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Abstract
Agreen synthesis approach has been adopted to prepare nickel sulphide nanoparticles (NiSNPs)using
banana peel extract (BPE) as a reducing and capping agent. Polyvinyl alcohol (PVA)/NiS
nanocomposite filmswere fabricated using a cost-effective solution casting technique by dispersing
different contents ofNiSNPs (0–3 wt%) in the PVAmatrix. Various characterization techniques were
employed to analyze the structural, thermal andmorphological properties of the PVA/NiS
nanocomposite films. Further, the dielectric behaviour of these nanocompositefilmswas investigated
at frequency range 50 Hz–20MHz and in the temperature range 40 °C–140 °C. Also, there exists a
significant interaction between the polymermatrix and the nanofiller as evident from the notable
improvement in the dielectric properties of the nanocomposites. The dielectric constant (ε) value of
PVA/NiS nanocomposite filmwith 3wt%NiSNPs loadingwas found to be 154.55 at 50Hz and at
140 °Cwhich is 22 times greater than the dielectric constant value of neat PVA (6.90). These results
suggest thatNiSNPswere dispersed homogeneously in the PVAmatrix.

1. Introduction

In recent times, tremendous research interest has been devoted to the development of novel polymer
nanocomposites (PNCs) because of their enhanced properties [1–3]. The PNCs reinforcedwith inorganic
nanoparticles (NPs) have potential applications such as optical power limiters,membranes for gas separation,
flexible light emitters etc [4, 5]. Polymer/filler interface, the geometry of the dispersed phase (orientation, size,
shape etc), their relative contents, and also volume fraction can alter ormodify the final properties of PNCs [6].
The unavailability of low-cost techniques to control the distribution ofNPs into the host polymermatrix is the
main obstruction to the large-scale fabrication of PNCs [7]. For the PNCs, themajor limitation in the
application side is that the aggregation ofNPs or their distribution in the polymermatrix. So, there is a necessity
that theNPs have to be dispersed homogeneously within the polymermatrix because it causes an improvement
in the chemical and physical properties of the PNCs [8, 9]. Therefore, to control the functioning of PNCs, two
important parameters are required i.e., the spatial distribution ofNPs and their interactions with the host
polymermatrix [10–12]. For the past few years, it has been considered that the improved dielectric properties of
the PNCs loadedwith inorganicNPs is believed to be a strong candidate for energy storage applications [13, 14].
Some of the reports revealed that the dielectric properties of PNCs filledwith the semiconductorNPswere
enhancedwhen comparedwith pure polymers [15, 16].
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Among various polymers used for the fabrication of PNCs, polyvinyl alcohol (PVA) ismost often preferred
as a hostmatrix owing to its excellent film-forming ability, higher dielectric strength, the capability to form
strong hydrogen bonding, easy processability, excellent chemical stability, and highly durable nature [17]. PVA
has been employed for various applications such as in battery components, packaging, textile applications in the
microelectronic industry, electromagnetic interference applications and so on [17, 18]. Several research groups
reported the dielectric properties of the PVAbased nanocomposites [19–21].With this inspiration, in the
present study PVAhas been chosen as a host polymer to synthesize PVAbased nanocomposites. Now a day,
more attention has been focussed onmetal sulphide nanostructures because of their unique properties and
applications [22]. Among these, nickel sulphide (NiS) has beenmostly investigated because of its simple
production, affordable price and high electronic conductivity [23, 24]. It exhibits complicated electrical, optical,
structural, compositional andmagnetic phase behaviour [25]. Also due to the possession ofmulti-phases, binary
Ni–S systems such asNiS2, Ni3S4, Ni9S8, Ni7S6, Ni6S5, Ni4S3+x, Ni3S2, andNi3+xS2 have become fascinated
materials [26]. NiSNPs exhibit different shapes such as layer-rolled structures, urchin-like nanocrystallites,
flower-like architectures, hollow spheres, nanoframes, nanorods, and nanospheres etc [27, 28].

