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Abstract
Objectives: The purpose of this paper is to develop an application of goal programming for a mathematical economics 
problem. In economic optimization given a cost target, the producer conditionally maximizes output or revenue. Methods/
Statistical Analysis: The paper aims in estimating cost limited maximal output based on full and stochastic frontiers 
of Cobb-Douglas and variable returns to scale production structure. The estimation procedure constitutes primarily 
formulating goal programming problems, later solving them by mathematical programming. The cost limited output 
expressions are derived. Findings: The method developed was applied to six manufacturing sectors of all India and the 
expression derived for cost limited outputs showed that the cost limited maximal output is cost efficient. Empirical analysis 
carried out resulted in showing the states whose cost efficiency was underachieved, overachieved and one and the same. 
Application/Improvements: The model has practical application in manufacturing sectors and was applied six sectors 
of all India. In future fuzziness can be applied to analyse cost efficiency in the manufacturing sectors of different states of 
all India.

1.  Introduction

In management and production economics, it is often 
assumed that the producer is cost minimizer. However, 
these assumptions are not always realistic, especially in a 
competitive situation where different producers employ 
different techniques. For example, to produce a homo-
geneous product, the producer may have multiple goals 
instead of a single goal such as cost minimization. The 
various diversified goals may be, maintenance of stable 
profits and prices, improving market share and so on. 
Goal programming provides an objective function for 
each objective and consequently finds a solution that 
minimizes the weighted sum of deviations of these 

objective functions from their respective goals. One can 
come across three possible of goals. A lower one–sided 
goal that sets a lower limit which does not fall under; an 
upper on sided goal that sets an upper limit which is not 
allowed to exceed and a two sided goal that specifies a 
lower limit which does not fall under and an upper limit 
which is to not exceed. 

A goal programming problem may be pre-emptive 
or non-pre-emptive. Further, it can be linear and non-
linear. Goal programming has applications in the theory 
of production. It is also used to estimate frontier full and 
stochastic cost functions of a production unit in a compet-
itive environment. To understand estimation of stochastic 
cost function one can refer into1,2. It is hypothesized that 

Keywords: Cost Efficiency and Stochastic Cost Frontier, Data Envelopment Analysis, Linear Goal Programming, 
Manufacturing Sector



Indian Journal of Science and TechnologyVol 9 (44) | November 2016 | www.indjst.org 2

Estimating Cost Analysis using Goal Programming

all producers are not equally efficient, since different pro-
cedures employ different techniques, though they employ 
same techniques, they may differ in terms of managerial 
efficiency. Thus, Data Envelopment Analysis (DEA) is in 
efficient as observed in3–6 which shows that the input sets 
when production technology is piece wise linear. A pro-
duction function is a technological relationship between 
inputs and outputs. In7,8 generalized non–homogeneous 
production function returns to scale. In9 has done esti-
mation for full frontier cost functions. In10 estimates 
stochastic frontier cost function using data envelopment 
analysis. Further10 used linear programming approach to 
estimate the stochastic production functions. Recently11 
did a case study for Tehran PAK Diary Company using 
data envelopment analysis.

Goal programming has wide applications. It is applied 
in discriminant analysis, portfolio management and 
so on12,13. Extensions on goal programming were done 
by14-17 and many others. In18 developed goal program-
ming approach for cross efficiency evaluation. Recently19, 
adopted goal programming method to solve data envelop-
ment analysis with judgments. Theoretical background of 
goal programming was developed with a detailed review 
by20. Of late many authors have studied incorporating fuzz-
iness in goal programming (look into21,22). The proposed 
work is an application of goal programming. In economic 
optimization given a cost target the producer conditionally 
maximizes output or revenue. Two popular production 
functions are considered firstly the Cobb-Douglas produc-
tion frontier and then the Variable Returns to Scale (VRTS) 
Production Frontier. A producer in the process of expan-
sion, targets cost and requires knowing the potential output 
and revenue. Such an output is called cost limited maximal 
output. The layout of the paper is as follows: Modelling of 
the system is done in section 2. Empirical investigation 
is carried out for six manufacturing sectors in section 3. 
While the conclusion are laid in section 4 followed by refer-
ences in the section 5.

