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Abstract

A green synthesis approach has been adopted to prepare nickel sulphide nanoparticles (NiS NPs) using
banana peel extract (BPE) as a reducing and capping agent. Polyvinyl alcohol (PVA)/NiS
nanocomposite films were fabricated using a cost-effective solution casting technique by dispersing
different contents of NiS NPs (0-3 wt%) in the PVA matrix. Various characterization techniques were
employed to analyze the structural, thermal and morphological properties of the PVA/NiS
nanocomposite films. Further, the dielectric behaviour of these nanocomposite films was investigated
at frequency range 50 Hz—20 MHz and in the temperature range 40 °C-140 °C. Also, there exists a
significant interaction between the polymer matrix and the nanofiller as evident from the notable
improvement in the dielectric properties of the nanocomposites. The dielectric constant (¢) value of
PVA/NiS nanocomposite film with 3 wt % NiS NPs loading was found to be 154.55 at 50 Hz and at
140 °C which is 22 times greater than the dielectric constant value of neat PVA (6.90). These results
suggest that NiS NPs were dispersed homogeneously in the PVA matrix.

1. Introduction

In recent times, tremendous research interest has been devoted to the development of novel polymer
nanocomposites (PNCs) because of their enhanced properties [1-3]. The PNCs reinforced with inorganic
nanoparticles (NPs) have potential applications such as optical power limiters, membranes for gas separation,
flexible light emitters etc [4, 5]. Polymer/filler interface, the geometry of the dispersed phase (orientation, size,
shape etc), their relative contents, and also volume fraction can alter or modify the final properties of PNCs [6].
The unavailability of low-cost techniques to control the distribution of NPs into the host polymer matrix is the
main obstruction to the large-scale fabrication of PNCs [7]. For the PNCs, the major limitation in the
application side is that the aggregation of NPs or their distribution in the polymer matrix. So, there is a necessity
that the NPs have to be dispersed homogeneously within the polymer matrix because it causes an improvement
in the chemical and physical properties of the PNCs [8, 9]. Therefore, to control the functioning of PNCs, two
important parameters are required i.e., the spatial distribution of NPs and their interactions with the host
polymer matrix [10-12]. For the past few years, it has been considered that the improved dielectric properties of
the PNCsloaded with inorganic NPs is believed to be a strong candidate for energy storage applications [13, 14].
Some of the reports revealed that the dielectric properties of PNCs filled with the semiconductor NPs were
enhanced when compared with pure polymers [15, 16].
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Vellore (India) from 29th Nov—1st Dec. 2019. Chairman: Prof. A. Nirmala Grace.
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Among various polymers used for the fabrication of PNCs, polyvinyl alcohol (PVA) is most often preferred
as a host matrix owing to its excellent film-forming ability, higher dielectric strength, the capability to form
strong hydrogen bonding, easy processability, excellent chemical stability, and highly durable nature [17]. PVA
has been employed for various applications such as in battery components, packaging, textile applications in the
microelectronic industry, electromagnetic interference applications and so on [17, 18]. Several research groups
reported the dielectric properties of the PVA based nanocomposites [ 19-21]. With this inspiration, in the
present study PVA has been chosen as a host polymer to synthesize PVA based nanocomposites. Now a day,
more attention has been focussed on metal sulphide nanostructures because of their unique properties and
applications [22]. Among these, nickel sulphide (NiS) has been mostly investigated because of its simple
production, affordable price and high electronic conductivity [23, 24]. It exhibits complicated electrical, optical,
structural, compositional and magnetic phase behaviour [25]. Also due to the possession of multi-phases, binary
Ni-S systems such as NiS,, Ni3S4, NigSg, Ni;Se, NigSs, NiyS3 4, Ni3S,, and Nis S, have become fascinated
materials [26]. NiS NPs exhibit different shapes such as layer-rolled structures, urchin-like nanocrystallites,
flower-like architectures, hollow spheres, nanoframes, nanorods, and nanospheres etc [27, 28].