Recently, increased attention has been given to the green approach for the synthesis ofNPs because of its
several advantages [29–32]. For the synthesis ofNPs, the plant extracts which serve as reducing/capping agents
are considered to bemore beneficial than remaining techniques [33]. Several researchers reported the synthesis
ofmetal sulphideNPs through a green synthesis approach using extracts of different parts of plants as reducing/
capping agents [34, 35]. Bananas are cultivated almost all over theworld. Banana peels are potentially used in
environmental cleaning, organic fertilizer, energy-related activities, cosmetics, pulp and papermaking, bio-
sorbents, bio-fuelmanufacturing etc [36]. Banana peels are intrinsically affluent in polymers like pectin,
carbohydrates, hemicelluloses, cellulose, and ligninwhich have been utilized as reducing/cappingmaterials for
the synthesis ofNPs [37, 38]. Some reports revealed the usage of various green synthesizedmaterials for awide
range of applications [39].With this interest, here banana peel extract (BPE) has been selected as a reducing/
capping agent to prepare theNiSNPs. Subsequently, theNiSNPswere used as nanofiller to prepare PVA/NiS
nanocomposites.

Themain aimof the present study to synthesize theNiSNPs using a green synthesis approach followed by
their incorporation into the PVAmatrix for the preparation of PVA/NiS nanocomposite films via the solution
castingmethod. Besides, the structural, thermal,morphological and dielectric properties of the prepared
nanocomposites were investigated using various characterization techniques.

2. Experimental

2.1.Materials
Fresh banana peels were obtained frombanana agricultural fields. Sodium sulphide (Na2S), nickel nitrate
hexahydrate (Ni (NO3)2·6H2O), PVApowder (MW=85,000–1,24,000 g mole−1 with 87%–89%degree of
hydrolysis) andN,N-Dimethylformamide (DMF)were received fromSigma-Aldrich, India.

2.2. Preparation of BPE
First, banana peels were cleaned using deionized (DI)water to take away unwanted organic impurities and dust
present in it. Subsequently, these peels were dried on paper towel. Then, appropriate quantity of peel was heated
at 90 °C in a beaker containingDIwater and subsequently filtered. This obtainedfiltrate was utilized as reducing
or capping agent to synthesizeNiSNPs.

2.3. Synthesis ofNiSNPs
Green synthesis approachwas employed to prepare theNiSNPs.Ni(NO3)2· 6H2Owas used as nickel ions source
andNa2Swas used for obtaining the sulphide ions. 1MNi(NO3)2· 6H2O and 1MNa2Swere dissolved inDIwater
separately and stirred usingmagnetic stirrer for one hour at room temperature (RT) to obtain clear solution.
Subsequently, both the solutionsweremixed and stirred for additional one hour to get homogeneous solution.
In this solution, an appropriate quantity of BPEwas added and stirred for 6 h at 70 °C. After that as obtained
precipitate waswashed several times usingDIwater and ethanol to eliminate the unwanted impurities or
residues. Thefinalmaterial was dried in hot air oven at 95 °C for 24 h and subsequently inmuffle furnace at
300 °C for 2 h [40]. Finally, the black powderwas obtainedwhichwas grinded usingmortar and pestle and
utilised for the synthesis of PVA/NiS nanocomposites.

2.4. Preparation of PVA/NiS nanocompositefilms
Figure 1 schematically represents the preparation procedure of PVA/NiS nanocomposite films using solution
casting technique. The desired amount of PVA solutionwas obtained by dissolving PVApowder inDIwater by
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heating at 65 °C in hot air oven for 3 h. TheNiSNPswere dispersed inDMF, sonicated for two hours and then
mixedwith PVA solution. Further, PVA/NiSmixturewas constantly stirred for 9 h until the uniform
distribution ofNiSNPs in PVA is ensured. This resultant dispersionwas poured onto Petri dish, afterwards kept
at 70 °C in hot air oven for 5 h to obtain nanocomposite films. These PVA/NiS nanocomposite films having
70–80 μmthickness was peeled off fromPetri dish and used for further characterizations.

2.5. Characterizations
Fourier transform infrared spectroscopy (Japan, Shimadzu, IRaffinity-1)was employed tomeasure FTIR
transmittance spectra ofNiSNPs, neat PVA andPVA/NiS nanocomposites in thewavenumber range
4000–400 cm−1.