2.  Mathematical Modelling

Production function explains how inputs are combined 
to produce a scalar output subject to the underlying 
production technology. Thus, production function is an 
engineering relationship. It has nothing to do with vector 
prices. Production function is defined on input quan-
tity space. Traditionally to each input combination the  

production function associates maximum output. But, 
in a competitive environment, it is likely that different 
production unit employ different production techniques. 
Consequently, some production units are more effi-
cient than others. The ‘best practice’ production units 
determine the frontier production, while the outputs of 
inefficient units fall below the production frontier. In 
classical approach, which assumes that production is effi-
cient, the structure of production can be examined by a 
study of isoquants of production function. However, if 
inefficiency into production is introduced, the structure 
of production can be studied by examining its input level 
sets ( )L u None the less the frontier production func-
tion can be viewed as an optimization problem defined 
on input level sets. ( ) ( ){ }:φ = ∈x Max u x L u . Associated 
with a suitably structured production function there exits 
its dual, called the factor minimal cost function, that is 
defined on input price space. ( ) ( ){ }, := ∈Q u p Min px x L u , 
( )φ x and ( ),Q u p are, respective the frontier production 

and cost functions respectively. In input quantity space 
two types of production inefficiencies are observed. These 
are pure technical and scale inefficiencies. The product of 
pure technical and scale efficiency is called over all tech-
nical efficiency. In input price two more inefficiencies are 
encountered, viz., allocate and cost inefficiencies.

Departure of observed cost from factor minimal cost 
leads to cost inefficiency. Cost efficiency of production 
unit is defined as, ( ),

δ = =

0

Q u p
CE

px
Where ( ),Q u p : mini-

mal cost incurred to produce an output rate u and 0px
is observed cost. Most of the parametric production 
function commonly employed in many empirical analy-
sis are homogeneous and /or homothetic. A production 
function ( )φ x  is said to be homogeneous of degree θ , if 
it satisfies the function, ( ) ( )

θ

φ λ = λ φx x . In addition, ( )φ x is 
said to be linear homogeneous if and only if, ( ) ( )φ λ = λφx x .  
Returns to scale implied by a linear homogeneous  
production frontier are constant.

;λ > θ = ⇒1 1 Returns to scale are constant
;λ > θ > ⇒1 1  Returns to scale are increasing
;λ > θ < ⇒1 1  Returns to scale are decreasing

An increasing transformation of a linear homoge-
neous production frontier is homothetic production 
frontier. ( ) = φ

 
u F x , is homothetic production func-

tion, satisfies the following properties.

•	 	 ( ) ,
+

φ ≥ ∀ ∈
nF x 0 x R

•	 	2. ( )φ x finite ⇒ ( )φF x is finite
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•	 	3. ( )φF x  is non –decreasing; ( ) ( )′ ′≥ ⇒ φ ≥ φx x x x
( ) ( )′⇒ φ ≥ φF x F x

•	 	4. ( ) =F 0 0 , ( ) ( ) ( )= ⇒ φ = ⇒ φ = =x 0 0 0 F 0 F 0 0  i.e. 
null input vector yields null output.

•	 	5. ( )φ x continuous in ( )⇒ φx F x is also continuous 
( )= φu F x

⇒ ( ) ( )
−

= φ
1F u x ; ( ) ( )= φf u x where ( ) ( )

−

=
1f u F u  and

( )φ x is linear homogeneous.

2.1 � The Cobb-Douglas Production Function 
is not Only Homogeneous, also 
Homothetic

Production function:  α

= ∏
i

iu A x
θ

α

θ θ

 

= ∏ 

  

i
1

A x � (1)

Where θ = α∑ i and ( ) ( )
θ

   = φ = φ
   

u x F x . ( )φ x is 
linear homogeneous, ( )φF x  is non-decreasing, ( ) =F 0 0
and , ( )φF x is continuous function of x .The variable 
returns to scale production frontier,

( )
α

= ∏
i

if u A x � (2)

where α =∑ i 1 ,is homothetic production func-
tion. Also, it can be expressed as ( ) ( )= φf u x
where ( )