Recently, increased attention has been given to the green approach for the synthesis of NPs because of its
several advantages [29-32]. For the synthesis of NPs, the plant extracts which serve as reducing/capping agents
are considered to be more beneficial than remaining techniques [33]. Several researchers reported the synthesis
of metal sulphide NPs through a green synthesis approach using extracts of different parts of plants as reducing/
capping agents [34, 35]. Bananas are cultivated almost all over the world. Banana peels are potentially used in
environmental cleaning, organic fertilizer, energy-related activities, cosmetics, pulp and paper making, bio-
sorbents, bio-fuel manufacturing etc [36]. Banana peels are intrinsically affluent in polymers like pectin,
carbohydrates, hemicelluloses, cellulose, and lignin which have been utilized as reducing/capping materials for
the synthesis of NPs [37, 38]. Some reports revealed the usage of various green synthesized materials for a wide
range of applications [39]. With this interest, here banana peel extract (BPE) has been selected as a reducing/
capping agent to prepare the NiS NPs. Subsequently, the NiS NPs were used as nanofiller to prepare PVA/Ni$S
nanocomposites.

The main aim of the present study to synthesize the NiS NPs using a green synthesis approach followed by
their incorporation into the PVA matrix for the preparation of PVA/NiS nanocomposite films via the solution
casting method. Besides, the structural, thermal, morphological and dielectric properties of the prepared
nanocomposites were investigated using various characterization techniques.

2. Experimental

2.1. Materials

Fresh banana peels were obtained from banana agricultural fields. Sodium sulphide (Na,S), nickel nitrate
hexahydrate (Ni(NO3),:6H,0), PVA powder (MW = 85,000-1,24,000 g mole™! with 87%—-89% degree of
hydrolysis) and N, N-Dimethylformamide (DMF) were received from Sigma-Aldrich, India.

2.2. Preparation of BPE

First, banana peels were cleaned using deionized (DI) water to take away unwanted organic impurities and dust
present in it. Subsequently, these peels were dried on paper towel. Then, appropriate quantity of peel was heated
at 90 °C in a beaker containing DI water and subsequently filtered. This obtained filtrate was utilized as reducing
or capping agent to synthesize NiS NPs.

2.3. Synthesis of NiS NPs

Green synthesis approach was employed to prepare the NiS NPs. Ni(NOs),- 6H,O was used as nickel ions source
and Na,S was used for obtaining the sulphide ions. 1M Ni(NO3),- 6H,0 and 1M Na,S were dissolved in DI water
separately and stirred using magnetic stirrer for one hour at room temperature (RT) to obtain clear solution.
Subsequently, both the solutions were mixed and stirred for additional one hour to get homogeneous solution.
In this solution, an appropriate quantity of BPE was added and stirred for 6 h at 70 °C. After that as obtained
precipitate was washed several times using DI water and ethanol to eliminate the unwanted impurities or
residues. The final material was dried in hot air oven at 95 °C for 24 h and subsequently in muffle furnace at

300 °C for 2 h [40]. Finally, the black powder was obtained which was grinded using mortar and pestle and
utilised for the synthesis of PVA/NiS nanocomposites.

2.4. Preparation of PVA/NiS nanocomposite films
Figure 1 schematically represents the preparation procedure of PVA/NiS nanocomposite films using solution
casting technique. The desired amount of PVA solution was obtained by dissolving PVA powder in DI water by
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Figure 1. Representation of the synthesis protocol of PVA/NiS nanocomposite films.

heating at 65 °C in hot air oven for 3 h. The NiS NPs were dispersed in DMF, sonicated for two hours and then
mixed with PVA solution. Further, PVA/NiS mixture was constantly stirred for 9 h until the uniform
distribution of NiS NPs in PVA is ensured. This resultant dispersion was poured onto Petri dish, afterwards kept
at 70 °Cin hot air oven for 5 h to obtain nanocomposite films. These PVA/NiS nanocomposite films having
70—80 pm thickness was peeled off from Petri dish and used for further characterizations.