X-ray diffraction experiments were performed usingan x-ray diffractometer (Germany, Bruker, Advanced
D8)with awavelength of 1.54 Å and 1°min−1 scanning speed usingCuKα radiation. The recorded datawas
obtained in 2θ ranging from10–90°.

Thermogravimetric analysis (TGA) of the prepared sampleswas performed fromRT to 800 °Cusing TGA
thermal analyzer (USA, TA Instruments, Q500model) and differential scanning calorimeter (DSC) (TA
Instruments, Q200model) fromRT to 400 °Cat the heating rate of 10 °Cmin−1 in aN2 atmosphere.

Crossed polarizing opticalmicroscope (POM) (Singapore, BX-53, Olympus)with amagnification 10Xwas
employed to assess the dispersion state ofNiSNPs in the PVAmatrix.

Scanning electronmicroscopy (SEM) (UK,Carl Zeiss EVO/18SH)was used to investigate the surface
morphology of the samples. An accelerating voltage of 15 kVwas applied for obtaining SEM images. Energy
dispersive analysis of x-ray diffraction (EDAX)was coupledwith the SEM to analyze the chemical compositions
present in the synthesizedNiSNPs.

High-resolution transmission electronmicroscopy (HRTEM) images ofNiSNPs andPVA/NiS
nanocomposite filmswere obtained using FEI-Tecnai G2–20 twin 200 kV spectrometer.

Precision impedance analyzer (UK,Chichester,West Sussex,WayneKerr 6500B)was used to test the
dielectric behaviour of PVA and PVA/NiS nanocomposite films in the frequency range 50 Hz–20MHz and the
temperature range 40 °C–140 °C.

Figure 1.Representation of the synthesis protocol of PVA/NiS nanocomposite films.
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3. Results and discussions

3.1. FTIR study
Figure 2(a) displays the FTIR spectrumofNiSNPs. The bands appeared at 3421 and 1631 cm−1 are assigned to
stretching and bending vibrations respectively of hydroxyl groups present on the surface of the sample [41]. The
peak at 623 cm−1 could be assigned to bending vibrationmode inNi–S–Ni [42]. Figure 2(b) (i)–(vii)
demonstrates the FTIR spectra of PVA and PVA/NiS nanocomposite films. The pure PVA (figure 2(b) (i))
depicts absorption and strong band at 3306 cm−1 assigned to the vibration of –OHgroup (stretching) [43]. The
bands observed at 2916 and 1726 cm−1may be attributed toC–Hasymmetric stretching vibration (alkyl groups)
and of C=O (vinyl acetate group) stretching vibration respectively [44]. TheCH2 bending vibration in the PVA
backbone chain is represented by the band that appeared at 1431 cm−1 [45]. TheCH2 andC–Hwagging
vibrations are represented by the bands at 1363 and 1235 cm−1 respectively [17]. The bands at 1083 and
838 cm−1 are attributed to the stretching vibration of C–O in the backbone of PVA (acetyl group) and skeletal
vibration in PVA respectively [46, 47].Moreover, almost the same peakswere noticed in the FTIR spectra of
PVA/NiS nanocomposites (figure 2(b) (ii)–(vii)) alongwith some additional peaks below 660 cm−1 whichmay
be attributed to bending vibration ofNi-S-Ni [48]. However, a small shift in the peak positionwas noticed in the
FTIR spectra of PVA/NiS nanocomposites representing good compatibility between theNiS and hydroxyl
groups of PVA.

3.2. XRDanalysis
Figure 3(a) depicts XRDpattern ofNiSNPs indicatingmajor diffraction peaks at 2θ=30.25°, 34.53°, 45.72°
and 53.57°which corresponds to the reflections of crystal planes (100), (101), (102) and (110)matchwithNiS
(α- phase)with space group P63/mmc (hexagonal phase, JCPDS: 075-0613) [40, 49]. Normally, peak
broadening in the x-ray diffraction peaks consists of two components namely physical broadening and
instrumental broadeningwhich happens due to the effect of crystallite size and and the intrinsic strain
respectively. The corrected instrumental broadening (bhkl) for the peaks ofNiSNPs can bewritten as,

b b b= - 1hkl hkl
2

corrected
2

measured
2

instrumental( ) ( ) ( ) ( )

And the crystallite size (D) can be calculated usingDebye-Scherrer formula,

l
b q

=D
k

cos
2

hkl

( )

Where k is the shape factor ( =k 0.9),λ is thewavelenth of the x-rays (λ=0.154056 nm), bhkl is the broadening
of the diffraction peakmeasured at half of itsmaximum intensity and θ is the angle of diffraction [50].

