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Visual Sensors Networks (VSN) are spatially dispersed distributed networks, consisting of small sensing
units and image sensors. They are scattered over a region to sense, collect and transfer data and are
involved in domains such as environmental monitoring, surveillance and tracking. The resource restric-
tions imposed on sensor nodes are the challenges for image transmission. Sensor nodes are battery power
supplied. The greatest operative solution is image compression for energy efficient image communica-
tion. With the advent of VSNs, energy-aware compression algorithms have gained wide attention.
Since the application of the conventional standards are not energy beneficial. New strategies and mech-
anisms for power-efficient image compression algorithms are developed. The scope of this review is to
provide a holistic review of such energy efficient image compression algorithms for camera equipped
VSN. This survey enumerates the benefits and limitations of conventional image compression standards
to latest compression technique developed and adapted for VSN.
� 2018 Ain Shams University. Production and hosting by Elsevier B.V. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Wireless VSN are spatially dispersed networks consisting of
small sensing devices fortified with low-power CMOS imaging sen-
sors such as Cyclops. Ideally, WSNs are deployed in the region of
interest to collect and transmit data in multi-hop way. Sensor
nodes are involved in many domains such as environmental mon-
itoring, video surveillance, and object detection and tracking [1,2].
The sensor nodes are resource limited. The resource constraints in
computation, memory, bandwidth and energy are the major chal-
lenges to sensor network designs especially for image transmis-
sion. Hence forth energy-aware compression algorithms
dedicated for VSN have gained wide attention. That is, new strate-
gies and mechanisms for power-efficient image compression algo-
rithms are developed, since the application of the conventional
methods is not always energy beneficial.

The compression algorithms will reduce redundancies and
hence will reduce the size and lower the bandwidth requirement
while preserving acceptable image quality of reconstructed image.
The compression techniques are broadly categorized into lossy and
lossless compression techniques. In lossy compression, certain
amount of information is discarded and hence some data is lost.
The lossy compression techniques have high compression ratio
with low image quality. The lossless techniques will have low com-
pression ratio but the image quality is highly closer to the original.
The lossy compression techniques are most suitable for the
resource constrained VSNs. The schematic image compression
model could be as in Fig. 1.

The choice of choosing the best compression technique depends
upon the nature of system. One of those operating platforms is
visual sensor network (VSN). VSN consists of a number of low cost
camera sensor nodes arrayed in a region of interest with one or
more base stations or sink nodes as depicted in Fig. 2 to sense
the physical phenomenon. Each VS (Visual Sensor) node in VSN
has the ability to capture, compress and communicate the vision
data to the sink nodes. The sink nodes are the network manager
or controller [3]. The sink node controls and coordinates the func-
tions of the other nodes. It also aggregates information gathered
from the nodes to be stowed or further managed.

VSN has widespread applications like surveillance (military, on
road traffic), environmental monitoring (industrial process con-
trolling, machines), habitat monitoring (kids, elderly persons),
security monitoring, health care, critical infrastructure protection,
chemical and biological detection, plant monitoring, agriculture,
animal tracking [4–6]. In addition, with camera sensors, the VSN
faces new challenges compared to conventional scalar WSN. The
major challenges of VSNs are the following points [7–10].
ew. Ain
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Fig. 1. Image compression model Encoder and Decoder.

Fig. 2. Typical VSN architecture and sensor mote modules.
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1. Bandwidth constraint - Communication of single image
requires more number of data packets.

2. Processing capability constraint- Camera nodes and forwarding
nodes deplete their energy faster.

3. Power constraint- The transceiver is the most power avaricious
electronic component of sensor node.

Typically, compression is performed by exploiting pixel correla-
tion and by reducing pixel redundancies. The main objective of this
review is to study and analyse substantial research guidelines in
this topic. It concludes the benefits and limitations of most recent
efforts of state of the art as well as open research challenges for
each compression method and their adaptability to VSN. Low com-
plex image compression techniques will consume less power thus
permitting long lifetime of camera nodes in the network which is
the main performance metric of VSN. Moreover, this paper
Please cite this article in press as: Suseela G, Asnath Victy Phamila Y. Energy ef
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explores various hardware platforms, which permit implementa-
tion of energy efficient image compression techniques. For exam-
ple, the time taken to perform 2D- DWT (daubechies 5/3 filter
bank) on a 8 bpp image of size 128 � 128 by ATmega128L micro-
controller is around 8 s and time taken by the same microcon-
troller with Cyclops image sensor and with its typical operating
frequency of 7.3728 MHz to perform 2D- 8 � 8 Loeffler DCT is
around 7 s [11,12]. The Table 1 lists some of the available hardware
platforms [10,13–15] for better realization of resource restrictions
in the VSN.

The paper is structured as follows: Section 2 discusses the per-
formance metrics of image compression algorithms. Section 3 elab-
orates two broad paradigms of compression techniques i.e.,
transform based and non-transform based compression techniques
Section 3.3 debates on Discrete Cosine Transform based algo-
rithms, which is used in popular JPEG (Joint Photographic Experts
ficient image coding techniques for low power sensor nodes: A review. Ain
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Table 1
Visual Sensor Network Platforms.