2.5. Characterizations

Fourier transform infrared spectroscopy (Japan, Shimadzu, [Raffinity-1) was employed to measure FTIR
transmittance spectra of NiS NPs, neat PVA and PVA /NiS nanocomposites in the wavenumber range
4000-400 cm ™.

X-ray diffraction experiments were performed usingan x-ray diffractometer (Germany, Bruker, Advanced
D8) with a wavelength of 1.54 A and 1° min ™' scanning speed using Cu Ko radiation. The recorded data was
obtained in 26 ranging from 10-90°.

Thermogravimetric analysis (TGA) of the prepared samples was performed from RT to 800 °C using TGA
thermal analyzer (USA, TA Instruments, Q500 model) and differential scanning calorimeter (DSC) (TA
Instruments, Q200 model) from RT to 400 °C at the heating rate of 10 °C min ™' in a N, atmosphere.

Crossed polarizing optical microscope (POM) (Singapore, BX-53, Olympus) with a magnification 10X was
employed to assess the dispersion state of NiS NPs in the PVA matrix.

Scanning electron microscopy (SEM) (UK, Carl Zeiss EVO/18SH) was used to investigate the surface
morphology of the samples. An accelerating voltage of 15 kV was applied for obtaining SEM images. Energy
dispersive analysis of x-ray diffraction (EDAX) was coupled with the SEM to analyze the chemical compositions
present in the synthesized NiS NPs.

High-resolution transmission electron microscopy (HRTEM) images of NiS NPs and PVA /NiS
nanocomposite films were obtained using FEI-Tecnai G2-20 twin 200 kV spectrometer.

Precision impedance analyzer (UK, Chichester, West Sussex, Wayne Kerr 6500B) was used to test the
dielectric behaviour of PVA and PVA/NiS nanocomposite films in the frequency range 50 Hz—20 MHz and the
temperature range 40 °C-140 °C.
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Figure 2. FTIR spectra of (a) NiS NPs and (b) (i) neat PVA, (ii) PVA/NiS nanocomposite films filled with 0.5 wt% NiS NPs,
(iii) 1.0 wt% NiS NPs, (iv)1.5 wt% NiS NPs, (v) 2.0 wt% NiS NPs, (vi) 2.5 wt% NiS NPs and (vii) 3.0 wt% NiS NPs.

3. Results and discussions

3.1. FTIR study

Figure 2(a) displays the FTIR spectrum of NiS NPs. The bands appeared at 3421 and 1631 cm ™" are assigned to
stretching and bending vibrations respectively of hydroxyl groups present on the surface of the sample [41]. The
peakat 623 cm ™' could be assigned to bending vibration mode in Ni-S—-Ni [42]. Figure 2(b) (i)—(vii)
demonstrates the FTIR spectra of PVA and PVA/NiS nanocomposite films. The pure PVA (figure 2(b) (i))
depicts absorption and strong band at 3306 cm ™! assigned to the vibration of ~OH group (stretching) [43]. The
bands observed at 2916 and 1726 cm ™' may be attributed to C—H asymmetric stretching vibration (alkyl groups)
and of C=0 (vinyl acetate group) stretching vibration respectively [44]. The CH, bending vibration in the PVA
backbone chain is represented by the band that appeared at 1431 cm ™' [45]. The CH, and C—H wagging
vibrations are represented by the bands at 1363 and 1235 cm ™' respectively [17]. The bands at 1083 and

838 cm ™' are attributed to the stretching vibration of C-O in the backbone of PVA (acetyl group) and skeletal
vibration in PVA respectively [46, 47]. Moreover, almost the same peaks were noticed in the FTIR spectra of
PVA/NiS nanocomposites (figure 2(b) (ii)—(vii)) along with some additional peaks below 660 cm ™' which may
be attributed to bending vibration of Ni-S-Ni [48]. However, a small shift in the peak position was noticed in the
FTIR spectra of PVA/NiS nanocomposites representing good compatibility between the NiS and hydroxyl
groups of PVA.