From Scherrer’s formula, the average crystallite size is found to be around 19 nm. But, Scherrer’s formula
provides only the effect of crystallite size on the peak broadening and it is just a part of the instrumental
broadening function. Also, Scherrer formula doesnot give the information about the intrinsic strainwhich is
developed in the nanocrystals because of stacking faults, triple junction, grain boundary and point defects. Here,
in order to calculate two independent factors i.e. the crystallite size and intrinsic strain, uniformdeformation
model (UDM) inWilliamson-Hall (W-H)method is used [50, 51].

Figure 2. FTIR spectra of (a)NiSNPs and (b) (i)neat PVA, (ii)PVA/NiS nanocomposite filmsfilledwith 0.5 wt%NiSNPs,
(iii) 1.0 wt%NiSNPs, (iv)1.5 wt%NiSNPs, (v) 2.0 wt%NiSNPs, (vi) 2.5 wt%NiSNPs and (vii) 3.0 wt%NiSNPs.

4

Mater. Res. Express 7 (2020) 064007 P LReddy et al



In general, the instrumental broadening function can bewritten as,

b b b= + 3total size strain ( )

The expression for strain induced peak brodening can be given by,

b e q= 4 . tan 4strain ( )

The total brodening owing to size and strain for a particular peak having hkl value can be given as,

b b b= + 5hkl size strain ( )

b
l

q
e q= +

k

D
Therefore, .

1

cos
4 . tan 6hkl ( )

On rearranging equation (6), we have,

b q
l

e q= +
k

D
. cos 4 . sin 7hkl ( )

Equation (7) is an equation of straight line and is calledUDMequation and this is considerable for isotropic
nature of crystals [50, 51].

A plot is drawn by taking q4 sin values alongX-axis and b q. coshkl values along Y-axis formost of the
intensed peaks as depicted infigure 3(b). InW-H-UDMmodel, the interceptmade by the plot represents the
average crystallite size, whereas the slope of the straight line corresponds to the value of the intrinsic strain. From
theW-H-UDMmethod, the average crystallite size and the intrinsic strain are calculated to be around 26 nm
and 0.121×10–3 respectively. Also, from the figure 3(b), it has been noticed that the slope of theW-H-UDM
plot is positive which represents the lattice expansion [51]. Figure 3(c) displaysHRTEM image ofNiSNPswhich
shows a quasi-spherical shapewith very small aggregations [28]. The particle size histogrambased onHRTEM is
depicted infigure 3(d). The total numbers ofNPs accounted for particle size histogram are 509 per field of view.
From this, it can be observed that the average particle size ranges from20–30 nmwhich is in good agreement
withXRD results. TheXRDpatterns of pure PVA and PVA/NiS nanocomposite films are represented in
figure 4. Figure 4(a)depicts a diffraction peak around 2θ=19.67°which is ascribed to the semi-crystalline
nature of neat PVA ascribing to (101)plane reflections [52–57]. The PVA/NiSnanocomposites (figures 4(b)–(g))

Figure 3. (a)XRDpattern, (b)W-H-UDMplot (c)HRTEM image and (d) histogram showing particle size distribution ofNiSNPs.
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also show the broad diffractionpeak at 2θ=19.82° representing the existence of PVAwith several additional
small peaks at 2θ=30.38°, 35.11°, 45.99° and54.09°which strongly corroborate the existence ofNiS in the
nanocomposites.Moreover, it has beennoticed that the intensity of the diffraction peak corresponding to PVA is
decreasedwith an increase in theNiSNPs loading in the nanocomposites. Thismay be due to the possible
intermolecular interactions between the nanofiller and thehost polymermatrixwhich tends to decreasewithin
the polymer chains and therefore the degree of crystallinity [58–60].

