperature, and Cooling-rate

OUTPUT: Best optimal solution

1: Generate a primary solution so

2: Do

3: Generate a current solution s0 with the neighbour of s0

4: Calculate the probability Pb based on the Equation ()

5: Accept or reject of new solution according to Pb

6: Update the best solution among the existing one

7: Minimize the Temperature

8: While stopping condition is not exceeded.

4. Problem Formation:

The physical machines m in the cloud data center is represented by the set of P={p1,p2,….pm}, with

q virtual machines signified by V={v1,v2,…..vn} and k tasks Tk={t1,t2,….tk}. The user submits the

task to the cloud broker. It is denoted by a group of parameters like ti= {ari,lni,dli,fti}, where ari is the

arrival time, si is the length or size of the task, dli is the time limit or deadline for the execution of the

task, and fti is the finishing time of the task. The submitted task ti is mapped to the virtual machine vj

by the cloud broker. The cloud broker maps the submitted task to the virtual machines. In this

approach, we mainly focus on the utilization of the virtual machines, the completion time of the tasks

(makespan), energy consumption, and cost of the datacenter.

Let Pk be the processing time of all tasks.[22]

8

8

1

1,.....,
k

n ij

i

P P j m

 (8)

Virtual Machine Capacity

_ _ _j j jj num p mips p bw vcap pe pe v (9)

Where pe is the processing element, _ jnum ppe is the processor count, _ jmips ppe is the mips of all

processors, _ jbw vv is the bandwidth of Vj.

()

(,)

_ (,)

k
VM t

j

Num T t
L

Service rate V t
 (10)

Where VML is a load of a particular virtual machine, (,)kNum T t is the total number of tasks at time t,

_ (,)jService rate V t is the service rate of virtual machine Vj at t.

A load of all virtual machines:

()

1

()
m

VM t

j

Load VM L

 (11)

Processing time of virtual machine
()

() j

VM t

VM

j

L
PT

cap
 (12)

Processing time of all virtual machines ()

 of all V

 of all V

j

VM

j

Load
PT

Capacity
 (13)

Execution time of Task Tk: ()
()

kT

k

j

l
execu T

c V
 (14)

Where
kTl is the length /size of the task Tk and the fractions of CPU performance is determined by

()jc V .[47]

Let sttij be the start time of the task ti on the virtual machine vj, and fti be the finishing time of the task

ti on the virtual machine vj. fti can be calculated by the following

()i ij kft stt execu T (15)

ij is a decision variable used because, each task should be assigned to only one virtual machine. Pij is

defined as the processing time of the task Ti allocated to a virtual machine Vj.

 ,1 if T is assigned to the virtual machine V and

0 otherwise , if
i j i i

i i

ft dl

ij ft dl

 (16)

9

9

Therefore, the objective function of the load balancing model is as follows:

(i) Makespan: Makespan in the cloud defines the overall completion time of tasks Tk in virtual

machine Vj. Thus, This objective function is used to reduce the makespan of tasks.

Objective function :

 F1(Y)= Minimize ,
max

i k j

ij
t T v V

ft

 . (17)

Where ijft is the finishing time of task it on the virtual machine jv .

(ii)Energy consumption:

Let econsij is the energy consumption produced by the task ti running on the virtual machine vj ,

econs_ratej represents the energy consumption rate of the virtual machine, and exect(Tk) is the

execution time of the task.

The energy consumption is calculated by

_ ()ij j kecons econs rate exec T (18)

The total energy consumption is calculated by

1 1

()
k n

ij

i j

E X econs

 (19)

Therefore, the objective function is defined as

 F2(Y) = Minimize ()E X (20)

(iii) Cost of the datacenter

The cost of the datacenter is calculated using the equation ()

() ()C X c E X (21)

Where c is the cost of 1kW power.