3.2.XRD analysis

Figure 3(a) depicts XRD pattern of NiS NPs indicating major diffraction peaks at 20 = 30.25°, 34.53°, 45.72°
and 53.57° which corresponds to the reflections of crystal planes (100), (101), (102) and (110) match with NiS
(a- phase) with space group P63 /mmc (hexagonal phase, JCPDS: 075-0613) [40, 49]. Normally, peak
broadening in the x-ray diffraction peaks consists of two components namely physical broadening and
instrumental broadening which happens due to the effect of crystallite size and and the intrinsic strain
respectively. The corrected instrumental broadening () for the peaks of NiS NPs can be written as,

(5ikl)corrected = (ﬁikl)measured - (ﬁz)instrumental (1)
And the crystallite size (D) can be calculated using Debye-Scherrer formula,
D — kA Q)
B cos 0

Where kis the shape factor (k = 0.9), \is the wavelenth of the x-rays (A = 0.154056 nm), 3 isthe broadening
of the diffraction peak measured at half of its maximum intensity and 6 is the angle of diffraction [50].

From Scherrer’s formula, the average crystallite size is found to be around 19 nm. But, Scherrer’s formula
provides only the effect of crystallite size on the peak broadening and it is just a part of the instrumental
broadening function. Also, Scherrer formula doesnot give the information about the intrinsic strain which is
developed in the nanocrystals because of stacking faults, triple junction, grain boundary and point defects. Here,
in order to calculate two independent factors i.e. the crystallite size and intrinsic strain, uniform deformation
model (UDM) in Williamson-Hall (W-H) method is used [50, 51].

4
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Figure 3. (a) XRD pattern, (b) W-H-UDM plot (c) HRTEM image and (d) histogram showing particle size distribution of NiS NPs.

In general, the instrumental broadening function can be written as,

/Btotul = ﬁsize + ﬁstmin (3
The expression for strain induced peak brodening can be given by,
ﬁstmin = 4¢ .tan 0 (4)
The total brodening owing to size and strain for a particular peak having hkl value can be given as,
ﬁhkl = ﬁsize + ﬁstmin )
kA1
Therefore, Gpy = —. + 4¢ . tan 0 (6)
D cos
On rearranging equation (6), we have,
Bk . cos 0 = % + 4e.sin 0 7)

Equation (7) is an equation of straight line and is called UDM equation and this is considerable for isotropic
nature of crystals [50, 51].

A plot is drawn by taking 4 sin 6 values along X-axis and . cos 6 values along Y-axis for most of the
intensed peaks as depicted in figure 3(b). In W-H-UDM model, the intercept made by the plot represents the
average crystallite size, whereas the slope of the straight line corresponds to the value of the intrinsic strain. From
the W-H-UDM method, the average crystallite size and the intrinsic strain are calculated to be around 26 nm
and 0.121 x 107° respectively. Also, from the figure 3(b), it has been noticed that the slope of the W-H-UDM
plotis positive which represents the lattice expansion [51]. Figure 3(c) displays HRTEM image of NiS NPs which
shows a quasi-spherical shape with very small aggregations [28]. The particle size histogram based on HRTEM is
depicted in figure 3(d). The total numbers of NPs accounted for particle size histogram are 509 per field of view.
From this, it can be observed that the average particle size ranges from 20-30 nm which is in good agreement
with XRD results. The XRD patterns of pure PVA and PVA/NiS nanocomposite films are represented in
figure 4. Figure 4(a) depicts a diffraction peak around 26 = 19.67° which is ascribed to the semi-crystalline
nature of neat PVA ascribing to (101) plane reflections [52—57]. The PVA/NiS nanocomposites (figures 4(b)—(g))

5
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Figure 5. TGA plots of (a) NiS NPs, (b) neat PVA, (c) PVA/NiS nanocomposite films embedded with 0.5 wt% NiS NPs, (d) 1.0 wt%
NiSNPs, (¢) 1.5 wt% NiS NPs, (f) 2.0 wt% NiS NPs, () 2.5 wt% NiS NPs and (h) 3.0 wt% NiS NPs.