3.3. Thermal analysis
Figures 5(a)–(h) displays TGA thermograms ofNiSNPs, neat PVA and PVA/NiS nanocomposite films. TheNiS
NPs (figure 5(a)) depict twoweight loss stages (overall weight loss is about 36.06%). Thefirst decomposition
stage is noticed between the temperatures 39 °Cand 350 °C (weight loss about 8.82%)which could be due to the
elimination of hydroxide group and residualmoisture. The second stage of weight loss about 22.92%occurs in
the temperature range 350–540 °Cwhichmay be attributed to the gradual decomposition of the sulfur during
structural collapse process [61]. The residualmass ofNiSNPs is observed to be 63.73%. The neat PVA
(figure 5(b)) exhibits three degradation steps (overall weight loss about 99.83%). Thefirst step of degradation
(about 4.21%weight loss) is identified in the temperature range 52 °C–130 °Cwhich is because of elimination of
hydrolyzedwater in thefilm [62]. The second step of degradation (weight loss about 62.04%) appears between

Figure 4.XRDpatterns of (a)neat PVA, (b)PVA/NiS nanocomposite filmsfilledwith 0.5 wt%NiSNPs, (c) 1.0 wt%NiSNPs,
(d) 1.5 wt%NiSNPs, (e) 2.0 wt%NiSNPs, (f) 2.5 wt%NiSNPs and (g) 3.0 wt%NiSNPs.

Figure 5.TGAplots of (a)NiSNPs, (b)neat PVA, (c)PVA/NiS nanocomposite films embeddedwith 0.5 wt%NiSNPs, (d) 1.0 wt%
NiSNPs, (e) 1.5 wt%NiSNPs, (f) 2.0 wt%NiSNPs, (g) 2.5 wt%NiSNPs and (h) 3.0 wt%NiSNPs.
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the temperatures 150 °Cand 390 °Cowing to chain scission, splitting ofmonomer unit and degradation in the
polymer’s backbone [63, 64]. The third step of degradation exhibits weight loss about 33.58%above 420 °C
whichmay because of the cleavage of C-C (residual carbon) bond of PVA and complete decomposition of its
backbone [63–66]. The PVA/NiS nanocomposite films also show three stages of decomposition (figures 5(c)–
(h). The overall weight loss of these nanocomposite films are identified to be about in the range 99.53–93.7%.
Thefirst decomposition stage appears between the temperatures 48 °C and 134 °C (weight loss is in the range
3.06%–3.65%)which is ascribed to the removal of adsorbedwater present in the nanocomposites. The second
stage of decomposition is located in the temperature range 147 °C–403 °Cwhich could be due to the bond
scission and splitting of themonomer unit in the backbone of PVA [58]. Theweight loss in the second
decomposition stage is observed to be in the range 52.99%–67.40%. The third decomposition stage appears
above 415 °C (weight loss is in the range 27.68%–37.49%)which is attributed to the further structural
decomposition of PVA resulting in the formation of carbonaceous residue consisting ofmacromolecular
fragmentation of both theNiSNPs and PVA [58, 67, 68]. From figures 5(c)–(h), it has been noticed that the final
residualmass of the PVA/NiS nanocomposite films isincreasedwith increase inNiS content (wt%) in the PVA
matrix and found to be in the range 1.19%–6.02%whereas for neat PVA, the residualmass is observed to be
0.73%only. This residualmass demonstrates non-degraded polymer chains, alkenes and other organic
compounds that existed in the nanocomposites [69]. These results suggest that the PVA/NiS nanocomposite
films exhibit better thermal stability as comparedwith neat PVA. The cause for showing better thermal stability
of nanocomposites is the successful inclusion ofNiSNPs in the PVAmatrix and also good interaction between
them.Hence, the incorporation ofNiSNPs into PVA restricts themotion of a polymeric chain and consequently
decreases theweight loss and results in a sluggish decomposition process [70].