Platform Processor Internal memory External memory Mote interfacing Radio Module Imager

CYCLOPS ATMEL ATmega128L 64 KB 512 KB Mica2 TR1000
(40 kbps)

ADCM-1700

CITRIC PXA270 64 MB 16 MB Tmote Sky mote CC2420
(250 kbps)

OV9655

Panoptes Intel XScale
PXA255

64 MB 32 MB COTS hardware IEEE802.11 Logitech USB Camera

MeshEye ATMEL AT91SAM7S 64 KB 256 MB Fully integrated CC2420
(250 kbps)

Agilent ADNS-3060

Vision
Mote

ATMEL
9261 ARM 9

64 MB 128 MB Fully integrated CC24309
(250 kbps)

CMOS Camera
(unspecified)
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Group) compression standard. Section 4 illustrates about Discrete
Wavelet Transform based coding techniques, which is used in pop-
ular JPEG2000 image compression standard. Section 5 discusses
about various lossless entropy coding schemes flexible for VSN.
Under Section 6, energy consumptions of various image compres-
sion techniques available in the literature is summarized and Sec-
tion 7 concludes the paper by presenting open research issues and
limitations.

2. Performance metrics

The performance of any image compression algorithm is deter-
mined by the following factors [8].

� Image Quality
� Compression ratio
� Computational complexity and Memory requirement
� Energy Consumption

2.1. Image quality

Compression is re-representation of the input data by reducing
its original size. So there is always need for factor which defines
amount of differences between the two entities, the original and
the compressed data. Amount of change or the distortion exhibited
in the compressed image is represented by image quality. Image
Quality measurements can be subjective or objective. Subjective
measures are based on human perception and experiences in
reporting the image quality. Objective measures are mathematical
measures. There are many metrics to determine the image quality.
The MSE, PSNR are the easiest and universally used models to com-
pute the image quality. The SSIM is yet another better model to
compute image quality.

2.1.1. Mean square error
MSE is cumulative squared difference between the original and

the compressed image.

MSE ¼ 1
mn

Xm
x¼1

Xn
y¼1

I x; yð Þ � I
0
x; yð Þ

h i2

Where I is the original image pixel matrix and I’ is the recon-
structed image pixel matrix. Higher the value of MSE means lower
the image quality.

2.1.2. Peak signal to noise ratio
PSNR is defined as the degree of error relative to peak value of

the image and the amount of distortion present in compressed
image. PSNR is measured in decibels and higher the PSNR value
higher the image quality (for 8-bit grey scale image peak pixel
value is 255) [16].
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PSNR ¼ 10log10

x2peak
MSE
2.1.3. Structural similarity index measure
SSIM index describes the amount of image degradation pro-

fessed (perceived) by the compressed image in the aspect of its
structural information. SSIM is based on human perceptual model
whereas MSE and PSNR are absolute errors. It is an objective mea-
sure to calculate perceptual image quality [17].

SSIM i; jð Þ ¼ 2lilj þ K1

l2
i þ l2

j þ K1
2rij þ K2

r2
i þ r2

j þ K2

where li and l j are the sample means of i, j and ri, rj are the sam-
ple variances of i, j, and rij is the sample cross-covariance between i
and j. The K1 and K2 are the variables used to alleviate the effect of
division with weak divisor and their default values are 0.01 and 0.03
respectively [18].

2.2. Compression ratio

It is the ratio of the compressed image size to the size of uncom-
pressed image. CR is measured in bits per pixel (bpp). Higher the
compression ratio means the better compression. There is always
trade-off between compression ratio and the image quality.

Compression Ratio CRð Þ ¼ uncompressed image size
compressed image size
2.3. Computational complexity

This parameter describes computational load involved and its
associated time and space complexities in the compression pro-
cess. Lossy compression techniques require more computations
hence increases the system complexity in terms of memory, power
and processing capability. On the other hand, lossy compression
techniques are well suited for the bandwidth limited VSN. Hence
lot of researchers are working on resource efficient lossy image
compression techniques adaptable for VSN [19,20]. The focused
objective of this paper is to identify and analyse the lossy image
compression algorithms developed for VSN.

2.4. Energy consumption

Energy consumption is the key parameter of any Wireless Sen-
sor Networks; this parameter decides the lifetime of the network.
The camera node and the forwarding nodes will deplete more
energy, causing energy holes. In addition, complex computations
involved in the compression will consume more energy that will
shorten the lifetime of the network. In order to increase the life
cient image coding techniques for low power sensor nodes: A review. Ain
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time of network it is obligatory to adapt low power consumption
energy efficient, energy aware and light weight compression tech-
niques [8,21].

3. Classification of image compression techniques

Image compression algorithms are broadly classified into lossy
and lossless technique as shown in Fig. 3. Loss less compression is
suitable for applications where image degradation is not tolerable
i.e., field of medical imaging. The images which are compressed
using lossy techniques will not be reconstructed as exactly as the
original image. It is suitable for applications where loss of redun-
dant data is tolerable. Lossy compression techniques are further
classified into transform based and non-transform based tech-
niques. The raw input image is transformed in to a comfortable
form so that machines can access and read easily. The spatial infor-
mation present in the image is grouped in to a form based on the
frequency of occurrence of pixel data. This approach is termed as
transform based compression.

