Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-acetyl-3-(4-chloroanilino)butanoate

K. Rajesh,^a V. Vijayakumar,^a T. Narasimhamurthy,^b J. Suresh^c and P. L. Nilantha Lakshman^d*

^aOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014. India. ^bMaterials Research Centre. Indian Institute of Science. Bangalore 560 012, India, ^cDepartment of Physics, The Madura College, Madurai 625 011, India, and ^dDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: nilanthalakshman@yahoo.co.uk

Received 29 July 2009; accepted 4 August 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.132; data-to-parameter ratio = 23.6.

The title compound, C14H18CINO3, adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups trans. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds are observed.

Related literature

For the crystal structure of ethyl 2-acetyl-3-anilinobutanoate, see: Priya et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data C14H18CINO3 $M_r = 283.74$

Triclinic, P1 a = 6.9161 (2) Å

organic compounds

•	
b = 10.1319 (3) A	Z = 2
c = 11.4063 (3) Å	Mo $K\alpha$ radiation
$\alpha = 87.511 \ (10)^{\circ}$	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 80.873 \ (10)^{\circ}$	T = 293 K
$\gamma = 73.367 \ (2)^{\circ}$	$0.17 \times 0.14 \times 0.11 \text{ mm}$
$V = 756.14 (4) \text{ Å}^3$	
Data collection	
Bruker SMART APEX CCD	14994 measured reflections
diffractometer	4229 independent reflections
Absorption correction: multi-scan	3037 reflections with $I > 2\sigma(I)$

diffractometer	4229 independent
Absorption correction: multi-scan	3037 reflections w
(SADABS; Bruker, 1998)	$R_{\rm int} = 0.017$
$T_{\min} = 0.958, \ T_{\max} = 0.972$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	H atoms treated by a mixture of
$wR(F^2) = 0.132$	independent and constrained
S = 1.04	refinement
4229 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
179 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N7 - H7 \cdots O12^{i}$	0.85 (2)	2.185 (19)	3.0282 (17)	170 (2)
Symmetry code: (i)	-x + 1 - v - z	+1		

try code: (i) -x + 1, -y,

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors acknowledge the use of the CCD facility at the Indian Institute of Science, Bangalore, set up under the IRHPA-DST programme.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2874).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

- Bruker (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Priya, S., Sinha, S., Vijayakumar, V., Narasimhamurthy, T., Vijay, T. & Rathore, R. S. (2006). Acta Cryst. E62, 05367-05368.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2009). E65, o2125 [doi:10.1107/S1600536809030876]

Ethyl 2-acetyl-3-(4-chloroanilino)butanoate

K. Rajesh, V. Vijayakumar, T. Narasimhamurthy, J. Suresh and P. L. Nilantha Lakshman

S1. Comment

Ethyl butanoate is commonly used as an artificial flavoring agent in alcoholic beverages, perfumery products and as a plasticizer for cellulose. The crystal structure of ethyl 2-acetyl-3-anilinobutanoate has been reported (Priya *et al.*, 2006).

In the title molecule (Fig. 1), there are three planar subunits *viz*. the chlorophenyl amine (C1-C6/N7/Cl1), acetyl (C10/C11/O12/C13) and ethyl acetate (C10/C14/O15/O16/C17/C18) groups. The chlorophenyl amino ring is inclined at angles of 76.28 (9) and 3.48 (7)° to the acetyl and ethyl acetate groups, respectively, with the acetyl group at an angle of 72.9 (1)° to the ethyl acetate group. The molecule adopts an extended conformation, with all of the main chain torsion angles associated with the ester and amino groups, *i.e.* from C18—C17—O16—C14 to C10—C8—N7—C1 lie in the range 157.20 (14)-178.59 (15)°.

In the crystal structure, molecules associate into dimers through intermolecular N—H···O hydrogen bonds (Table 1). The hydrogen-bonded centrosymmetric dimers are characterized by an $R_2^2(12)$ ring motif (Fig. 2) (Bernstein *et al.*, 1995).

S2. Experimental

A mixture of acetaldehyde (22.5 ml), ethyl acetoacetate (6.3 ml) and aniline (6.5 ml) was placed in a round bottomed flask. The contents were stirred at 273 K to 278 K for about 5 h under nitrogen atmosphere. A paste-like solid was formed, which was initially washed with benzene, then chloroform and then extracted with diethyl ether. The extract allowed to evaporate at room temperature yielded the product with crystalline nature. The resulting compound was recrystallized from diethyl ether (yield 88%, m. p. 357 K).