α

φ = ∏
i

ix A x and ( )
α θ

=
uf u u e . ( )φ x  is linear 

homogeneous, non-decreasing and function and con-
tinuous. The production function is input homothetic. 
Homothetic production structures have a special geo-
metric property, expressible in turns of the isoquants 
of the production possibility sets. The Isoquant for any 
output rate ≥u 0  of a homothetic production structure 
may be obtained from that for unit output rate by sca-

lar magnification from the origin in fixed ratio ( )

( )

f u
f 1

.
An input set ( )L u may be defined in terms of input 

distance function as follows:

( ) ( ){ }: ,= ≥L u x D u x 1
�

(3)

If the underlying production frontier is ( )φ x then the 
input sets induced by ( )φ x are,

( )
( ):

φ

 φ 
= ≥ 

  

x
L u x 1

u
� (4)

The input sets induced by ( ) ( ) ( )( ), ,= φ = φf u x u F x
respectively are 

	
( )( )

( )

( )
:

φ

 φ 
= ≥ 

  

x
L f u x 1

f u
� (5)

	
( )

( ):
 φ 

= ≥ 

  

F

F x
L u x 1

u
� (6)

It can be shown that,       ( ) ( )φ
  =
  FL f u L u � (7)

Consider the optimization problem:
( )( ){ },+ λ −Min px 1 D u x , where λ is Lagrangian 

parameter
The first order conditions for minimum  

are = λip

( )

( )

, ,
,

 ∂
 

∂ i

D u X u p

X u p
� (8)

( )

( )

, ,
,

 ∂
 

∂ i

D u X u p

X u p
=
λ

ip �  (9)

Substitute equation (9) in input demand equation to 
obtain,

( ), p∂
=

λ ∂
∑

ii

i

X up 0
p

⇒
( ), p∂

=

∂
∑

i
i

i

X u
p 0

p
� (10)

Substituting equation (9) Shepherd’s lemma we obtain 
( )

( )
, p

,
∂

=

∂

i
i

i

X u
X u p

p
� (11)

Replacing ( ),Q u p by ( ),xD u , ( ),iX u p by ( ),Xip u , ip  
by iX  we get

( ) ( ) ( )

( )

( )
( )

( )

,

,∗

∗

= φ

=

⇒ ∗ =

φ

 

=  
 φ
 

Q u p f u p

Q u p C

Cf u
p

Cu F
p

� (12)

The expressions in equation (10) and equation (11) 
constitute Shepherd’s lemma  

2.2  Input Demand Equations
The Shephard’s lemma connects primal input space with 
the dual input price space.

( )
( )

, p
,

∂
=

∂
i

i

Q u
X u p

p
gives input demand equation for 

thi input.

2.2.1 � Input Demand Equations of Cobb-
Douglas Production Structure

It can be shown that ( ),λ = Q u p
From the second part of Shephard’s lemma

( )
( )

,
,

∂
=

∂
i

i

D u x
p u x

x    

      
( )

( ),
,

∂
=

∂
∑ ∑i i i

i

D u x
x p u x x

x
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( )
( ),

,
∂

=

∂
∑ i

i

D u x
D u x x

x
Since x belongs to Isoquant ( )L u , then

( )
( ),

,
∂

=

∂
∑ i

i

D u x
D u x x

x
=1

From equation (8) we obtain 

( ) ( )
( )

( )

( )

, ,
, p ,

,

, ,

 ∂
 

= λ

∂

 = λ = λ
 

∑ ∑i i i
i

D u x u p
p x u x u p

x u p

D u x u p

( ) ( )

( )

, ,

,

λ = =

⇒ λ =

∑ i ip x u p Q u p

Q u p

Thus the following theorems can be dealt with and 
their proofs are very straight forward.
Theorem 1: For homothetic production structure, the 
cost limited maximal output,

( )
( )

 

Γ =  
 φ
 

Cp F
p

Theorem 2: If target cost is observed cost and the produc-
tion structure is homothetic ( ) ( )