3.1. Role of transform

Image transformswill not alter or compress the information con-
tent rather they will cluster the information residing inside the
image based on the set of basis function. The need of image trans-
form is tomake further operations on the image like image analysis,
compression and segmentation, at an easy and convenient way. Out
of all, transforms allow the system to do fast computation and
manipulation. Popular transforms such as Fourier transform, DCT,
DWT will group the information content based on their frequency
of occurrence from time domain to frequency domain. Transforms
allow the image analyst to extract more information, which might
be used to predict significance of the information. After transforma-
tion, the critical components of the image data are isolated, which
allows the image analyst to work directly on these components.
Transforms are classified based on the type of basis function. They
are orthogonal sinusoidal, non-sinusoidal, statistical and directional
transforms. The popular transforms like Fourier transform, DCT are
under the category of orthogonal sinusoidal transform and DWT is
non-sinusoidal transform. Transform based image compression
algorithms will follow the chained three step process - transforma-
tion, quantization and entropy encoding. The quantization may be
Fig. 3. Classification of image compression al
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scalar or vector. Finally, the quantized transformed coefficients are
entropy coded [9].

3.2. Non-transform based compression

This category of image compression algorithms will not follow
the three step chained process. Vector Quantization and Fractals
are non-transform based compression. One such findings is real-
ized by Lecuire et al. [21] who used 2 � 2 tiny block size image
coding with pixel removal technique and Torus Automorphism
for robust energy efficient image communication over Visual Sen-
sor Network.

Non-transform-based algorithms include fractals and Vector
Quantization (VQ).Mammeri et al. (2012) states that themaindraw-
back of fractal image compression is related to the encoding process
which is extremely computationally intensive and time consuming
due to the hard tasks of finding all fractals during the partition step
and the search for the best match of fractals. The limitation of VQ is
its complexity,which increaseswith the increasing of vector dimen-
sion and it may decrease the coding speed and increase the power
dissipation especially in power-constrained applications such as
VSN. Another disadvantage of VQ is related to the design of a univer-
sal codebook for a large database of images, which requires a large
memory and huge number of memory accesses.

Experiments done by Mascher et al. (2007) and from the survey
done byMammeri et al. (2012), it is found that transformbased cod-
ing methods have relatively less energy dissipation than VQ and
fractals [22]. In general, the design of an energy efficient transform
based compression algorithm depends on all stages of the compres-
sion (Transform – Quantization – Coding) and the interconnection
between those stages. The VSN is characterized and sternly affected
by hardware limitations. The solution for energy efficiency can be
achieved with hardware implementation or software implementa-
tion [12,23]. Kaddachi et al. (2011) proposed hardware solution for
energy efficient compression for still images by implementing DCT
in FPGA and reported that hardware based image compression are
faster. Hasan et al. (2014) had done a survey on this subject [24].

3.3. Image compression algorithms based on discrete cosine transform

Before debating the DCT-based algorithms, the principle of DCT
[25] is described concisely. The DCT is a transform technique for
gorithms for resource limited platforms.

ficient image coding techniques for low power sensor nodes: A review. Ain
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mapping a signal into essential frequency components. The DCT
coefficients are real valued and they provide close approximations
of the input data. There are four types of DCT. Out of them DCT-II is
widely used and accepted for most image processing techniques.
The first step is dividing the image into small blocks usually matrix
of size 8 � 8, and for each tiny block, DCT is applied. Mathemati-
cally 1D-DCT is defined as the sum of cosine functions wavering
at various frequencies. For a matrix 2D-DCT is obtained by serializ-
ing the two 1D DCTs, one by rowwise and another by column wise.
The traditional image compression standard JPEG is based on DCT
[26]. Fig. 4. depicts the typical DCT-II inside the baseline JPEG com-
pression standard.
3.3.1. Steps in JPEG compression

1. Discrete Cosine Transform of each 8 � 8 pixel matrix
f(x,y) ?T F(u,v)

2. The DCT output matrix is quantized with a quantization table or
using a constant. The quantization done to reduce the number
of coefficients. Thus, quantization introduces the loss.

3. Zig-Zag scanning is done to exploit redundancy. Conversion of
8 � 8 matrixes into 1 � 64 vectors. This scanning seizes the
low frequency coefficients at the beginning of vector and high
frequency coefficients at the bottom of the vector.

