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A matching in a graph G = (V , E) is a subset M of edges, no two of which have a vertex 
in common. A matching M is said to be perfect if every vertex in G is an endpoint of one 
of the edges in M . The excessive index of a graph G is the minimum number of perfect 
matchings to cover the edge set of G . In this paper we determine the excessive index for 
mesh, cylinder and torus networks.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interconnection network is responsible for fast and reliable communication among the processing nodes in any par-
allel computer [11]. Processing and distribution of data using interconnection networks have become indissoluble elements 
of the development of our society. Many systems consider communications among internal entities as a key factor in their 
performance. Examples of these systems are VLSI (very large-scale integration) circuits, image processing, simulations of 
diverse types of chemical reactions, telephone networks, computer networks and many others. The need for ever increas-
ing computing power is a current problem in modern technology. Parallel computing with multiple processors is a feasible 
approach to tackle this problem. To implement this approach many communication schemes are necessary, including the 
interconnection of processors. Thus network design concepts become imperative elements in our life.

Various research and development results on how to interconnect multiprocessor components have been reported in 
literature. One of the most popular architectures is the mesh-connected computer, in which processors are placed in a 
square or rectangular grid, with each processor being connected by a communication link to its neighbors in up to four 
directions. Tori are meshes with wrap around connections to achieve vertex and edge symmetry. Meshes and tori are 
among the most frequent multiprocessor networks available today in the market [16].

A classic problem in graph theory and theoretical computer science is that of finding subgraphs of a given graph with 
prescribed vertex degrees. Subgraphs of prescribed vertex degrees are commonly referred to as factors [8]. A k-factor of 
graph G is defined as a k-regular spanning subgraph of G . A matching in a graph G = (V , E) is a subset M of edges, 
no two of which have a vertex in common. A matching M is said to be perfect (or 1-factor) if every vertex in G is an 
endpoint of one of the edges in M . A perfect matching of a graph is a spanning subgraph which is regular of degree one. 
A near-perfect (or near 1-factor) matching covers all but exactly one vertex. Tutte has characterized graphs which contain 
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Fig. 1. (a) 4 × 4 mesh network connecting 16 nodes (b) 4 × 4 cylinder network connecting 16 nodes.

1-factors [18]. Beineke and Plummer [1] proved that every block with a 1-factor always contains at least one more, and 
a result due to Petersen [14] showed that every cubic graph with no bridges contains a 1-factor [17]. There are a number of 
famous conjectures and open problems on perfect matchings including Berge–Fulkerson conjecture, Fan Raspaud conjecture 
and problems on maximum or minimum number of perfect matching, induced matching partition, matching preclusion and 
many others including excessive index problem.

2. An overview of the paper

A graph G is 1-extendable if every edge of G belongs to at least one 1-factor of G . A 1-factor cover of G is a set F of 
1-factors of G such that 

⋃
F∈F F = E(G). A 1-factor cover of minimum cardinality is called an excessive factorization [3]. 

The excessive index of G , denoted χ ′
e(G), is the size of an excessive factorization of G . We define χ ′

e(G) = ∞ if G is not 
1-extendable. A graph G is 1-factorizable if its edge set E(G) can be partitioned into edge-disjoint 1-factors. An excessive 
near 1-factorization of a graph G is a minimum set of near 1-factors whose union contains all the edges of G [5]. Excessive 
index has a number of applications particularly in scheduling theory to complete the process in minimum possible time [6]. 
The problem of determining whether a regular graph G is 1-factorizable is NP-complete [10].

Bonisoli et al. [3] observed that the problem of determining the excessive index for regular graphs is NP-hard. Cariolaro et 
al. [4] determined the excessive index of complete multipartite graphs, which proved to be a challenging task. The excessive 
index of a bridgeless cubic graph has been studied by Fouquet et al. [9]. Further excessive index are being calculated for 
regular graphs in [2,13]. Rajasingh et al. have determined excessive index for honeycomb [15], butterfly [15], hexagonal 
[12] and 3-D mesh network [12]. In general, it is proved that χ ′

e(G) ≥ χ ′(G) where χ ′(G) is the edge-chromatic number 
(chromatic index) of G and that the difference between χ ′

e(G) and χ ′(G) can be arbitrarily large [3]. In this paper we 
determine the excessive index for mesh, cylinder and torus networks.

3. A general results on excessive index

Theorem 1. (See [3].) Let G be a graph. Then χ ′
e(G) ≥ Δ.

Theorem 2. (See [7].) Every r-regular bipartite graph, r ≥ 1, is 1-factorable.

Theorem 3. Let G be a regular bipartite graph of even order. Then χ ′
e(G) = Δ.

Theorem 4. Let G(V , E) be a graph of odd order with maximum degree Δ. If |E| > Δ × � |V (G)|
2 �, then χ ′

e(G) ≥ Δ + 1.

Proof. Each of the perfect matchings in G covers � |V (G)|
2 � edges. Thus 

⋃
1≤i≤Δ Mi will cover at most Δ ×� |V (G)|

2 � edges. �
4. Excessive index of mesh derived networks

Definition 1. Let Pn denote a path on n vertices. For m, n ≥ 2, Pm × Pn is defined as the two dimensional mesh with m
rows and n columns. It is denoted by Mm×n . See Fig. 1(a).

Definition 2. Let Cn and Pn denote a cycle and a path on n vertices respectively. For m, n ≥ 2, Cm × Pn is defined as the 
two dimensional cylinder with m rows and n columns. It is denoted by CYm×n . See Fig. 1(b).