Therefore, the objective function for cost is defined as

 F3(Y) = Minimize ()C X (22)

The objective function for the load balancing model are subject to

1

1 (t ,)
m

ij i j

j

T v V

 (23)

10

10

1

 dl (t , v)
k

i i i j

i

T T V

 (24)

2

() ()

1

1
()

j

k

VM VM upper

i

PT PT Th
k

 (25)

Constraint (23) represents that only one task should be allocated to vj, constraint (24) denotes that the

execution of each task should be less that the deadline, constraint (25) reveal that the standard

deviation of load should be less that the upper threshold value Thupper.

Response time:

Response time is the time taken from the task enters the system and the time the task being scheduled.

Response time is calculated as follows

Re time i is ft ar (26)

Degree of imbalance:

Deg_imb = Max(Tk) – Min(Tk)/Avg(Tk) (27)

Where Max(Tk) is the maximum number of task, Min(Tk) is the minimum number of task and

Avg(Tk) is the average of task (Tk) [22].

FOA-SA-LB Algorithm:

In this paper , a hybrid Fruitfly optimization technique is used to balance the load among virtual

machines in cloud datacenter. The low-optimization accuracy and easy to fall into local optimum are

the drawbacks in fruit fly optimization. The foremost motive for developing the FOA-SA-LB is to

overcome the defects of the original Fruitfly optimization algorithm. The procedure of the proposed

approach consist of two stages. FOA is employed first stage, where each swarm of flies moves in

different directions to follow a uniform distribution. The second stage integrates simulated annealing

to update the current locations and solutions to force the hurdle of FOA out of premature

convergence, due to its exploration and exploitation ability. The proposed approach improves the

convergence rate and optimization accuracy accordingly. The Algorithm which uses FOA in

Simulated Annealing is defined in Algorithm. 3.

Algorithm3: Simulated Annealing Procedure based on FOA search solution

INPUT: Initial Value of Temperature, Final value of Temperature, and Cooling-rate

OUTPUT: Best optimal solution

1. Do

2. For (All food in various location)

3. Initialization

4. Assign direction and distance to move

5. Evaluate smell concentration fitness value

6. Substitute the smell-concentration fitness value into fitness function

7. Find the best smell by maximal smell concentration

11

11

8. Use vision search to fly towards the best smell value location.

9. *() ()i if f S f S

10. exp
m

f
g

T

11. 0 or g > R(0,1)if f

12.
* Si iS

13. Endif

14. R(0,1) is random number generated uniformly between 0 and 1

15. End For

16. While stopping condition is not exceeded.

Procedure for FOA-SA-LB solution construction for load balancing:

Every fruitfly initiates the process of solution construction with a set of all Virtual machines Vj and

the task Tk allocated randomly. The procedure first identifies whether the loads on all virtual machines

are balanced based on threshold value. If any virtual machine is overloaded , the task from the

overloaded virtual machine is removed. Here the removed task is termed as fruitfly. Fruitfly searches

the location using smell based searching process. Each fruitfly identifies the location that is virtual

machine to allocate the removed task. In other words the location of the virtual machine (food) among

all eligible virtual machines to assign the removed task. The process continues till a particular

datacenter reaches to the state that all the virtual machines have balanced load. For updating the

neighbour swarm location and finding the best optimal solution , the simulated annealing approach is

used in this work. The fitness value is determined by the multi-objective function.

Smell-based and Vision based search:

Smell-based searching process is the primary procedure, in which N fruitflies are produced for sub-

population. In FOA-SA-LB approach, a list of overloaded and underloaded virtual machines which is

appropriate to remove task with deadline constraint is determined. The vision based searching process

is used to evaluate the best virtual machine suitable to allocate the removed task.

Load Balancing Decision:

The fruitfly searches for the food and finds the location of food based on smell search and best smell

based on vision search. The SA approach is used to find the best optimum solution based on the

energy and temperature. In our proposed technique, the removed task is considered as fly, which

searches for the suitable virtual machine based on the multi-objective function. The basic constraints

are followed such as the load of the virtual machine, after assigning the task should not to be greater

than the upper threshold value to choose a suitable virtual machine for the removed task.. If there is

more number of virtual machine is available, then deadline constraint is considered. The deadline of

task is imperative to migrate the task from heavy loaded VM to low loaded VM. If the deadline dli of

the removed task is high, then the virtual machine having minimum of higher deadline task is

selected. If the deadline of task is medium, then the virtual machine having less number of higher and

medium deadline task is selected. The virtual machine grouping is based on the current load LVM(t) of

the virtual machine. We consider two types of group such as overloaded VM group (findVMListol)

and underloaded VM group (findVMListul). The task is removed from the findVMListol and allocated

to the virtual machine in findVMListul based on the objective function. The process of removing task