−
 Γ = δ
 

1f p f u w here ( )Γ p
is cost limited maximal output and δ is cost efficiency of 
production.
Theorem 3: If the underlying production process obeys 
Cobb-Douglas production structure retunes to scale are 
constant then the cost limited maximal output is the 
product of observed output and inverse of overall input 
productive efficiency.
Theorem 4: If production obeys Cobb-Douglas produc-
tion structure, returns to scale are non-constant, then 
( )

−θ

Γ = δp u
Theorem 5: If production obeys Zellner-Revankar 
Variable Returns To Scale (VRTS) production structure 
which is input homothetic, then the cost limited maximal 
output can be obtained as solution of the following non–
linear equation

( )
( )

α
θΓ θ− α

 Γ = δ
 

0p u1
0p e u e

 Further, estimation of cost minimal output requires 
explicit specification of production structure that is 
explained by a production frontier, equivalently by its 
factor minimal cost function. Let ( ), ,⊗Q u p be the factor 
minimal cost, that depends upon output ( )u , input price 
vector ( )p  and the vector of parameters⊗ .Let =i i ip x C
be the observed cost of thi production unit. Cost constraint 
for thi production unit, ( ), , , , ,........k⊗ ≤ =i iQ u p C i 1 2 .

The factor minimal cost function may be estimated solv-
ing the following mathematical programming problem 

( ), ,⊗
⊗

Max Q u p � (13)

Subject to ( ), , , , ,......,⊗ ≤ =1Q u p C i 1 2 k  and θ ≥ 0

where 0u and 0p  are the output and price vector of the 
production unit whose efficiency is under evaluation. 
That is, cost efficiency is exactly achieved. A positive slack 
implies that cost efficiency is under achieved.

2.3  Cobb-Douglas Cost Frontier
The Cobb-Douglas cost frontier as derived may be 
expressed as,

( ), ,
α

θθ
⊗ = Π

i
1

ii
Q u p Bu p Where ,θ = α ≤ α ≤∑ i i0 1  for� (14)

Cost constraint:  ( ), ,⊗ ≤Q u p C

	

α

θθ
≤Π

i
1

ii
Bu Cp

	
ln ln ln lnα

+ + ≤

θ θ
∑

i
i

1B u p C

	

ln ln

ln ln
, ,.......

+ η + β ≤

+ η + β + ε =

=

∑

∑

i i

j i ij j j

b u p d

b u p d

j 1 2 k
Where   ln , , α β

= η = β = ⇒ α =

θ θ η

i i
i i

1b B

For thj production unit the cost constraint takes 
the form, ln ln+ η + β ≤∑j i ij jb u p d ,η > 0 ,β ≥ β =∑i i0 1  
and b is unrestricted for sign. This constraint is linear 
in parameters b , η , βi which are currently unknown. 
Addition of the slack variable iε transforms the linear in 
equation into equation

ln ln+ η + β + ε =∑ i ij j jb u p d for , ,.......=j 1 2 k

The complete linear programming problem in terms 
of slack is postulated as follows:

Minimize
=

= ε∑

k

j
j 1

Z � (15)

Subject to ln ln+ η + β + ε =∑j i ij j jb u p d for , ,.......=j 1 2 k , 

, ,≤ β ≤ β = η ≥∑i i0 1 1 0 and b is not unrestricted for sign.

For thj production unit, ln ln ε = − + η + β
 ∑j j j j ijd b u p
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( ) ( )
ln

, , , ,
ε

   

   = ⇒ =

   ⊗ ⊗
   

jj j

j j j j

C C
e

Q u p Q u p

( ), ,
−ε

 ⊗
 = = δ

 
 

j j j
j

j

Q u p
e

C
� (16)

Thus, δ j is cost efficiency of thj production unit. The 
solution of the linear programming problem equation 
(16) gives firm specific cost efficiencies.

ε = ⇒ δ =j j0 1 ⇒ cost efficiency is exactly achieved
ε > ⇒ δ <j j0 1⇒ cost efficiency is under achieved .
Thus, the linear programming problem in equation 

(15) can be viewed as a linear goal programming prob-
lem. The Cobb-Douglas cost frontier estimated by solving 
the linear goal programming problem equation (15) is full 
frontier, in the sense that the observed input costs of all 
the production units fall on or above the factor minimal 
cost frontier.