4. Differential Pulse Code Modulation (DPCM) applied on the DC
component and Run length coding on the AC components.

5. Finally, the resulting vector encoded with lossless Huffman
entropy coding.

Since DCT is the heart of the JPEG standard, its speed decides
the efficacy of the JPEG standard. A pure DCT for 8 � 8 block
requires 466 additions and 96 multiplications [27]. Even the fast
DCT called as LLM DCT for the complete 8 � 8 2-D transform is
computationally intensive, the LLM 1-D DCT must be performed
once for each of the 16 rows and columns, leading to a total of
192 multiplications and 512 additions [28,29]. Because of more
computations involved at transform stage, JPEG is not beneficial
to VSN. Lot of works has been proposed in the literature to speed
up the DCT by reducing number of computations involved. Lee
et al. (2009) had contributed a platform based JPEG compression
tool adaptable to VSN with acceptable image quality [30]. With
respect to precision, the floating point DCTs are complex but the
reconstructed image quality is good. Fixed-point implementations
and integer DCT are less complex but introduces more distortion
[31,32]. For a camera equipped VSN with light weight processor,
DCT based compression algorithms are best adapted because of
its low memory implementation (8 x 8 tiling style), good power
compaction, and coding gain, all leading to good compression ratio.
Many modified and improvised versions of DCT were reported in
the literature in achieving low complex DCTs with reduced
Fig. 4. JPEG Compr
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computations. All variants still holds the properties of pure DCT
like orthogonal, separable, energy compaction, no DC leakage etc.
The popular variants of DCT are itemized and described.

3.3.2. Fast DCT
DCT is computationally intensive and energy consuming. Chen

et al. (1977) proposed a first version of fast DCT [33]. Then Loeffler
et al. (1989) had found the fast DCT with 11 multiplications and 24
additions for computing 1D-8 point DCT [34]. They have used
plane rotations. Iteratively only 32 cosine functions are involved
in DCT, if they are precomputed once and used to calculate 8 � 8
output matrix that requires 128 Multiplications and 63 Additions.
This precomputation technique is also one of the Fast DCTs [29].
The cosine values are real valued but not integer friendly. Most
of the VSN hardware architectures are not built up with floating
point processors. Hence, this is not feasible for VSN.

3.3.3. Integer DCT
The integer DCT (Int DCT) maps integers into integers and

requires only lifting steps and additions. Thus, the integer DCT
implementation is impressively simplified. Because of integer-to-
integer, mapping this version of DCT allows lossless compression.
In the literature, 8 point, 16 point and N (N is power of two) point
fast integer DCT using Walsh-Hadamard transform along with lift-
ing schemes [31,35,36] are referred. Though the integer DCT intro-
duces rounding error, it is found that there is not much difference
in PSNR when compared with floating point DCT [32]. Another ver-
sion of integer DCT [37] is that the operations are not integer arith-
metic but the output is aimed as integers.

3.3.4. Binary DCT
Fast multiplier less DCTs emerged out in the literature. The

block-based Binary DCT is more VLSI friendly. This transform
requires only adders and binary shifters. BinDCT proposed by Tran
(2000) used lifting scheme to construct the multiplier less filter
banks [38]. In order to replace the nonlinear computation of divi-
sion operations by employing binary bit shift operation Tran
et al. (2001) has chosen the lifting step to be dyadic [39,40]. To
have integer-to-integer mapping, they have approximated the
DCT’s rotation angles by suitable dyadic lifting steps making
BinDCT as a lossless transform. To compute the eight transform
coefficients BinDCT uses only 13-bit shift and 30 additions.
Because of the hardware friendly nature and reduced computa-
tions, many researchers have worked on Binary DCT [41].

3.3.5. Signed DCT (SDCT)
Tarek (2001) reported a novel DCT as a square wave transform

(SWT) based on signum function and termed as Signed-DCT (SDCT)
[42]. He applied signum function over the pure DCT. It is also mul-
tiplier less version of DCT but it is not orthogonal as it uses only
ession model.

cient image coding techniques for low power sensor nodes: A review. Ain
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Fig. 6. Triangular zonal DCT with k = 4.
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adders for forward transform and requires shifters for inverse
transform. Bouguezal et al. (2008) by fine tuning transform matrix
of SDCT [43] addressed this issue. They have introduced zeros at
appropriate positions of transform matrix for computations. This
fast SDCT’s performance is superior to SDCT and uses only 18
adders for both forward and reverse transforms.

3.3.6. Zonal DCT
Zonal DCT also known as pruned DCT is introduced by Wang

[44,45]. The idea behind this technique is to reduce the complexity
by omitting certain least significant DCT coefficients in an n � n
block without losing noticeable image quality. The upper left cor-
ner of the DCT matrix contains most significant (low frequency)
components because of energy compaction property. These low
frequency components are retained of size k � k and the rest of
the matrix are omitted where k� n. The choice of k decides the
trade-off between computation cost and image quality. By reduc-
ing the DCT matrix, the chained three-step process (transforma-
tion, quantization and coding) will be profited with less
processing time and computational cost. Thus, zonal or pruned
DCT allows only k2 computations instead of N2. Mammeri et al.
[46] have used this square shaped DCT coefficients in JPEG for
VSN and named as S-JPEG and is depicted in Fig. 5.

3.3.7. Fast zonal DCT
The fast zonal DCT proposed by Vincent et al. (2012) preferred

triangular shape of DCT coefficient matrix to the squared pattern
to make it more convenient for VSN. They reduced the number of
significant DCT coefficients from k2 to 1

2 kðkþ 1Þ. The triangular
selection of DCT coefficients is represented in Fig. 6. This is
achieved by applying 1D DCT over all eight rows and only over
the resulting k columns. This reduced block size DCT version is
integrated in JPEG and termed as T-JPEG (Triangular JPEG) [47].
The investigators of [41] fused triangular zonal DCT and binary
DCT. The experimental results confirmed energy savings and
extended the lifetime of the image processing nodes in the VSN.