12

12

from findVMListol is continued, till the findVMListol is NULL. This work not only focuses on load

balancing, it also distillates on saving the energy consumed in the datacenter to reduce cost. The

radical process of energy conservation is based on making the virtual machines to ON and OFF state,

which is not in use. It identifies the applicable virtual machines in the datacenter, which is

underutilized and changing the state from active to sleep. The threshold value is used to make the

virtual machine to sleep and awake mode in the datacenter. If the load of the particular virtual

machine is lesser than the lower threshold value Thlower , then that virtual machine is put into sleep

mode, and if the virtual machine load is greater than Thupper, then awake the virtual machine from the

sleep mode. If the load of virtual machine is NULL, then the virtual machine is removed from VMList

to save energy.

Algorithm 4: FOA-SA-LB for Energy-aware -Load balancing (FOA-SA-LB):

Step 1: _ lFf S is the l
th

Fruitfly swarm

Step 2:
() ulfindVMList Null ,

() olfindVMList Null

Step 3: for each VM vj in the datacenter do

Step 4: Calculate the capacity from equation (9) and load from equation (10)

Step 5: if Load(VM) > max(capacity) then

 Load Balancing is not possible. Reset the load.

Else if LVM(t) > Thlower && LVM(t)<Thupper , then

 Balanced load for all virtual machines. Exit.

Step 6: Endif

Step 7: For each l in number of Fruitfly swarms // Smell-based search

Step 8: Generate S Fruitflies l pFf (p=1,2,……..S) on l Fruitfly swarm

Step 9: For each vj inVM do

Step 10: If LVM(t) > Thupper , then

()ol jfindVMList V

Else ()ul jfindVMList V

Step 11: Endif

Step 12: Endfor

Step 13: Endfor

Step 14: For each l in number of Fruitfly swarms do //Vision based search

 For each in S do

 Evaluate the fruitflies generated lpFf

 Generate new solution so in SA based on neighbour swarms using Algorithm3.

 Endfor

Step 15: Endfor

Step 16: For each vj in VM do

Step 17: If LVM(t) != ,then

Step 18: Sort all VM in ascending order.

Step 19: Sort all task based on the deadline (dli)

Step 20: For each Tk in ()olFindVMList do

 Find BestVM in
()ulfindVMList such that LVM(t) +lni >=Thlower && LVM(t) +lni<Thupper

 [best Fruitfly swarm location (sub-population) – vision]

Step 21: Endfor

Step 22: Migrate(T,BestVM)

Step 23: Else Move Vj to sleep mode.

 Endif

 Update Tasklist, VMlist and LVM(t)

Step 24: Endfor

13

13

Step 25: If
()olFindVMList != and

()ulfindVMList == , then

Step 26: Awake virtual machine in sleep mode.

Step 27: Endif

Step 28: If If ()olFindVMList == and
()ulfindVMList != , then

 VMlist.remove(Vj)

 Update VMlist and
()ulfindVMList

Step 29: Endif

Step 30: Endfor

Step 31: Update Best fruitfly location based on SA in equation (7) using Algorithm 3.

Step 32: Endfor

5. Experiment Results:

In this section we represent two different experiment, the first we show the comparison of FOA with

Hybrid FOA (FOA-SA-LB). The experiment uses four well-known benchmark optimization functions

which is shown in Table 1. to compare the original FOA with the FOA-SA-LB [48]. We compare the

optimization precision and the convergence speed using fixed iterations and population size. We use

fly size as 30 and the number of iterations as 100 in our experiment. The experimental results is

illustrated in Table 2. The order of magnitude is better for FOA-SA-LB compared to FOA for all the

four functions. FOA-SA-LB has optimization effect 2 to 3 times better than FOA. From table 1 , we

can see that the mean value of FOA-SA-LB is lower than FOA, closer to the minimum theoretical

value and the iteration times of FOA-SA-LB is faster than FOA. So from the above analysis, SOA-FA

has the better stability compared to FOA.