also show the broad diffraction peak at 260 = 19.82° representing the existence of PVA with several additional
small peaks at 26 = 30.38°,35.11°,45.99° and 54.09° which strongly corroborate the existence of NiS in the
nanocomposites. Moreover, it has been noticed that the intensity of the diffraction peak corresponding to PVA is
decreased with an increase in the NiS NPsloading in the nanocomposites. This may be due to the possible
intermolecular interactions between the nanofiller and the host polymer matrix which tends to decrease within
the polymer chains and therefore the degree of crystallinity [58—60].

3.3. Thermal analysis

Figures 5(a)—(h) displays TGA thermograms of NiS NPs, neat PVA and PVA/NiS nanocomposite films. The NiS
NPs (figure 5(a)) depict two weight loss stages (overall weight loss is about 36.06%). The first decomposition
stage is noticed between the temperatures 39 °C and 350 °C (weight loss about 8.82%) which could be due to the
elimination of hydroxide group and residual moisture. The second stage of weight loss about 22.92% occurs in
the temperature range 350—540 °C which may be attributed to the gradual decomposition of the sulfur during
structural collapse process [61]. The residual mass of NiS NPs is observed to be 63.73%. The neat PVA

(figure 5(b)) exhibits three degradation steps (overall weight loss about 99.83%). The first step of degradation
(about 4.21% weight loss) is identified in the temperature range 52 °C—130 °C which is because of elimination of
hydrolyzed water in the film [62]. The second step of degradation (weight loss about 62.04%) appears between
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Figure 6. DSC thermographs of (a) neat PVA, (b) PVA/NiS nanocomposite films loaded with 0.5 wt% NiS NPs, (c) 1.0 wt% NiS NPs,
(d) 1.5 wt% NiS NPs, (e) 2.0 wt% NiS NPs, () 2.5 wt% NiS NPs and (g) 3.0 wt% NiS NPs.

Table 1. Ty, Ty, , T4, AH and Cof neat PVA and PVA/NiS nanocomposite films.

AH
Samples T,C°C)  Twm(C)  T4(0) gg™ C (%)
PVA 103.29 187.53 385.09 25.60 18.47
0.5 wt % NiS 121.19 191.66 379.66 30.63 22.10
1 wt % NiS 122.33 192.65 378.79 30.23 21.81
1.5wt % Ni$ 104.15 194.69 384.95 36.79 26.54
2wt % NiS 119.08 191.66 377.92 35.23 25.42
2.5 wt % NiS 105.41 192.52 375.31 41.72 30.10
3wt % NiS 104.87 192.09 373.58 39.43 28.45

the temperatures 150 °C and 390 °C owing to chain scission, splitting of monomer unit and degradation in the
polymer’s backbone [63, 64]. The third step of degradation exhibits weight loss about 33.58% above 420 °C
which may because of the cleavage of C-C (residual carbon) bond of PVA and complete decomposition of its
backbone [63-66]. The PVA/NiS nanocomposite films also show three stages of decomposition (figures 5(c)—
(h). The overall weight loss of these nanocomposite films are identified to be about in the range 99.53-93.7%.
The first decomposition stage appears between the temperatures 48 °C and 134 °C (weight loss is in the range
3.06%—3.65%) which is ascribed to the removal of adsorbed water present in the nanocomposites. The second
stage of decomposition is located in the temperature range 147 °C-403 °C which could be due to the bond
scission and splitting of the monomer unit in the backbone of PVA [58]. The weight loss in the second
decomposition stage is observed to be in the range 52.99%—-67.40%. The third decomposition stage appears
above 415 °C (weight loss is in the range 27.68%—37.49%) which is attributed to the further structural
decomposition of PVA resulting in the formation of carbonaceous residue consisting of macromolecular
fragmentation of both the NiSNPsand PVA [58, 67, 68]. From figures 5(c)—(h), it has been noticed that the final
residual mass of the PVA /NiS nanocomposite films isincreased with increase in NiS content (wt %) in the PVA
matrix and found to be in the range 1.19%-6.02% whereas for neat PVA, the residual mass is observed to be
0.73% only. This residual mass demonstrates non-degraded polymer chains, alkenes and other organic
compounds that existed in the nanocomposites [69]. These results suggest that the PVA /NiS nanocomposite
films exhibit better thermal stability as compared with neat PVA. The cause for showing better thermal stability
of nanocomposites is the successful inclusion of NiS NPs in the PVA matrix and also good interaction between
them. Hence, the incorporation of NiS NPs into PVA restricts the motion of a polymeric chain and consequently
decreases the weight loss and results in a sluggish decomposition process [70].