4. Image compression algorithms based on discrete wavelet
transform

Discrete wavelet transform is a contemporary image processing
technique to transform and analyse the image [48]. The wavelet
transform decomposes and de-correlates the data in to multi reso-
lution subbands i.e., permitting an image analyst to gouge out the
significant components of the sample [49]. The subbands fostered
tree based entropy coding to identify archetypical patterns like set
Fig. 5. Zonal DCT with k = 4.
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partitioning in hierarchical trees (SPHIT). The DWT has attained
wide attention over DCT in image compression because of the fol-
lowing features [50],

(I) The transform is applied to the entire image, i.e., it uses non-
block based approach and it does not suffer with block arti-
facts as in DCT.

(II) This transform retains both time (space) and frequency
information of the original data. If detailed the wavelet
transforms allow good frequency resolution for low fre-
quency components and good temporal resolution for the
high frequency components.

We have summarized the wavelet transform generalists with-
out the need of sound knowledge in signal processing. This trans-
form decomposes the input signal into approximation and details.
The entire input image is first applied one dimensional filter along
rows yielding two sub bands L and H, where L indicates Low pass
band and H indicates High pass band. In the second step, these
resultant bands are allowed one-dimensional filtering by column
wise, generating the resultant bands as LL, LH, HL and HH. Fig. 7
shows the two level decomposition of 256 � 256, image by DWT.
LL band holds the approximated, coarse, smoothen version of the
original image, and represents the general trend of pixel values
of the input image. LH (horizontal details) band clutches the row
wise elements, HL (vertical details) band clutches the column wise
elements and HH (diagonal details) contains the oblique elements
of the original image. The wavelet coefficients of each band are
depicted in Fig. 8. The image compression standard JPEG2000 is
based on DWT. Zuo et al. (2012) have used JPEG2000 compression
in bi-level hopped image transmission scheme to lengthen the net-
work life time of their sensor nodes [51].
4.1. JPEG 2000

The lead role played by block based DCT in baseline JPEG had
been replaced by DWT in JPEG2000 [27,52]. The block diagram of
JPEG2000 is shown in Fig. 9. JPEG 2000 has long list of features
for its wide acceptance. As far as VSN is considered the following
features gained the researchers attention on it. The interesting fea-
tures are low bit-rate compression performance and significance
identification [53]. Table 2 gives a comparison of DCT and DWT
ficient image coding techniques for low power sensor nodes: A review. Ain
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Fig. 7. Two level DWT decomposition.

Fig. 8. DWT subbands and their contents.

Table 2
Comparison of DCT and DWT.

DCT DWT

Memory requirement Low High
Computation Load Low High
Compression ratio Low High
Power consumption Moderate High
Localisation Moderate Very good
Processing speed High Low
Significance identification Moderate Very high
Image quality Low High
Edge correlation Poor Good
Complexity Low High
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with respect to resource limited VSN [8]. The computation com-
plexity is high in DWT over DCT however, it offers good compres-
sion ratio and image quality at the higher cost of memory.
Attention in low memory concerns in DWT has been found as
one another challenge in wavelet based image compression. There-
fore, the researchers are working on making the wavelet trans-
forms adaptive to the resource-limited platforms.

The wavelet transform coefficients are entropy coded such as
EZW, SPHIT, and EBCOT. Because of the very good energy com-
paction of DWT, numerous transform based compression algo-
rithms use DWT as the mapper and tree based EZW, SPHIT as
coders.
4.2. EZW (Embedded zero tree wavelet-based) image coding

The principle of embedded image coding is that the bit stream is
transmitted in the order of their importance. Each received bit
stream will increase the picture quality by reducing the distortion.
Fig. 9. JPEG 2000
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Embedded coding allows intrinsic progressive transmission. The
encoding can be dismissed at any point of time with when the
required image quality or bit rate is obtained. EZW encoder is
introduced by Shapiro [54]. It is a wavelet transform based embed-
ded coding. It works very well on natural images. The inherent pro-
gressive nature allows this compression suitable for VSN [55].
Since wavelets allow multi resolution analysis at multilevel
decomposition, they can be coded in decreasing order. EZW scan-
ning order is shown in Fig. 10.

The EZW involves two passes i.e. dominant pass and refinement
pass. The dominant pass finds the self-similarity across the coeffi-
cients. In the first pass, the first value of the threshold value T is
chosen and all the wavelet coefficients are compared with T. The
transform coefficient is encoded as stated in [54]. When all the
wavelet coefficients have been scanned, the threshold value is
compression.
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Fig. 10. Zero Tree Scanning order.
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reduced by a factor of two. The scanning process is continued, to
add more detail to the already encoded image, until the required
bit rate is achieved. In refinement pass, the significant coefficients
identified in dominant pass are quantized with successive approx-
imation. However, the difficulty of EZW is that since more number
of passes are required to achieve better compression, it consumes
more energy and more space in VSN.