S3. Refinement

The amino H atom was located in a difference map and was refined isotropically. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C-H = 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

Part of the crystal structur of the title compound, showing hydrogen-bonded (dashed lines) dimers. H atoms other than H7 have been omitted for clarity.

Ethyl 2-acetyl-3-(4-chloroanilino)butanoate

Crystal data C₁₄H₁₈ClNO₃ Z = 2 $M_r = 283.74$ F(000) = 300Triclinic, $P\overline{1}$ $D_{\rm x} = 1.246 {\rm Mg} {\rm m}^{-3}$ Hall symbol: -P 1 Mo *K* α radiation, $\lambda = 0.71069$ Å a = 6.9161 (2) Å Cell parameters from 25 reflections *b* = 10.1319 (3) Å $\theta = 2 - 29.6^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ *c* = 11.4063 (3) Å T = 293 K $\alpha = 87.511 \ (10)^{\circ}$ $\beta = 80.873 \ (10)^{\circ}$ Block, colourless $\gamma = 73.367 \ (2)^{\circ}$ $0.17 \times 0.14 \times 0.11 \text{ mm}$ V = 756.14 (4) Å³ Data collection Bruker SMART APEX CCD 14994 measured reflections diffractometer 4229 independent reflections Radiation source: fine-focus sealed tube 3037 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.017$ ω scans $\theta_{\rm max} = 29.6^{\circ}, \ \theta_{\rm min} = 1.8^{\circ}$ $h = -9 \rightarrow 9$ Absorption correction: multi-scan (SADABS; Bruker, 1998) $k = -14 \rightarrow 13$ $T_{\rm min} = 0.958, T_{\rm max} = 0.972$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.132$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independent
4229 reflections	and constrained refinement
179 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0581P)^2 + 0.1581P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.35 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
H7	0.352 (3)	0.086 (2)	0.6502 (16)	0.060 (5)*
C1	0.3175 (2)	0.22108 (14)	0.76810 (12)	0.0460 (3)
C2	0.2162 (3)	0.35445 (16)	0.80981 (14)	0.0591 (4)
H2	0.1251	0.4138	0.7660	0.071*
C3	0.2498 (3)	0.39921 (17)	0.91543 (15)	0.0602 (4)
H3	0.1828	0.4887	0.9416	0.072*
C4	0.3817 (3)	0.31215 (17)	0.98199 (13)	0.0524 (4)
C5	0.4832 (3)	0.18015 (17)	0.94306 (15)	0.0572 (4)
Н5	0.5730	0.1215	0.9880	0.069*
C6	0.4516 (2)	0.13524 (16)	0.83781 (14)	0.0540 (4)
H6	0.5208	0.0458	0.8122	0.065*
C8	0.1319 (2)	0.23376 (15)	0.59384 (13)	0.0484 (3)
H8	0.0995	0.3343	0.5986	0.058*
C9	-0.0608 (3)	0.1919 (2)	0.63979 (19)	0.0810 (6)
H9A	-0.0328	0.0939	0.6325	0.121*
H9B	-0.1663	0.2372	0.5941	0.121*
H9C	-0.1051	0.2181	0.7217	0.121*
C10	0.2170 (2)	0.18944 (13)	0.46426 (12)	0.0422 (3)
H10	0.2416	0.0896	0.4586	0.051*
C11	0.4189 (2)	0.22321 (14)	0.42512 (13)	0.0463 (3)
C13	0.4247 (3)	0.36782 (16)	0.44036 (17)	0.0616 (4)
H13A	0.4174	0.3860	0.5231	0.092*
H13B	0.3107	0.4307	0.4105	0.092*
H13C	0.5496	0.3796	0.3973	0.092*