Furthermore, the thermal properties of PVA/NiS nanocomposites were carried out using DSC which gives
the information about the effect of nanofiller concentration on glass transition temperature (T,), melting
temperature (Ty,), and degradation temperature (Tq) etc on the host polymers [71-73]. Figures 6(a)—(g) displays
the DSC thermographs of pure PVA and PVA/NiS nanocomposite films. For all the samples, three endothermic
peaks were identified. The first peak ascribed to Ty was identified at 103.29 °C for PVA and in the temperature
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Figure 7. POM images of (a) neat PVA, (b) PVA/NiS nanocomposite films loaded with 0.5 wt% NiS NPs, (c) 1.0 wt% NiS NPs,
(d) 1.5 wt% NiS NPs, (¢) 2.0 wt% NiS NPs, (£) 2.5 wt% NiS NPs and (g) 3.0 wt% NiS NPs.

range from 104.15 °C-122.33 °C for PVA/NiS nanocomposites. Such peaks may be ascribed to removal of
moisture on the surface of the samples [74, 75]. The second peak assigned to T, is noticed at 187.53 °C for neat
PVA[68]. For PVA/NiS nanocomposites, the T ,, value lies within the temperature range 191.66 °C-194.69 °C.
The slight increase in the T ,, values of the nanocomposites was noticed and this is due to confinement effects and
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Figure 8. SEM images of NiS NPs at different resolutions.

Scale 261 cts Cursor: 13.672 (0 cts) ke

Figure 9. EDAX spectrum of NiS NPs.

interactions between the nanofiller and host polymer matrix [72, 76]. The third endothermic peak appears at the
temperature 320.82 °C and in the temperature range 307.58 °C-319.69 °C which is ascribed to pyrolysis of PVA
and PVA/NiS nanocomposites respectively. Finally, an additional exothermic peak occurs at 385.09 °C which is
attributed to T for neat PVA and its value lies in the temperature range 373.58 °C-384.95 °C for PVA/NiS
nanocomposites. The degree of crystallinity (C) of the polymer can be calculated from DSC endothermic curves
using the following equation by assuming a linear relationship between the endothermal peak area and
crystallinity [77].

AH

X 100% ®)
Where C is the crystallinity of a semicrystalline polymer, AH is the heat of fusion of a semicrystalline polymer,
and AH, is the heat required for melting of 100 % PVA (138.6 ] g ). The endothermic melting transition and
the calculated crystallinity of the samples are presented in table 1.