4.3. SPHIT (set-partitioning in hierarchical trees) image coding

Said and Pearlman first introduced SPHIT codec [56]. This coder
is also similar to EZW based on identifying self- similarity patterns
over the wavelet coefficients. It is an improvised version of EZW.
The main difference of SPHIT coder from EZW is by the rules tree
structure is partitioned and ordered. The wavelet coefficients are
ordered into Spatial Orientation Tree. SPIHT comprises of three
passes to generate three significant lists by comparing against cho-
sen threshold value. The insignificant pixel pass produces LIP (list
of insignificant pixels), insignificant set pass produces LIS (list of
insignificant sets) and significant pixel pass produces LSP (list of
significant pixels). The SPHIT coder is a powerful compression tool
as it does not require source coder and hence increases the coder
efficiency. The major drawback of SPHIT is that it requires more
memory because of retaining the lists. It also requires more com-
putational overhead in sorting. Many modified and improved stor-
age competent versions of SPHIT are available in the recent
literature [57–61]. In [58] the research is about implementation
of MSPHIT with single list instead of three lists. The authors of
[60,61] implemented listless approach of SPHIT.

4.4. Low memory DWT implementation

Usually DWT is applied to the whole image and n-levels
of decomposition at multi resolution are stored to follow the
Fig. 11. SHPS-LL, HL are comput
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three-step process of compression chain. This type of image trans-
formation demanding the full image is not realistic in hardware-
limited environment where only restricted storage is available.

4.4.1. Adaptive DWT for VSN
Nasri et al. had implemented image compression for VSN using

DWT [62]. They aimed to reduce the data communicated over the
network. The ideology is that the image is wavelet transformed.
The low pass subbands LL and LH alone are computed and consid-
ered for communication as shown in Fig. 11. They have realized
that high pass bands contain details less than 0.2% of the original
image. So skipping these coefficients will not lead to much loss
in image quality. The high pass subbands HH, HL are not computed
and they have named this scheme as Skipped High Pass Sub-bands
(SHPS). Since LL and LH are only computed, the computation load is
reduced by 25% compared with CDF 9/7 and in second level of
compression computational load is only 6% compared with the first
level. Thus, SHPS approach offers 31% of energy gain and confirms
increased network life-time of VS node.

4.4.2. Line based wavelet transform:
The image data is acquired by scanning serially one line at a

time. Chrysafis and Ortega (2000) have applied line-by-line data
acquiring method for their line based DWT implementation [63].
They found that 1D-DWT for a single line is done without the need
for more memory, but columnar separation in 2D-required more
memory. One-dimensional transform is performed and as the suf-
ficient number of lines is processed, they are 2D transformed and
then the memory is freed. Then for entropy encoding, line based
low memory encoder with context modelling is used.

In low memory line based DWT, though the implementation
reduced the memory requirement for transformation, it still
required the whole DWT subbands for further SPHIT entropy cod-
ing. In [64] investigators adapted line based DWT as strip based
which lead them to great improvements in terms of low memory
requirement for SPHIT entropy coding. N lines of image is wavelet
transformed and they are stored in the strip buffer for coding using
SPHIT.SPHIT is done for these lines and transformation of next n-
lines is done in parallel. This significantly reduced memory
requirement of SPHIT. Further improvements are found in the liter-
ature to reduce the memory requirement of wavelet transform
based compression scheme [65–68]. To fulfil the memory con-
straints in VSN Stephen et al. (2009) fetched two lines of pixel data
for wavelet transformation which required coarsely 1.5 KB of RAM
to compress a grey scale image of size 256 � 256. They attempted
in offering high quality of picture with low complexWavelet trans-
form coding [65]. The Stephen et al. (2011) in another work fetched
single line of pixel data for DWT and complemented the floating-
point wavelet coefficients with fixed-point arithmetic [66]. The
integer operation is best preferred in camera equipped VSN [67].
Lenning Ye et al. implemented a novel image-coding scheme called
ed and LH, HH are skipped.
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BCWT (Backward Coding Wavelet Trees) using line based wavelet
transform [69].

5. Lossless entropy coding techniques

The procedure of assigning binary digits to the transformed and
quantised output is known as coding. It is essential in compression
to have less average length of bits per pixel for the image. Instead
of storing each character in a file as an 8-bit ASCII value, source
coding replaces each input symbol with specific codeword. There
are many techniques in the data compression literature such as
Huffman coding, Run Length Coding, Variable Length Coding,
Arithmetic coding, Golombs-Rice code and MQ-coders. Block Trun-
cation Coding (BTC) is not an lossless coding, but it also has its own
place in coding zone, it is also discussed.

5.1. Huffman coding

The Huffman coding is optimum prefix code. Prefix code is that
no code word is the prefix of another code word. In an optimum
code, the more frequently occurring symbols are coded using
shorter code words and less frequently occurring symbols are
coded using longer code words. The Huffman code requirement
is that two symbols with lowest probability will have same length
of code word and they differ only in least significant bit. Huffman
coding is used in JPEG. However, Huffman code requires complete
Huffman table in the compressed file for decoding and suffers with
transmission errors, which is unavoidable in wireless networking.