Furthermore, the thermal properties of PVA/NiS nanocomposites were carried out usingDSCwhich gives
the information about the effect of nanofiller concentration on glass transition temperature (Tg), melting
temperature (Tm), and degradation temperature (Td) etc on the host polymers [71–73]. Figures 6(a)–(g) displays
theDSC thermographs of pure PVA and PVA/NiS nanocomposite films. For all the samples, three endothermic
peakswere identified. Thefirst peak ascribed to Tgwas identified at 103.29 °C for PVA and in the temperature

Figure 6.DSC thermographs of (a)neat PVA, (b)PVA/NiS nanocomposite films loadedwith 0.5 wt%NiSNPs, (c) 1.0 wt%NiSNPs,
(d) 1.5 wt%NiSNPs, (e) 2.0 wt%NiSNPs, (f) 2.5 wt%NiSNPs and (g) 3.0 wt%NiSNPs.

Table 1.Tg, Tm ,Td, DH andCof neat PVA and PVA/NiS nanocomposite films.

Samples Tg (°C) Tm (°C) Td (°C)
DH

(J g−1) C (%)

PVA 103.29 187.53 385.09 25.60 18.47

0.5wt%NiS 121.19 191.66 379.66 30.63 22.10

1wt%NiS 122.33 192.65 378.79 30.23 21.81

1.5wt%NiS 104.15 194.69 384.95 36.79 26.54

2wt%NiS 119.08 191.66 377.92 35.23 25.42

2.5wt%NiS 105.41 192.52 375.31 41.72 30.10

3wt%NiS 104.87 192.09 373.58 39.43 28.45
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range from104.15 °C–122.33 °C for PVA/NiS nanocomposites. Such peaksmay be ascribed to removal of
moisture on the surface of the samples [74, 75]. The second peak assigned to Tm is noticed at 187.53 °C for neat
PVA [68]. For PVA/NiS nanocomposites, the Tm value lies within the temperature range 191.66 °C–194.69 °C.
The slight increase in the Tm values of the nanocomposites was noticed and this is due to confinement effects and

Figure 7.POM images of (a)neat PVA, (b)PVA/NiS nanocomposite films loadedwith 0.5 wt%NiSNPs, (c) 1.0 wt%NiSNPs,
(d) 1.5 wt%NiSNPs, (e) 2.0 wt%NiSNPs, (f) 2.5 wt%NiSNPs and (g) 3.0 wt%NiSNPs.

8

Mater. Res. Express 7 (2020) 064007 P LReddy et al



interactions between the nanofiller and host polymermatrix [72, 76]. The third endothermic peak appears at the
temperature 320.82 °C and in the temperature range 307.58 °C–319.69 °Cwhich is ascribed to pyrolysis of PVA
and PVA/NiS nanocomposites respectively. Finally, an additional exothermic peak occurs at 385.09 °Cwhich is
attributed to Td for neat PVA and its value lies in the temperature range 373.58 °C–384.95 °C for PVA/NiS
nanocomposites. The degree of crystallinity (C) of the polymer can be calculated fromDSC endothermic curves
using the following equation by assuming a linear relationship between the endothermal peak area and
crystallinity [77].

=
D
D

´
H

H
C 100% 8

o

( )

WhereC is the crystallinity of a semicrystalline polymer,DH is the heat of fusion of a semicrystalline polymer,
andDHo is the heat required formelting of 100%PVA (138.6 J g−1). The endothermicmelting transition and
the calculated crystallinity of the samples are presented in table 1.

3.4.Morphology andmicrostructural studies
Figures 7(a)–(g) depicts POM images of neat PVA and PVA/NiS nanocomposite films. The neat PVAfilm
(figure 7(a)) demonstrates a homogeneous and smooth surfacemorphology. On the other hand, the PVA/NiS
nanocomposite films (figures 7(b)–(g) demonstrate rough surface indicating an excellent adhesion between the
PVAmatrix and the nanofiller [78]. Further, SEMmicrographs ofNiSNPs, neat PVA and PVA/NiS
nanocomposite filmswere obtained to investigate themicrostructure, composition and degree of dispersion of
nanofiller in the polymermatrix. Figures 8(a), (b) displays the SEMmicrographs ofNiSNPswith different
magnifications. These images revealed the agglomerated and quasi-spherical shapedNPs. Figure 9 depicts the
EDAX spectrumofNiSNPswhich confirms the presence of nickel and sulphur in the chemical compositions of
NiS. Figures 10(a)–(g) shows SEM images of PVA/NiS nanocomposite films. The neat PVAfilmdepicts smooth
andflat surface (figure 10(a))whereasNPs agglomerations (white spots)were noticed in the SEMmicrographs of
PVA/NiS nanocomposites at all concentrations with varying degree of dispersion (figures 10(b)–(g)).Moreover,
it has been observed that the agglomeration ofNiSNPs in the polymermatrix increases with increasingNiS