An alternative for full frontier is the stochastic cost 
frontier, which may be estimated solving the goal pro-
gramming problem.

( )
+ −

= ε + ε∑ ∑j jMinimize Z  � (17)

Subject to ln ln + −

+ η + β + ε − ε =∑j i ij j j jb u p d for 
, ,........=j 1 2 k , ≤ β ≤i0 1  and ,β = η ≥∑ i 1 0 b is not 

restricted for sign. . , ,+ − + −

ε ε = ε ≥ ε ≥j j j j0 and 0 0

•	
+ −

ε > ⇒ ε =j j0 0

ln ln⇒ +η + β <∑j i ij jb u p d ⇒Cost efficiency is under 
achieved.

•	
+ +

ε > ⇒ ε =j j0 0 ln ln⇒ +η + β >∑j i ij jb u p d ⇒ C o s t 
efficiency is over achieved.

•	
+ +

ε = ε =j j 0 ln ln⇒ +η + β =∑j i ij jb u p d ⇒ Cost effi-
ciency is exactly achieved.

2.4 � Variable Returns to Scale Cost Frontier-
Goal Programming

The VRTS cost frontier may be expressed as 

( ), , αα θ

⊗ = Π
iu

iQ u p Bu e p � (18)

where ,α θ ≥ 0  and ,≤ α ≤ α =∑i i0 1 1 ; cost constraint 

( ), ,⊗ ≤Q u p C  and αα θ

Π ≤
iu

iBu e p C

	 ln ln ln ln

ln ln

⇒ +α + θ + α ≤

+ α + θ + α ≤

∑

∑

i i

i i

B u u p C

b u u p d

where ln , ln= =b B d C and b is unrestricted for sign. 
The above constraint is in the parameters b , α , θ and αi .

The following is the full frontier goal programming 
problem:

( ) = ε∑ jMin Z � (19)

Subject to ln ln , , ,.......+ α + θ + α = =∑ i ij jb u u p d j 1 2 k ;
,α θ > 0  and ≤ α ≤i0 1 , α =∑ i 1where b is unrestricted 

for sign. For thj production unit, ε =j 0 implies that cost 
efficiency is exactly achieved. While j 0ε > ⇒  cost effi-
ciency is under achieved.

Stochastic cost frontier based goal programming 
problem may be postulated as,

( )
+ −

= ε + ε∑ ∑j jMin Z �  (20)

Subject to ln ln + −

+ α + θ + α + ε − ε =∑j j i ij j j jb u u p d and 
. , , ,..........,+ −

ε ε = =j j 0 j 1 2 k
,α θ > 0 and θ ≤ α ≤i 1 , α =∑ i 1 ;  b is not restricted for 

sign and ,+ −

ε ε ≥j j 0 .

•	
+ −

ε > ⇒ ε = ⇒j j0 0 Cost efficiency is under achieved

•	
− +

ε > ⇒ ε = ⇒j j0 0  Cost efficiency is over achieved.
•	

− +

ε = ε = ⇒j j 0  Cost efficiency is exactly achieved.

Further for the jth production unit cost frontier  
is full VRTS frontier the cost limited maximal out-
put can be obtained solving the following non-linear  
equation 

	 ( )
( ) i

ij jp e B p C
a q b a

=∏

Also based on the analysis done in this section the set 
of equations are validated using the data collected in the 
further sections.

3.  Empirical Illustrations

The cost limited maximal output is directly related to the 
cost maximal output is directly related to the cost efficiency 
which is defined as the ratio of factor minimal cost to 
observed cost. If the observed cost is target cost, 

Cost efficiency ( , )Q u pCE
C

= � (21)

As the target cost varies factor minimal cost 
also changes, inducing a change in cost efficiency. 
Consequently, the cost limited maximal output increases 
depending upon an increase in target cost. If the producer 
is cost efficient c , consequently CE = 1.

Cost efficiency varies among the production units for 
two reasons:
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•	 Different producers employ different production 
techniques as such technical inefficiency pervades in 
production environment.

•	 Failure to operate at cost minimizing inputs leads to 
allocative inefficiency.