5.2. Arithmetic coding

Instead of assigning each occurring symbol with specific code
word, Arithmetic coding assigns a stream of input symbols with
a single floating point number in [0,1) using interval subdividing
procedure. It uses the probabilities of the source messages to con-
tract the interval successively to represent the ensemble. Arith-
metic coder yields better compression ratio since single value is
coded for all symbols. The complexity of the coder is high and most
of the VSN platforms are not equipped with floating point
hardware.

5.3. Run length coding

Coding the lengths of runs instead of coding each symbol is the
ideology behind run length coding. It is very much suitable for bin-
ary symbols. After zig -zag scanning of AC-coefficients run length
coding is used in JPEG.

5.4. Dictionary based coder

Dictionary based coders are entropy coders that dynamically
build the coding and decoding tables called dictionary, on the fly
by observing at the data stream. These coders will not require
the probabilities of occurrences of the symbols. LZW (Lempel-
Ziv – Welch) coder is an example of dictionary coder. The encoder
does not require probabilities of symbols in advance [70]. However
requires more memory, which is not feasible in VSN. This is an
open research issue yet to be solved.

5.5. Golomb - Rice code

Golomb code is based on assumption that larger value of an
integer will have less probability of occurrences [71,72]. The sim-
plest coding is unary representation of the symbols. A positive
integer n for a parameter m is coded by two parts. Such that the
Please cite this article in press as: Suseela G, Asnath Victy Phamila Y. Energy effi
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first part is in unary- n div m, number of one’s followed by one
zero. The second part is coded with truncated binary coding- n
mod m in binary with log2 (m) bits. When m is in powers of two,
this coding technique terms to be Golomb-Rice code (GR code).
GR code is based on the Low complexity and Low memory Entropy
Coder proposed in [73] has been adopted by [41] and [74,75]. The
chief elements in Low complexity and Low memory Entropy Coder
(LLEC) are namely GR codes and ZTC (zerotree coding). ZTC exploits
the zero tree structure of transformed coefficients for better com-
pression adeptness. Usually Golomb -Rice coder and zero tree
structure are suitable for image compression because of their less
computational complexity over Huffman or arithmetic coding.
5.6. MQ–coder

The MQ coder is an approximate implementation of arithmetic
coding developed for binary data. Application of Golomb and MQ
coders as an alternative to Huffman or arithmetic coding signifi-
cantly reduces the computational complexity and memory
requirement [12]. As like arithmetic coding, encoding of symbols
is proceeded by computing probability of symbols in the Golomb
code. The initial interval is defined. The interval sub division is
done with the probability of symbols. The MQ-coder is allowed
to encode symbols in a fashion such that high probability symbols
decrease the interval than low probability symbols leading to prin-
ciple of optimum code. The MQ coders encodes stream of symbols
as a number in range [0, 1].
5.7. BTC coding and its variants

Block Truncation coding (BTC) of image was first introduced by
Delp and Mitchell [76].The image is divided into small blocks usu-
ally of dimension four by four. This coder preserves first and sec-
ond order statistical moments of coded data and uses bi-level
quantizer. It is a simple and fast coder and allows compression rate
of 2 bpp (bits per pixel). The mean and variance are preserved and
used to compute the quantizers. Each pixel data is compared
against mean and set either zero or one. The encoder codes binary
bit matrix along with 8-bit binary representation of sample mean
and standard deviation. Thus, the grey levels are reduced and a
4 � 4 matrix is coded with as low as 32 bits achieving bitrate of
2 bpp. AMBTC (Absolute Moment BTC) is another member of BTC
coding family, which codes high mean and low mean instead of
mean and standard deviation [77]. The high mean is average of
all pixel data in the block, which are higher than the mean. The
low mean is average of all pixel data in the block, which are lower
than the mean.

AMBTC has reduced distortion factor MSE over BTC. Lot of vari-
ants of BTC are suggested in the literature [78–84]. The bi-level
quantization introduces more distortion. Somasundaram et al.
have modified AMBTC by allocating 2 bits for each element in
the bit plane with four level quantization for improved image qual-
ity [80]. Yang et al. have dealt the same issue using k-means algo-
rithm to compute multi-level quantizers [81]. BTC has good
compression but effect of block artifacting reduces the image qual-
ity with large block size like 16 � 16. Mathews et al. have
addressed this issue in [82] and attained improved image quality.
Their version of BTC is named as Modified BTC (MBTC) coder and
uses max-min quantizer along with standard deviation. One
another version of BTC is Max-Min BTC, which codes each pixel
block using its maximum, minimum and average of maximum
and minimum valued pixel data [83]. Enhanced BTC-EBTC reported
in [84] reduces the bitrate from 2 bpp to 1.25 bpp.
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Table 3
Energy consumption chart of various compression - techniques in the literature.