Figure 8. SEM images ofNiSNPs at different resolutions.

Figure 9.EDAX spectrumofNiSNPs.
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content. Finally, themorphology of the PVA/NiS nanocomposite filmswas investigated usingHRTEMand the
results are shown infigure 11. TheHRTEM images of PVA/NiS nanocomposite filmsfilledwith 3 wt%ofNiS
NPs (figures 11(a)–(d)) revealed that theNiSNPs have been uniformly dispersed in the PVAmatrix revealing
good compatibility between the polymermatrix and the nanofiller [12].

Figure 10. SEM images of (a)neat PVA, (b)PVA/NiS nanocomposite filmsfilledwith 0.5 wt%NiSNPs, (c) 1.0 wt%NiSNPs,
(d) 1.5 wt%NiSNPs, (e) 2.0 wt%NiSNPs, (f) 2.5 wt%NiSNPs and (g) 3.0 wt%NiSNPs.
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3.5.Dielectric studies
The PNCs having higher dielectric constant and lower dielectric loss are essential for energy storage applications
[79–81]. As the energy storage capacity of thesematerials is the key for utilization in energy generating devices,
significant interest has been shown in the analysis of dielectric properties of various PNCs [82]. Also, the chain
interactions and the polarity of the host polymermay affect the interface between the polymermatrix and the
NPs [83]. The dielectric constant (ε) and dielectric loss (tanδ) values of PVA/NiS nanocomposite films are given
in table 2. Figures 12(a)–(g)denotes dielectric constant plots of PVA and PVA/NiS nanocomposite films
measured at various frequencies (50Hz-20MHz) and various temperatures (40 °C–140 °C). From
figures 12(a)–(g), it has been observed that both PVA and PVA/NiS nanocomposite films showhigh dielectric
constant values at lower frequencies. The dielectric constant decreases with an increase in frequencywhichmay
be attributed toMaxwell-Wagner Sillar (MWS) polarization effect or interfacial polarization effect, which is

Figure 11.HRTEM images of PVA/NiS nanocomposite film loadedwith 3 wt%NiSNPs at different resolutions.

Table 2. ε and tan δ values of PVA/NiS nanocomposite films.

PVA/NiS compositions ε tan (δ)