Table 1. BenchMark Functions

Functio

n Name
Equation Boundary

Optimu

m

Peak(s

)

Sphere

f1
2

1

1()
n

i

i

f x x

 [-100,100] 0 Single

Rastrigi

n f2
2

1

2() (10cos(2) 10)
n

i i

i

f x x x

 [-5.12,5.12] 0
multip

le

Griewan

k f3
2

1 1

3() 1/ 4000 cos 1
nn

i
i

i i

x
f x x

i

 [-600,600] 0

multip

le

Ackley

f4

2

1 1

1 1
4() 20exp 0.2 exp cos 2 20

n n

i i

i i

f x x x e
n n

[-30,30] 0
multip

le

Table 2. Test Results

Optimization

Function

Method Worst-case
Optimal-

value

Average-

value
Variance

1()f x
FOA 9.294E-005 7.342E-005 8.258E-005 3.311E-011

FOA-SA-LB 1.201E-005 7.268E-006 8.402E-006 1.467E-012

2 ()f x
FOA 4.319E-005 3.589E-005 4.011E-005 9.336E-012

FOA-SA-LB 4.343E-006 3.551E-006 3.848E-006 8.768E-014

3()f x
FOA 4.311E-002 3.779E-002 4.019E-002 2.421E-006

FOA-SA-LB 1.339E-002 1.089E-002 1.399E-002 5.179E-007

4 ()f x
FOA 1.852E-002 1.389E-002 1.613E-002 1.193E-006

FOA-SA-LB 3.126E-003 1.275E-003 1.629E-003 7.512E-008

14

14

The second experiment deals the efficiency of FOA-SA-LB for load balancing in cloud environment

for EHR applications using cloudsim tool. Cloud computing scenarios are modelled and simulated

using a powerful tool called cloud sim.[49]. We here evaluated the performance of the proposed

approach based on the simulation results. The proposed approach compares the FOA-SA-LB load

balancing algorithm with the existing intelligent optimization methods like PSO, HBB-LB and

EFOA-LB. The simulation of the proposed algorithm is based on the multi-objective functions

defined along the constraints specified. The makespan comparison is made before and after load

balancing, which is depicted in figure. 2. The proposed approach not only focuses on load balancing

issues, but reducing the energy and cost of the datacenter is also emphasized. Based on the Threshold

value, the workloads assigned to each virtual machine are balanced in the datacenter along with the

sleeping strategy to make the virtual machine in sleep state, if there is no load assigned to the virtual

machine. If the load is greater than the lower threshold value, then that particular virtual machine is

used to assign the task which is removed from the overloaded virtual machine. Thus the sleeping

strategy incorporated in the proposed approach reduces the energy and cost subsequently. Figure. 3

depict the comparison of makespan with other existing optimization algorithms like HBB-LB, PSO

and EFOA-LB. The x-axis in the figure illustrates the number of tasks and the y-axis illustrates the

overall execution time based on deadline constraint (makespan). The result shows that our proposed

approach FOA-SA-LB has minimum makespan time compared to the existing algorithms. Figure.4

indicates the total energy consumption used according to the number of virtual machines before and

after FOA-SA-LB. The result shows that our proposed approach drastically reduces the energy

consumption. Table 3 shows the simulation comparison result for energy consumption based on FOA-

SA-LB, HBB-LB, PSO and EFOA-LB. The result obtained shows that FOA-SA-LB approach is

having less energy consumption compared to other load balancing techniques which is depicted in

figure 5. The x-axis in figure. 5 illustrates the number of tasks and the y-axis illustrates the energy

consumed using kWh.