Work Description Processor Image size Energy consumption

Platform targeted JPEG, 2009 [30] Floating point JPEG ATmega128 128 � 128 2268.6 mJ
Platform targeted JPEG, 2009 [30] SLOW JPEG ATmega128 128 � 128 133.15 mJ
Platform targeted JPEG, 2009 [30] FAST JPEG, Arai’s DCT ATmega 128 128 � 128 73.40 mJ
Platform targeted JPEG, 2009 [30] Slow integer JPEG, LLM ATmega128 128 � 128 105.50 mJ
Platform targeted JPEG, 2009 [30] Fast integer JPEG, LLM ATmega128 128 � 128 30.67 mJ
TiBS, 2011 [21] Pixel mixing ATmega128L 512 � 512 1612 mJ, Without quantization at

radio transmit power 0 db
Adaptive image compression, 2011 [62] SHPS ATmega128L 512 � 512 O.6 Joules
Hardware based, 2012 [12] CL-DCT in ASIC ATmega128L 128 � 128 72.39 mJ
Two hop compression, 2011 [51] Clustered approach

And DCT
Strong ARM
SA-1100

512 � 512 1 –level DWT 220 nJ/bit+
Ecode 20 nJ/bit

Zonal DCT, 2012 [46] Zonal CL-DCT k = 5 ATmega128L 128 � 128 417 mJ
Fast zonal binary DCT, 2013 [41] Zonal DCT k = 2 ATmega128 512 � 512 7.30 mJ
Triangular DCT, 2010 [47] LLM MSP 430 128 � 128 33665 mJ
Triangular DCT, 2010 [47] Triangular

Zonal T = 4
MSP 430 128 � 128 27489 mJ

Triangular DCT, 2010 [47] Triangular
Zonal T = 2

MSP 430 128 � 128 19817 mJ

ABT, 2015 [68] Line based DWT, LL band ATmega128l 512 � 512 22.95 mJ
Low cost image sensor, 2015 [14] Baseline –JPEG Arduino MEGA 2560 128 � 128 1.251 J/s
Low power lossless image coding, 2015 [70] LZW based coding MSP430F149 320 � 240 756.36 mJ
Low power lossless image coding, 2015 [70] modified RLE coding MSP430F149 320 � 240 208.20 mJ
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6. Energy consumption in the targeted resource constrained
VSN

Energy efficiency in image communication can be obtained by
reducing computations involved in the compression process and
keeping the computational load less complex. It will extend the
network life largely. Table 3 lists out the energy consumed by var-
ious compression schemes in the literature developed and adapted
for VSN. All the DCT based algorithms presented in the table 3
shows energy required for an 8 � 8 block. The transceiver is the
greedier power hunger component in the sensor nodes. The mica2
mote with chipcon1000 radio transceiver consumes 69 mW and 41
mW for transmission and reception respectfully. Therefore, to
achieve energy efficient communication of pictures the compres-
sion algorithm should give more compression to have small size
along with acceptable degradation in the image quality. The energy
consumed by the compression algorithm in different stages is
reduced by minimizing their computational cycles. In this finding,
it is found that most of the implementations had been done with
Mica and Telosb motes. The commercially available Mica2 mote
is with Atmel ATmega 128 or Atmel ATmega 128L micro controller
as its processors. The Telosb mote has MSP 430 as its processor. By
analysing the data in Table 3, it is inferred that (1) the Atmel
ATmega microcontrollers offer better energy savings than MSP
430 for both DCT based implementations and DWT based imple-
mentations. (2) Integer processing of DCT and DWT results in sig-
nificant energy savings and (3) reduction in transform coefficients
also introduced much energy gain by reduced data processing.
7. Conclusion

VSNs have emerged due to the contemporary advancements in
Micro Electro Mechanical System (MEMS) Technology along with
the fusion of various technologies with image sensors, embedded
processing and computing. The problem of energy efficient image
transmission with transform based and non-transform based com-
pression scheme in multi hop wireless visual sensor network is
investigated. Several categories of fast and complexity reduced
DCT and DWT based compression schemes available in the litera-
ture are catalogued. Entropy coding techniques that are mostly
prevalent in VSN are discussed with its merits and demerits. The
Please cite this article in press as: Suseela G, Asnath Victy Phamila Y. Energy ef
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inference from the analysis is energy consumption is purely depen-
dent on implementation platform, algorithm complexity, imple-
mentation optimality etc. The energy consumption of different
algorithms in various microcontrollers present in the VS node such
as ATmega128, ATmega128l, MSP430, Strong ARM SA-1100,
MSP430F149 and Arduino Mega are analysed. This survey provides
substantial contributions to inquiries about image transforms and
coding in Visual Sensor Networks. The conclusion arrived with
respect to low power VSN platform is adapting transform based
compression techniques with integer operations will be more
appropriate for low power sensor nodes and for coding techniques
low memory list or dictionary less techniques are appropriate. One
such direction suggested is integer-based multiplier less hardware
friendly fast zonal DCT along with dictionary less GR coding will
offer energy efficient image compression with low computational
load, high compression ratio and low memory usage with accept-
able image quality. Fast zonal transform [41] consumes 7.30 mJ
for processing an 8 � 8 block, which is only 0.3% of energy needed
by true DCT and only 6% of energy needed by Independent JPEG
Group (IJG-fast) version. Hope that this review paper will be com-
passionate valuable for future researchers who take up their
research in image communication over low power environments.
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