C14	0.0697 (2)	0.25923 (14)	0.37995 (12)	0.0432 (3)	
C17	-0.0456 (3)	0.23396 (18)	0.20012 (14)	0.0559 (4)	
H17A	-0.0027	0.3105	0.1618	0.067*	
H17B	-0.1881	0.2677	0.2351	0.067*	
C18	-0.0192 (3)	0.1244 (2)	0.11202 (17)	0.0780 (6)	
H18A	0.1228	0.0895	0.0799	0.117*	
H18B	-0.0958	0.1618	0.0491	0.117*	
H18C	-0.0676	0.0510	0.1500	0.117*	
Cl1	0.41769 (9)	0.37010 (6)	1.11659 (4)	0.07881 (19)	
N7	0.3003 (2)	0.17272 (14)	0.66007 (12)	0.0573 (4)	
012	0.56910 (18)	0.13519 (11)	0.38320 (12)	0.0680 (4)	
015	-0.03698 (19)	0.37584 (11)	0.38958 (10)	0.0631 (3)	
016	0.07863 (16)	0.17534 (10)	0.29170 (9)	0.0495 (3)	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0517 (8)	0.0423 (7)	0.0411 (7)	-0.0058 (6)	-0.0133 (6)	0.0036 (5)
C2	0.0749 (11)	0.0443 (8)	0.0519 (8)	0.0033 (7)	-0.0283 (8)	-0.0011 (6)
C3	0.0746 (11)	0.0474 (8)	0.0547 (9)	-0.0044 (8)	-0.0212 (8)	-0.0063 (7)
C4	0.0587 (9)	0.0610 (9)	0.0429 (7)	-0.0220 (7)	-0.0148 (6)	0.0021 (6)
C5	0.0584 (9)	0.0591 (9)	0.0549 (9)	-0.0104 (7)	-0.0259 (7)	0.0102 (7)
C6	0.0589 (9)	0.0448 (8)	0.0538 (8)	-0.0012 (7)	-0.0209 (7)	0.0029 (6)
C8	0.0551 (9)	0.0445 (7)	0.0434 (7)	-0.0071 (6)	-0.0148 (6)	0.0014 (6)
C9	0.0745 (13)	0.1022 (16)	0.0686 (12)	-0.0333 (12)	-0.0067 (10)	0.0151 (11)
C10	0.0506 (8)	0.0312 (6)	0.0456 (7)	-0.0067 (5)	-0.0186 (6)	-0.0019 (5)
C11	0.0504 (8)	0.0383 (7)	0.0478 (7)	-0.0038 (6)	-0.0150 (6)	-0.0059 (6)
C13	0.0561 (9)	0.0457 (8)	0.0833 (12)	-0.0162 (7)	-0.0042 (8)	-0.0155 (8)
C14	0.0468 (7)	0.0388 (7)	0.0446 (7)	-0.0084 (6)	-0.0151 (6)	-0.0025 (5)
C17	0.0531 (9)	0.0669 (10)	0.0467 (8)	-0.0071 (7)	-0.0219 (7)	-0.0042 (7)
C18	0.0826 (13)	0.0905 (14)	0.0631 (11)	-0.0141 (11)	-0.0310 (10)	-0.0209 (10)
C11	0.0954 (4)	0.0974 (4)	0.0552 (3)	-0.0350 (3)	-0.0299 (2)	-0.0060(2)
N7	0.0747 (9)	0.0408 (7)	0.0489 (7)	0.0062 (6)	-0.0282 (6)	-0.0037 (5)
O12	0.0566 (7)	0.0485 (6)	0.0866 (9)	0.0013 (5)	-0.0009 (6)	-0.0141 (6)
O15	0.0747 (8)	0.0439 (6)	0.0632 (7)	0.0080 (5)	-0.0318 (6)	-0.0089 (5)
016	0.0562 (6)	0.0443 (5)	0.0487 (5)	-0.0062 (4)	-0.0232 (5)	-0.0065 (4)

Geometric parameters (Å, °)

C1—N7	1.3802 (18)	C10—C14	1.5173 (18)	
C1—C2	1.397 (2)	C10—C11	1.526 (2)	
C1—C6	1.4002 (19)	C10—H10	0.98	
С2—С3	1.381 (2)	C11—O12	1.2050 (17)	
С2—Н2	0.93	C11—C13	1.495 (2)	
C3—C4	1.374 (2)	C13—H13A	0.96	
С3—Н3	0.93	C13—H13B	0.96	
C4—C5	1.376 (2)	C13—H13C	0.96	
C4—Cl1	1.7457 (15)	C14—O15	1.1995 (16)	