It can be shown that cost efficiency is the cost efficiency 
is the product of technical and allocative efficiencies. 
CE=TE.AE. Given the target cost and input prices it is 
possible to estimate cost-limited maximal output. Of 
course, the estimates change depending upon the choice 
of cost frontier also. If a parametric production frontier is 
postulated to explain the underlying production process 
if he production frontier satisfies certain axioms, using 
the duality theory it is possible to derive the underlying 
cost frontier also. Such a cost frontier may be full or sto-
chastic. To estimate the parameters of the stochastic cost 
frontier one may postulate suitable goal programming 
problems and solve them either by using linear or non-
linear programming problems.

For Cobb-Douglas and variable returns to scale 
production frontiers the underlying cost function are 
first deduced to obtain the equation 2.The parameter A 
and ia  can be obtained directly estimating the produc-
tion frontier or by estimating the cost frontier. The two 
sets of estimates of parameters possibly differ from each 
other, since the later cost of the parameters’ estimates 
depend upon the assumption of cost minimization. Cost 
limited maximal output of C-D production structure 

(p)
i

i

C
B p

q

b

 
=  

Π 

where iq a= ∑ , measures to scale and 
C is the target cost. As target cost C changes ( )p  also 
changes. To estimate ( )p  for each target cost C a knowl-
edge of , ,  and iBq b  is necessary. 

3.1  Full Cost Frontier
The cost frontier ( ).Q u p is said to be a full cost frontier, 
if it satisfies the property, ( ), , 1,2,3,....,i

i iQ u p C i k≤ =

where iu  is output of thi  production unit, ip the price 
vector of the thi production unit and iC  is observed out-
put of thi  production unit. The full cost frontier may 
be estimated by solving the following linear program-
ming problem given equation 13. Another version of 
estimating full frontier is solving the following linear 
programming problem is given in the equation 15. 
If the underlying cost structure is Cobb-Douglas the 
full frontier is obtained solving the equation 5 linear 

programming problem. An alternative for full cost 
frontier is the stochastic cost frontier, whose param-
eters can be estimated proposing and solving the 
following goal programming problem given in the 
equation 17. For empirical implementation the total 
manufacturing sectors of the South Indian states, viz., 
Andhra Pradesh, Karnataka, Kerala, Maharashtra, and 
Tamil Nadu are taken into consideration along with 
the total manufacturing sector of all India. The vari-
ables of study are,

•	 Value added (u) 
•	 Number of persons employed ( )1x
•	 Fixed capital ( 2x ) and 
•	 Total emoluments (w)

The data are secondary collected from Annual Survey 
Industries for the year (2000-2001) was used. Number of 
persons employed is proxy for the number of labourers 
and total emoluments is proxy for total wages. Unit price 
of labour is the ratio of the total wages to the number of 
persons employed. 1

1

wp
x

=  A proxy for unit price of capital 
is _. The following linear programming problem is for-
mulated and solved. 

_ � (22)

_ : All India; _: Andhra Pradesh_: Karnataka _: 
Kerala_: Maharashtra_=Tamil Nadu

The total manufacturing sector of all India is aug-
mented along with the five south Indian states, in order to 
estimate structural cost efficiency. The solution of equa-
tion 22 is as follows:

_
_

Table 1 indicates, Kerala and Maharashtra are cost 
efficient. Structural cost efficiency implied by the total 
manufacturing sector of all India is 0.7860. About 21% 
of inputs are lost due to cost inefficiency at the coun-
try level. In South India the most cost inefficient total 
manufacturing sector is that of Karnataka. 44% of its 
inputs are lost due to cost inefficiency. 40% input losses 
are experienced by the total manufacturing sector of 
Andhra Pradesh. About 28% percent input losses are 
due to cost inefficiency for the total manufacturing sec-
tor of Tamil Nadu.