Table 3. Comparison of energy consumption of various load balancing algorithms

No of tasks FOA-SA-LB(kWh) EFOA-LB(kWh) HBB-LB(kWh) PSO(kWh)

100 1.13 1.17 2.44 1.78

200 1.20 1.28 3.66 3.12

300 2.01 2.21 4.44 4.34

400 3.08 3.20 5.5 7.21

Figure 6 indicates the degree-of-imbalance of virtual machines before and after FOA-SA-LB using

equation (27).

Figure.2 Comparison of makespan before and after FOA-SA-LB

15

15

Figure.3 Comparison of makespan for FOA-SA-LB, EFOA-LB,HBB-LB and PSO Algorithms

Figure.4 Total Energy Consumption before and after load balancing.

Figure 5 . Comparison of energy consumption for FOA-SA-LB, EFOA-LB, HBB-LB and PSO.

16

16

6 Conclusion and Future work:

In this paper , we propose a multi-objective hybrid Fruitfly optimization technique based on SA for

load balancing in cloud computing environments. We have carried out two experiments. The first

experiments compares the original FOA with the Hybrid FOA approach and the second part simulates

the FOA-SA-LB and compares the result with the existing metaheuristic approaches such as PSO,

HBB-LB and EFOA-LB. The proposed FOA-SA-LB overcomes the original FOA drawbacks and

attain optimum solution for balancing the workloads among virtual machines effectively. The FOA-

SA-LB uses simulated annealing approach which is best suit for local search ability to increase the

convergence rate and performance of the datacenter. FOA-SA-LB outperforms FOA with respect to

convergence rate. The proposed work balances the workload using dynamic threshold values and

reduces the makespan ,energy consumption and cost of the datacenter. The FOA-SA-LB uses the

sleeping strategy to reduce the energy consumption. The simulation results expose that our proposed

method achieves greater performance compared to other existing methods like HBB-LB, EFOA-LB

and PSO. In future , we intend to extend this work for load balancing workflows with QOS factors

like network traffic information in cloud computing. The network traffic is one of the important

research issue in cloud computing, which consumes more energy and increases the cost of the data

center. We will also try to improve the utilization of resources in mobile cloud computing. The

suitability of the proposed algorithm will also be tested for fog and mobile edge computing.

References

Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A. Cloud computing—The business

perspective. Decision support systems. 2011 Apr 30;51(1):176-89.

Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation

computer systems. 2009 Jun 30;25(6):599-616.

Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson D, Rabkin A,

Stoica I, Zaharia M. A view of cloud computing. Communications of the ACM. 2010 Apr

1;53(4):50-8.

Li M, Yu S, Zheng Y, Ren K, Lou W. Scalable and secure sharing of personal health records in

cloud computing using attribute-based encryption. IEEE transactions on parallel and distributed

systems. 2013 Jan;24(1):131-43.

Sultan N. Making use of cloud computing for healthcare provision: Opportunities and challenges.

International Journal of Information Management. 2014 Apr 30;34(2):177-84.

Gholami MF, Daneshgar F, Low G, Beydoun G. Cloud migration process—A survey, evaluation

framework, and open challenges. Journal of Systems and Software. 2016 Oct 31;120:31-69.

Beloglazov A, Buyya R. Managing overloaded hosts for dynamic consolidation of virtual

machines in cloud datacenters under quality of service constraints. IEEE Transactions on Parallel

and Distributed Systems. 2013 Jul;24(7):1366-79.

17

17

Kaur T, Chana I. Energy aware scheduling of deadline-constrained tasks in cloud computing.

Cluster Computing. 2016:1-20.

Mondal B, Dasgupta K, Dutta P. Load balancing in cloud computing using stochastic hill

climbing-a soft computing approach. Procedia Technology. 2012 Dec 31;4:783-9.

Xu G, Pang J, Fu X. A load balancing model based on cloud partitioning for the public cloud.

Tsinghua Science and Technology. 2013 Feb;18(1):34-9.

Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allocation heuristics for efficient

management of data centers for cloud computing. Future generation computer systems. 2012 May

31;28(5):755-68.

Črepinšek M, Liu SH, Mernik L. A note on teaching–learning-based optimization algorithm.