100/0 6.90, 50 Hz, 140 °C 0.22, 50 Hz, 140 °C
99.5/0.5 28.71, 50 Hz, 140 °C 0.38, 50 Hz, 140 °C
99/1.0 60.14, 50 Hz, 140 °C 0.62, 50 Hz, 140 °C
98.5/1.5 68.97, 50 Hz, 140 °C 0.71, 50 Hz, 140 °C
98/2.0 114.79, 50 Hz, 140 °C 0.83, 50 Hz, 140 °C
97.5/2.5 124.22, 50 Hz, 140 °C 0.92, 50 Hz, 140 °C
97/3.0 154.55, 50 Hz, 140 °C 0.98, 50 Hz, 140 °C
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Figure 12. (a): Dielectric constant (ε) plots of neat PVA as a function of frequency at different temperatures. (b): Dielectric constant (ε)
plots of PVA/NiS nanocomposite filmsfilledwith 0.5 wt%NiSNPs as a function of frequency at different temperatures. (c): Dielectric
constant (ε) plots of PVA/NiS nanocomposite filmsfilledwith 1.0 wt%NiSNPs as a function of frequency at different temperatures.
(d): Dielectric constant (ε) plots of PVA/NiS nanocomposite filmsfilledwith 1.5 wt%NiSNPs as a function of frequency at different
temperatures. (e): Dielectric constant (ε) plots of PVA/NiS nanocomposite filmsfilledwith 2.0 wt%NiSNPs as a function of
frequency at different temperatures. (f): Dielectric constant (ε) plots of PVA/NiS nanocomposite filmsfilledwith 2.5 wt%NiSNPs as
a function of frequency at different temperatures. (g): Dielectric constant (ε) plots of PVA/NiS nanocomposite filmsfilledwith
3.0 wt%NiSNPs as a function of frequency at different temperatures.
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Figure 13. (a): Dielectric loss (Tan(δ)) plots of neat PVA as a function of frequency at different temperatures. (b): Dielectric loss
(Tan(δ)) plots of PVA/NiS nanocomposite filmswith 0.5 wt%NiSNPs loading as a function of frequency at different temperatures.
(c): Dielectric loss (Tan(δ)) plots of PVA/NiS nanocomposite filmswith 1.0 wt%NiSNPs loading as a function of frequency at
different temperatures. (d): Dielectric loss (Tan(δ)) plots of PVA/NiS nanocomposite filmswith 1.5 wt%NiSNPs loading as a
function of frequency at different temperatures. (e): Dielectric loss (Tan(δ)) plots of PVA/NiS nanocomposite filmswith 2.0 wt%NiS
NPs loading as a function of frequency at different temperatures. (f): Dielectric loss (Tan(δ)) plots of PVA/NiS nanocomposite films
with 2.5 wt%NiSNPs loading as a function of frequency at different temperatures. (g): Dielectric loss (Tan(δ)) plots of PVA/NiS
nanocomposite filmswith 3.0 wt%NiSNPs loading as a function of frequency at different temperatures.
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defined as the accumulation of charge carriers at the interface between the polymermatrix and the nanofiller
[84, 85]. At higher frequency, the interfacial dipoles do not have enough time to align themselves in the direction
of an applied electric field [53, 86, 87]. Also, theMWSeffect in polarization is typified by the dependence of
frequency and the value of ε in the low-frequency region. At higher frequencies (10KHz–20MHz), no
significant change in dielectric constant was observedwhich demonstrating the good frequency stability of
samples. Generally, it happens because the dipole orientation is difficult at the higher frequencies [53]. The
maximumdielectric constant value was found to be 154.55 (at 50 Hz and at140 °C) for PVA/NiS
nanocomposite films reinforcedwith 3 wt%NiSNPswhich is 22 times greater than the dielectric constant value
of pure PVA (6.90). This indicates an excellent interfacial adhesion between the nanofiller and the host polymer
matrix. Furthermore, it has been noticed that the ε values have increasedwith an increment in the nanofiller
loading in the host polymermatrix. For a dielectricmaterial, tanδ is also one of the significant parameters which
give information about the dissipation of energy (loss) of an electromagnetic field. Figures 13(a)–(g) displays the
tanδ values of PVA and PVA/NiS nanocomposite films. These nanocomposite films showhigh values of tanδ at
lower frequencies and low tanδ values at higher frequencies which could be due to the interfacial polarization
[44, 58].Moreover, the tanδ values have increasedwith an increase inNiS loading in the PVAmatrix
(figures 13(b)–(g)). However, as comparedwith the ε values, the tanδ values are very lowwhich is very attractive
for energy storage device applications [44, 88].

4. Conclusions

In this work,NiSNPs and PVA/NiS nanocomposite films have been successfully prepared via a green synthesis
approach and solution castingmethod respectively. The PVA/NiS nanocomposites were analyzed using various
characterization techniques. The FTIR andXRD results revealed that theNiSNPs and PVAhave significant
interactionwith each other. TGA andDSC results evidenced an improvement in the thermal stability of PVA/
NiS nanocomposite films as comparedwith pure PVAfilm. The POM, SEMandHRTEMresults revealed that
themorphology andmicrostructure of PVA/NiS nanocomposites were significantlymodifiedwith the addition
ofNiSNPs in the PVAmatrix.Moreover, high ε and low tanδ values obtained for the PVA/NiS nanocomposite
films suggesting their potential applications in energy storage devices.
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