C5 C6	1 272 (2)	C14 016	1 2292 (16)
C5_U5	1.372(2)	$C_{14} = 010$	1.3282(10) 1.4562(17)
	0.93	C17 - C18	1.4302(17)
	0.95		1.482 (2)
C8—N/	1.461 / (18)		0.97
C8—C9	1.521 (3)		0.97
C8—C10	1.537 (2)	C18—H18A	0.96
С8—Н8	0.98	C18—H18B	0.96
С9—Н9А	0.96	C18—H18C	0.96
С9—Н9В	0.96	N7—H7	0.854 (19)
С9—Н9С	0.96		
			110
N/C1C2	123.61 (13)	C11—C10—C8	110.57 (11)
N7—C1—C6	118.80 (13)	C14—C10—H10	108.5
C2—C1—C6	117.51 (14)	C11—C10—H10	108.5
C3—C2—C1	120.73 (14)	C8—C10—H10	108.5
С3—С2—Н2	119.6	O12—C11—C13	121.23 (15)
C1—C2—H2	119.6	O12—C11—C10	120.56 (13)
C4—C3—C2	120.30 (15)	C13—C11—C10	118.21 (12)
С4—С3—Н3	119.9	C11—C13—H13A	109.5
С2—С3—Н3	119.9	C11—C13—H13B	109.5
C3—C4—C5	120.15 (14)	H13A—C13—H13B	109.5
C3—C4—Cl1	119.42 (13)	C11—C13—H13C	109.5
C5-C4-C11	120.43 (12)	H13A—C13—H13C	109.5
C6-C5-C4	119 88 (14)	H13B-C13-H13C	109.5
C6-C5-H5	120.1	015-014-016	124 26 (13)
C4-C5-H5	120.1	015 - C14 - C10	121.20(12) 12471(12)
C_{2} C_{2} C_{3} C_{4} C_{1}	120.1 121.43.(14)	016 C14 C10	124.71(12)
$C_5 C_6 H_6$	110.2	016 C17 C18	108.05(14)
C_{1} C_{6} H_{6}	119.3	016 C17 H17A	108.05 (14)
$C_1 = C_0 = H_0$	119.5	$C_{10} = C_{17} = H_{17A}$	110.1
N/	115.02 (14)	C18 - C17 - H17A	110.1
N/-C8-C10	105.08 (12)	O16-O17-H1/B	110.1
C9—C8—C10	112.39 (14)	С18—С17—Н17В	110.1
N7—C8—H8	108.5	H17A—C17—H17B	108.4
С9—С8—Н8	108.5	C17—C18—H18A	109.5
С10—С8—Н8	108.5	C17—C18—H18B	109.5
С8—С9—Н9А	109.5	H18A—C18—H18B	109.5
С8—С9—Н9В	109.5	C17—C18—H18C	109.5
H9A—C9—H9B	109.5	H18A—C18—H18C	109.5
С8—С9—Н9С	109.5	H18B—C18—H18C	109.5
Н9А—С9—Н9С	109.5	C1—N7—C8	124.19 (12)
Н9В—С9—Н9С	109.5	C1—N7—H7	114.4 (12)
C14—C10—C11	108.57 (12)	C8—N7—H7	114.5 (12)
C14—C10—C8	112.08 (11)	C14—O16—C17	116.16 (11)
N7—C1—C2—C3	-175.94 (17)	C8—C10—C11—O12	126.22 (15)
C6—C1—C2—C3	0.6 (3)	C14—C10—C11—C13	69.60 (16)
C1—C2—C3—C4	-0.9 (3)	C8—C10—C11—C13	-53.73 (17)
C2—C3—C4—C5	0.8 (3)	C11—C10—C14—O15	-85.49 (18)

-178.75 (14)	C8-C10-C14-O15	36.9 (2)
-0.3 (3)	C11—C10—C14—O16	92.66 (13)
179.17 (13)	C8-C10-C14-O16	-144.92 (12)
0.1 (3)	C2-C1-N7-C8	-20.5 (3)
176.54 (16)	C6-C1-N7-C8	162.99 (15)
-0.2 (3)	C9—C8—N7—C1	-79.5 (2)
-172.73 (11)	C10—C8—N7—C1	157.20 (14)
63.22 (17)	O15-C14-O16-C17	2.3 (2)
-51.45 (15)	C10-C14-O16-C17	-175.82 (12)
-175.49 (13)	C18—C17—O16—C14	-178.59 (15)
-110.45 (15)		
	$\begin{array}{c} -178.75 (14) \\ -0.3 (3) \\ 179.17 (13) \\ 0.1 (3) \\ 176.54 (16) \\ -0.2 (3) \\ -172.73 (11) \\ 63.22 (17) \\ -51.45 (15) \\ -175.49 (13) \\ -110.45 (15) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N7—H7…O12 ⁱ	0.85 (2)	2.185 (19)	3.0282 (17)	170 (2)

Symmetry code: (i) -x+1, -y, -z+1.