_
For Cobb-Douglas cost structure the cost limited 

maximal output is given by 

AUQ: 
equations 
are missing 
please add 
equations.
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_
From Table 1, for Kerala and Maharashtra the cost 

limited maximal output and observed outputs are one 
and the same. To attain cost limited maximal out-
put the total manufacturing sector of all India has to 
increase its output by 27% more than what produces 
currently. The total manufacturing sectors of Andhra 
Pradesh, Karnataka and Tamil Nadu have to produce 
their output by 66, 77 and 34 percent more than what 
they actually produce. The cost limited maximal out-
puts listed in the Table 2 are based upon full cost 
frontier. To estimate the stochastic cost frontier, solve 
the following goal programming problem.

_� (23)

Table 1.  Estimation of cost efficiency for manufacturing 
sectors

S.No. Total Manufacturing Sector Cost efficiency _
1 All India 0.7860
2 Andhra Pradesh 0.6007
3 Karnataka 0.5617
4 Kerala 1.0000
5 Maharashtra 1.0000
6 Tamil Nadu 0.7154

Table 2.  Cost limited maximal output for various 
manufacturing sectors

S.No. Total Manufacturing 
Sector

Cost limited maximal 
output

1 All India 1.2694x15497442
2 Andhra Pradesh 1.6569x911042
3 Karnataka 1.7709x834737
4 Kerala 1.0000x362980
5 Maharashtra 1.0000x3458772
6 Tamil Nadu 1.3379x1479535

_

The optimal solution of problem in equation 23 is 
_

For all India _ consequently _ cost efficiency is 
achieved exactly. For the total manufacturing sector of 
Andhra Pradesh _

_

Cost efficiency is underachieved.
For the total manufacturing sectors of Karnataka and 

Tamil Nadu cost efficiency is exactly achieved. However, 
the total manufacturing sectors of Kerala and Maharashtra 
over achieved cost efficiency are shown in Table 3.

Table 3.  Full cost frontier cost efficiency 
S.No. Total Manufacturing Sector Cost Efficiency
1 All India Exactly achieved
2 Andhra Pradesh Under achieved
3 Karnataka Exactly achieved
4 Kerala Over achieved
5 Maharashtra Over achieved
6 Tamil Nadu Exactly achieved

Andhra Pradesh is the only state in South India for 
which cost efficiency is under achieved. For stochas-
tic cost frontier cost function we have the following  
relationship:

_
_
_

For stochastic cost frontier the goal programming 
estimates of _ is_. From Table 4 it is obvious that the 
total manufacturing sectors of All India, Karnataka and 
Tamil Nadu are cost efficient. Their current outputs 
shown in Table 5 are cost limited maximal outputs. 
About 16% of input losses are due to cost inefficiency, 
for the total manufacturing sector of Andhra Pradesh. 
To attain cost limited maximal output it has to pro-
mote its output by 21% more than what it is producing  
currently.

Table 4.  Estimation of stochastic cost efficiency for 
manufacturing sectors

S.No. Total Manufacturing Sector Cost Efficiency 
1 All India 1.0000
2 Andhra Pradesh 0.8369
3 Karnataka 1.0000
4 Kerala 1.3109
5 Maharashtra 1.5416
6 Tamil Nadu 1.0000
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Table 5.  Stochastic cost limited maximal output for various 
sectors  

S.No. Manufacturing Sector Cost limited maximal 
output

1 All India 1x15497442
2 Andhra Pradesh 1.2116x911042
3 Karnataka 1x834737
4 Kerala 0.7469x362980
5 Maharashtra 0.6271x3458772
6 Tamil Nadu 1x1479535

For the total manufacturing sector of Kerala the 
cost limited maximal output is less by 24% than what 
it currently produces. On the other hand, the cost 
limited maximal output is 37% less than the current 
output produced by the total manufacturing sector of 
Maharashtra. 

_

In Table 6, the estimates implied by full cost frontier 
differ widely when compared with those of stochastic cost 
frontier. For full cost frontier the estimate of elasticity of 
output with respect to labour _ is zero, whereas the esti-
mate of same elasticity is 0.4373 for the stochastic cost 
frontier.

Return to scale implied by full cost frontier are 
decreasing while those implied by the stochastic cost 
frontier are increasing.