Information Sciences. 2012 Dec 1;212:79-93.

Mezmaz M, Melab N, Kessaci Y, Lee YC, Talbi EG, Zomaya AY, Tuyttens D. A parallel bi-

objective hybrid metaheuristic for energy-aware scheduling for cloud computing systems. Journal

of Parallel and Distributed Computing. 2011 Nov 30;71(11):1497-508.

Goyal SK, Singh M. Adaptive and dynamic load balancing in grid using ant colony optimization.

International Journal of Engineering and Technology. 2012 Aug;4(9):167.

Ajit M, Vidya G. VM level load balancing in cloud environment. InComputing, Communications

and Networking Technologies (ICCCNT), 2013 Fourth International Conference on 2013 Jul 4

(pp. 1-5). IEEE.

Moradi M, Dezfuli MA, Safavi MH. A new time optimizing probabilistic load balancing

algorithm in grid computing. InComputer Engineering and Technology (ICCET), 2010 2nd

International Conference on 2010 Apr 16 (Vol. 1, pp. V1-232). IEEE.

Abdullahi M, Ngadi MA. Symbiotic Organism Search optimization based task scheduling in

cloud computing environment. Future Generation Computer Systems. 2016 Mar 31;56:640-50.

Maguluri ST, Srikant R, Ying L. Stochastic models of load balancing and scheduling in cloud

computing clusters. InINFOCOM, 2012 Proceedings IEEE 2012 Mar 25 (pp. 702-710). IEEE.

Florence AP, Shanthi V. A load balancing model using firefly algorithm in cloud computing.

Journal of Computer Science. 2014 Jul 1;10(7):1156.

Alakeel AM. A guide to dynamic load balancing in distributed computer systems. International

Journal of Computer Science and Information Security. 2010 Jun;10(6):153-60.

Ramezani F, Lu J, Hussain FK. Task-based system load balancing in cloud computing using

particle swarm optimization. International Journal of Parallel Programming. 2014 Oct

1;42(5):739-54.

Krishna PV. Honey bee behavior inspired load balancing of tasks in cloud computing

environments. Applied Soft Computing. 2013 May 31;13(5):2292-303.

Zhao C, Zhang S, Liu Q, Xie J, Hu J. Independent tasks scheduling based on genetic algorithm in

cloud computing. In2009 5th International Conference on Wireless Communications, Networking

and Mobile Computing 2009 Sep 24 (pp. 1-4). IEEE.

Balusamy B, Sridhar J, Dhamodaran D, Krishna PV. Bio-inspired algorithms for cloud

computing: a review. International Journal of Innovative Computing and Applications. 2015;6(3-

4):181-202.

Shi XH, Liang YC, Lee HP, Lu C, Wang LM. An improved GA and a novel PSO-GA-based

hybrid algorithm. Information Processing Letters. 2005 Mar 16;93(5):255-61.

Silva CA, Sousa JM, Runkler TA. Rescheduling and optimization of logistic processes using GA

and ACO. Engineering Applications of Artificial Intelligence. 2008 Apr 30;21(3):343-52.

Bahga A, Madisetti VK. A cloud-based approach for interoperable electronic health records

(EHRs). IEEE Journal of Biomedical and Health Informatics. 2013 Sep;17(5):894-906.

Schweitzer EJ. Reconciliation of the cloud computing model with US federal electronic health

record regulations. Journal of the American Medical Informatics Association. 2012 Mar

1;19(2):161-5.

Lin CW, Abdul SS, Clinciu DL, Scholl J, Jin X, Lu H, Chen SS, Iqbal U, Heineck MJ, Li YC.

Empowering village doctors and enhancing rural healthcare using cloud computing in a rural area

of mainland China. Computer methods and programs in biomedicine. 2014 Feb 28;113(2):585-92.

18

18

Miah SJ, Hasan J, Gammack JG. On-Cloud Healthcare Clinic: An e-health consultancy approach

for remote communities in a developing country. Telematics and Informatics. 2017 Feb

28;34(1):311-22.