3.4. Morphology and microstructural studies

Figures 7(a)—(g) depicts POM images of neat PVA and PVA /NiS nanocomposite films. The neat PVA film
(figure 7(a)) demonstrates a homogeneous and smooth surface morphology. On the other hand, the PVA/NiS
nanocomposite films (figures 7(b)—(g) demonstrate rough surface indicating an excellent adhesion between the
PVA matrix and the nanofiller [78]. Further, SEM micrographs of NiS NPs, neat PVA and PVA/NiS
nanocomposite films were obtained to investigate the microstructure, composition and degree of dispersion of
nanofiller in the polymer matrix. Figures 8(a), (b) displays the SEM micrographs of NiS NPs with different
magnifications. These images revealed the agglomerated and quasi-spherical shaped NPs. Figure 9 depicts the
EDAX spectrum of NiS NPs which confirms the presence of nickel and sulphur in the chemical compositions of
NiS. Figures 10(a)—(g) shows SEM images of PVA /NiS nanocomposite films. The neat PVA film depicts smooth
and flat surface (figure 10(a)) whereas NPs agglomerations (white spots) were noticed in the SEM micrographs of
PVA/NiS nanocomposites at all concentrations with varying degree of dispersion (figures 10(b)—(g)). Moreover,
ithas been observed that the agglomeration of NiS NPs in the polymer matrix increases with increasing NiS
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Figure 10. SEM images of (a) neat PVA, (b) PVA/NiS nanocomposite films filled with 0.5 wt% NiS NPs, (c) 1.0 wt% NiS NPs,
(d) 1.5 wt% NiS NPs, (¢) 2.0 wt% NiS NPs, (f) 2.5 wt% NiS NPs and (g) 3.0 wt% NiS NPs.

content. Finally, the morphology of the PVA /NiS nanocomposite films was investigated using HRTEM and the
results are shown in figure 11. The HRTEM images of PVA/NiS nanocomposite films filled with 3 wt% of NiS
NPs (figures 11(a)—(d)) revealed that the NiS NPs have been uniformly dispersed in the PVA matrix revealing
good compatibility between the polymer matrix and the nanofiller [12].
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Figure 11. HRTEM images of PVA/NiS nanocomposite film loaded with 3 wt% NiS NPs at different resolutions.

Table 2. ¢ and tan 6 values of PVA/NiS nanocomposite films.

PVA/NIS compositions € tan (6)

100/0 6.90, 50 Hz, 140 °C 0.22,50 Hz, 140 °C
99.5/0.5 28.71,50 Hz, 140 °C 0.38,50 Hz, 140 °C
99/1.0 60.14, 50 Hz, 140 °C 0.62,50 Hz, 140 °C
98.5/1.5 68.97,50 Hz, 140 °C 0.71,50 Hz, 140 °C
98/2.0 114.79, 50 Hz, 140 °C 0.83,50 Hz, 140 °C
97.5/2.5 124.22,50 Hz, 140 °C 0.92,50 Hz, 140 °C
97/3.0 154.55, 50 Hz, 140 °C 0.98,50 Hz, 140 °C

3.5. Dielectric studies

The PNCs having higher dielectric constant and lower dielectric loss are essential for energy storage applications
[79-81]. As the energy storage capacity of these materials is the key for utilization in energy generating devices,
significant interest has been shown in the analysis of dielectric properties of various PNCs [82]. Also, the chain
interactions and the polarity of the host polymer may affect the interface between the polymer matrix and the
NPs [83]. The dielectric constant (¢) and dielectric loss (tand) values of PVA /NiS nanocomposite films are given
in table 2. Figures 12(a)—(g) denotes dielectric constant plots of PVA and PVA /NiS nanocomposite films
measured at various frequencies (50 Hz-20 MHz) and various temperatures (40 °C-140 °C). From