Table 6.  Comparison of costs between stochastic and full 
cost frontier

Parameter Full cost 
frontier

Stochastic cost  
frontier

B 2.8301 6.6068
_ 0.9908 6.6068
_ 0.0000 0.4373
_ 0.9908 0.6405

3.2 � Variable Returns to Scale Production 
and Cost Structures

The Variable Returns To Scale (VRTS) production fron-
tier is _ where _ is the output and _ is the _input. The dual 
cost function of VRTS is _, _elasticity of scale implied by 
the VRTS production frontier is, _ which is a function _.  

Stochastic VRTS cost frontier may be fitted solving 
the following goal programming problem

6 6

1 1
Minimze Z=

i i
i i

e e+ −

= =

+∑ ∑
 

Subject to
__
The optimal solution of the above goal programming 

problem is as follows:__ The returns to scale function 
are given by __implies _ then the observed output _ 
is cost efficient output. Both the slacks vanish for the 
total manufacturing sectors of all India, Karnataka, 
Kerala and Tamil Nadu, consequently they attain cost 
efficiency exactly. For the production units which are 
cost efficient cost limited maximal output and observed 
output remains to be the same. If a production unit is 
cost inefficient, the cost limited maximal output exceeds 
observed output. The total manufacturing sector of 
Andhra Pradesh is cost inefficient which is reflected by, 
_. The cost limited maximal output for the total manu-
facturing sector is _. Thus from Table 7 it is observed 
that the total manufacturing sector of Andhra Pradesh 
the cost limited maximal output is worth 1176532 
lakh rupees._implies that the total manufacturing sec-
tor of Maharashtra had over achieved cost efficiency. 
Consequently, its cost limited maximal output is less 
than its observed output. _

Table 7.  Stochastic VRTS cost limited maximal output for 
manufacturing sectors

S.No.
Total manufacturing 
Sector

Cost limited 
maximal output

1 All India 15497442
2 Andhra Pradesh 1176532
3 Karnataka 834737
4 Kerala 362980
5 Maharashtra 1539476
6 Tamil Nadu 1479535

Elasticity of scale measures returns to scale of a pro-
duction unit. If the underlying production structure 
is VRTS, elasticity of scale are measured by _ . Table 8 
furnishes elasticity of scale for the total manufacturing 
sectors of all India, Andhra Pradesh, Karnataka, Kerala, 
Maharashtra and Tamil Nadu.

Returns to scale as implied by the elasticity of scale 
are increasing for the total manufacturing sector of all  
India, more or less constant for Maharashtra. In all  
other total manufacturing sectors returns to scale are 
decreasing.
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Table 8.  Elasticity and returns for scale of various sectors
S.No. Manufacturing 

Sector
Elasticity of 

scale
Returns for 

scale
1 All India 1.6366 IRTS
2 Andhra Pradesh 0.9461 DRTS
3 Karnataka 0.9421 DRTS
4 Kerala 0.9291 DRTS
5 Maharashtra 1.0225 CRTS
6 Tamil Nadu 0.9607 DRTS

4.  Conclusions

The work presented in this paper is an application of Goal 
programming for Mathematical Economics problem 
which involves properly structured production functions 
and their dual cost functions. Two popular production 
functions are considered. One the Cobb-Douglas pro-
duction frontier and the other is variable Returns to Scale 
Production Frontier. For the Cobb-Douglas and VRTS pro-
duction frontiers, the expression for cost limited outputs is 
derived. It is further shown that the cost limited maximal 
output is cost efficient. Further, one can visualize two cost 
frontiers, viz., the full and stochastic cost frontiers. Fitting 
of a full frontier is possible by postulating and solving suit-
able linear programming problems. The Cobb-Duglas 
and the VRTS cost frontiers can be expressed as linear in 
unknown parameters by taking logarithms. 

The method developed is applied to six total manufac-
turing sectors of all India, Karnataka and Kerala achieved 
cost efficiency exactly. Consequently, their cost limited 
maximal output and the observed outputs are one and the 
same. The total manufacturing sector of Andhra Pradesh 
underachieved cost efficiency, so that its cost limited 
maximal output exceeds in the value of the observed 
output. The total manufacturing sector of Maharashtra 
overachieved cost efficiency for which the observed out-
put is more than its cost limited maximal output.
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