Rolim CO, Koch FL, Westphall CB, Werner J, Fracalossi A, Salvador GS. A cloud computing

solution for patient's data collection in health care institutions. IneHealth, Telemedicine, and

Social Medicine, 2010. ETELEMED'10. Second International Conference on 2010 Feb 10 (pp.

95-99). IEEE.

Beloglazov A, Buyya R. Energy efficient resource management in virtualized cloud data centers.

InProceedings of the 2010 10th IEEE/ACM international conference on cluster, cloud and grid

computing 2010 May 17 (pp. 826-831). IEEE Computer Society.

Lee YC, Zomaya AY. Energy efficient utilization of resources in cloud computing systems. The

Journal of Supercomputing. 2012 May 1;60(2):268-80.

Wang X, Du Z, Chen Y. An adaptive model-free resource and power management approach for

multi-tier cloud environments. Journal of Systems and Software. 2012 May 31;85(5):1135-46.

Katsaros G, Subirats J, Fitó JO, Guitart J, Gilet P, Espling D. A service framework for energy-

aware monitoring and VM management in Clouds. Future Generation Computer Systems. 2013

Oct 31;29(8):2077-91.

Pan WT. A new evolutionary computation approach: fruit fly optimization algorithm.

InProceedings of the Conference on Digital Technology and Innovation Management 2011.

Lin SM. Analysis of service satisfaction in web auction logistics service using a combination of

fruit fly optimization algorithm and general regression neural network. Neural Computing and

Applications. 2013 Mar 1;22(3-4):783-91.

Wang L, Zheng XL, Wang SY. A novel binary fruit fly optimization algorithm for solving the

multidimensional knapsack problem. Knowledge-Based Systems. 2013 Aug 31;48:17-23.

Li HZ, Guo S, Li CJ, Sun JQ. A hybrid annual power load forecasting model based on

generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based

Systems. 2013 Jan 31;37:378-87.

Zhang P, Wang L. Grouped Fruit-Fly Optimization Algorithm for the No-Wait Lot Streaming

Flow Shop Scheduling. InInternational Conference on Intelligent Computing 2014 Aug 3 (pp.

664-674). Springer International Publishing.

Pan WT. A new fruit fly optimization algorithm: taking the financial distress model as an

example. Knowledge-Based Systems. 2012 Feb 29;26:69-74.

Han J, Wang P, Yang X. Tuning of PID controller based on fruit fly optimization algorithm.

In2012 IEEE International Conference on Mechatronics and Automation 2012 Aug 5 (pp. 409-

413). IEEE.

Choubey NS. Fruit Fly Optimization Algorithm for Travelling Salesperson Problem. International

Journal of Computer Applications (0975–8887). 2014 Dec;107(18):22-7.

Li JQ, Pan QK, Mao K, Suganthan PN. Solving the steelmaking casting problem using an

effective fruit fly optimisation algorithm. Knowledge-Based Systems. 2014 Dec 31;72:28-36.

Mousavi SM, Alikar N, Niaki ST, Bahreininejad A. Optimizing a location allocation-inventory

problem in a two-echelon supply chain network: A modified fruit fly optimization algorithm.

Computers & Industrial Engineering. 2015 Sep 30;87:543-60.

Zhang Y, Cui G, Wang Y, Guo X, Zhao S. An optimization algorithm for service composition

based on an improved FOA. Tsinghua Science and Technology. 2015 Feb;20(1):90-9.

Zhu X, Yang LT, Chen H, Wang J, Yin S, Liu X. Real-time tasks oriented energy-aware

scheduling in virtualized clouds. IEEE Transactions on Cloud Computing. 2014 Apr;2(2):168-80.

Abdullahi M, Ngadi MA. Hybrid symbiotic organisms search optimization algorithm for

scheduling of tasks on cloud computing environment. PloS one. 2016 Jun 27;11(6):e0158229.

Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya R. CloudSim: a toolkit for modeling

and simulation of cloud computing environments and evaluation of resource provisioning

algorithms. Software: Practice and Experience. 2011 Jan 1;41(1):23-50.