figures 12(a)—(g), it has been observed that both PVA and PVA /NiS nanocomposite films show high dielectric
constant values at lower frequencies. The dielectric constant decreases with an increase in frequency which may
be attributed to Maxwell-Wagner Sillar (MWS) polarization effect or interfacial polarization effect, which is
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3.0 wt% NiS NPs as a function of frequency at different temperatures.
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Figure 12. (a): Dielectric constant (¢) plots of neat PVA as a function of frequency at different temperatures. (b): Dielectric constant (¢)
plots of PVA/NiS nanocomposite films filled with 0.5 wt% NiS NPs as a function of frequency at different temperatures. (c): Dielectric
constant (¢) plots of PVA/NiS nanocomposite films filled with 1.0 wt% NiS NPs as a function of frequency at different temperatures.
(d): Dielectric constant (¢) plots of PVA /NiS nanocomposite films filled with 1.5 wt% NiS NPs as a function of frequency at different
temperatures. (e): Dielectric constant () plots of PVA/NiS nanocomposite films filled with 2.0 wt% NiS NPs as a function of
frequency at different temperatures. (f): Dielectric constant () plots of PVA/NiS nanocomposite films filled with 2.5 wt% NiS NPs as
a function of frequency at different temperatures. (g): Dielectric constant (¢) plots of PVA/NiS nanocomposite films filled with
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Figure 13. (a): Dielectric loss (Tan(6)) plots of neat PVA as a function of frequency at different temperatures. (b): Dielectric loss
(Tan(6)) plots of PVA/NiS nanocomposite films with 0.5 wt% NiS NPs loading as a function of frequency at different temperatures.
(¢): Dielectric loss (Tan(6)) plots of PVA/NiS nanocomposite films with 1.0 wt% NiS NPsloading as a function of frequency at
different temperatures. (d): Dielectric loss (Tan(6)) plots of PVA/NiS nanocomposite films with 1.5 wt% NiS NPs loading as a
function of frequency at different temperatures. (e): Dielectric loss (Tan(6)) plots of PVA/NiS nanocomposite films with 2.0 wt% NiS
NPs loading as a function of frequency at different temperatures. (f): Dielectric loss (Tan(¢)) plots of PVA/NiS nanocomposite films
with 2.5 wt% NiS NPs loading as a function of frequency at different temperatures. (g): Dielectric loss (Tan(6)) plots of PVA/NiS
nanocomposite films with 3.0 wt% NiS NPs loading as a function of frequency at different temperatures.
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defined as the accumulation of charge carriers at the interface between the polymer matrix and the nanofiller
[84, 85]. At higher frequency, the interfacial dipoles do not have enough time to align themselves in the direction
of an applied electric field [53, 86, 87]. Also, the MWS effect in polarization is typified by the dependence of
frequency and the value of € in the low-frequency region. At higher frequencies (10 KHz—20 MHz), no
significant change in dielectric constant was observed which demonstrating the good frequency stability of
samples. Generally, it happens because the dipole orientation is difficult at the higher frequencies [53]. The
maximum dielectric constant value was found to be 154.55 (at 50 Hz and at140 °C) for PVA/NiS
nanocomposite films reinforced with 3 wt% NiS NPs which is 22 times greater than the dielectric constant value
of pure PVA (6.90). This indicates an excellent interfacial adhesion between the nanofiller and the host polymer
matrix. Furthermore, it has been noticed that the ¢ values have increased with an increment in the nanofiller
loading in the host polymer matrix. For a dielectric material, tand is also one of the significant parameters which
give information about the dissipation of energy (loss) of an electromagnetic field. Figures 13(a)—(g) displays the
tand values of PVA and PVA/NiS nanocomposite films. These nanocomposite films show high values of tand at
lower frequencies and low tané values at higher frequencies which could be due to the interfacial polarization
[44, 58]. Moreover, the tand values have increased with an increase in NiS loading in the PVA matrix

(figures 13(b)—(g)). However, as compared with the ¢ values, the tané values are very low which is very attractive
for energy storage device applications [44, 88].

4. Conclusions

In this work, NiS NPs and PVA/NiS nanocomposite films have been successfully prepared via a green synthesis
approach and solution casting method respectively. The PVA /NiS nanocomposites were analyzed using various
characterization techniques. The FTIR and XRD results revealed that the NiS NPs and PVA have significant
interaction with each other. TGA and DSC results evidenced an improvement in the thermal stability of PVA/
NiS nanocomposite films as compared with pure PVA film. The POM, SEM and HRTEM results revealed that
the morphology and microstructure of PVA /NiS nanocomposites were significantly modified with the addition
of NiS NPs in the PVA matrix. Moreover, high £ and low tand values obtained for the PVA /NiS nanocomposite
films suggesting their potential applications in energy storage devices.
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