Definition 3. Let Cn denote a cycle on n vertices. For m, n ≥ 2, Cm × Cn is defined as the two dimensional torus with m
rows and n columns. It is denoted by Tm×n . See Fig. 2.
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Fig. 2. 4 × 4 torus network connecting 16 nodes.

Remark 1. The vertex of Mm×n , Cm×n and Tm×n in the ith row and jth column is denoted by (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n. See 
Figs. 1 and 2.

Remark 2. In Mm×n , CYm×n and Tm×n , maximum degree Δ = 4. Then by Theorem 1, χ ′
e(G) ≥ 4 when G 
 Mm×n or CYm×n

or Tm×n .

4.1. Excessive index for mesh

Theorem 5. Let G be the mesh network Mm×n, m + n even, m > 2, n > 2. Then χ ′
e(G) = 4.

Proof. Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n

}
,

M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

and

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m,1 ≤ j ≤ n

}
.

See Fig. 3.
Clearly M1 ∪ M2 covers all edges parallel to X-axis and M3 ∪ M4 covers all edges parallel to Y -axis. If m and n are even 

then Mi , i = 1, 3 are perfect. To make M2 and M4 perfect, include the edges ((i, j), (i + 1, j)), j = 1, n, i odd, 1 ≤ i ≤ m in 
M2 and ((i, j), (i, j + 1)), i = 1, m, j odd, 1 ≤ j ≤ n in M4.

If m and n are odd then Mi , 1 ≤ i ≤ 4 is not near 1-factor. To make them near-perfect, include the edges ((i, n), (i +1, n)), 
i odd, 1 ≤ i ≤ m in M1, ((i, 1), (i + 1, 1)), i odd, 1 ≤ i ≤ m in M2, ((m, j + 1), (m, j + 1)), j odd, 1 ≤ j ≤ n in M3 and 
((1, j), (1, j + 1)), j odd, 1 ≤ j ≤ n in M4. �
Lemma 1. Let G be the mesh network Mm×n, m + n odd, m > 2, n > 2. Then χ ′

e(G) ≥ 5.

Proof. Without loss of generality let m be odd and n be even. Suppose that χ ′
e(G) < 5 and M1, M2, M3, M4 are perfect 

matchings that cover the edge set of G . Consider the vertex (1, 1) and the edges ((1, 1), (1, 2)), ((1, 1), (2, 1)) incident to it. 
In order that Mi ’s are perfect there are three cases,

(i) The edge ((1, 1), (1, 2)) is in one Mi and ((1, 1), (2, 1)) is in remaining three Mi ’s.
(ii) The edge ((1, 1), (1, 2)) is in three Mi ’s and ((1, 1), (2, 1)) is in remaining one Mi .

(iii) The edge ((1, 1), (1, 2)) is in two Mi ’s and ((1, 1), (2, 1)) is in remaining two Mi ’s.

Then the edges ((1, 2), (1, 3)) and ((1, 2), (2, 2)) cannot be in same Mi in case (i) and the edges ((2, 1), (2, 2)) and 
((2, 1), (3, 1)) cannot be in same Mi in case (ii), since deg(1, 2) = deg(2, 1) = 3.

Now the edge ((1, 1), (1, 2)) is in two Mi ’s and ((1, 1), (2, 1)) is in the remaining two Mi ’s. Consider the path P : 
(1, 1)(2, 1)...(m, 1) which is of even length. Since deg(i, 2) = 4, 2 ≤ i ≤ m − 1, the edge ((i, 1), (i, 2)), 2 ≤ i ≤ m − 1 should 
be in exactly one Mi . Hence alternate edges in the path P are in two Mi ’s. Finally the edge ((m − 1, 1), (m, 1)) is in one Mi
which implies that the edge ((m, 1), (m, 2)) is in remaining three Mi ’s, which is not possible. �

The following theorem proves that the bound obtained in Lemma 1 is sharp.

Theorem 6. Let G be the mesh network Mm×n, m + n odd, m > 2, n > 2. Then χ ′
e(G) = 5.
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Fig. 3. The edges selected in Mi , 1 ≤ i ≤ 4 of M6×6 is shown in the figure.

Proof. Without loss of generality let m be even and n be odd.
Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n

}
,

M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
,

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1

}

and

M5 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 2 ≤ j ≤ n

}
.

Clearly M1 ∪ M2 covers all edges parallel to X-axis and M3 ∪ M4 ∪ M5 covers all edges parallel to Y -axis. Moreover M3
is perfect. To make Mi , i = 1, 2, 4, 5 perfect, include the edges ((i, n), (i + 1, n)), i odd, 1 ≤ i ≤ m in M1, ((i, 1), (i + 1, 1)), 
i odd, 1 ≤ i ≤ m in M2, ((i, j), (i, j + 1)), i = 1, m, j odd, 1 ≤ j ≤ n and ((i, n), (i + 1, n)), i odd, 1 ≤ i ≤ m in M4 and 
((i, j), (i, j + 1)), i = 1, m, j odd, 1 ≤ j ≤ n and ((i, 1), (i + 1, 1)), i odd, 1 ≤ i ≤ m in M5. �
4.2. Excessive index for cylinder

Theorem 7. Let G be the cylinder network CYm×n, n even. Then χ ′
e(G) = 4.

Proof. Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n, j mod n

}
,

M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

and

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

Clearly M1 ∪ M2 covers all edges parallel to X-axis and M3 ∪ M4 covers all edges parallel to Y -axis. If m is even then 
Mi , i = 1, 2, 3 are perfect. To make M4 perfect, include the edges ((i, j), (i, j + 1)), i = 1, n, j odd, 1 ≤ j ≤ n in M4.

If m is odd then M1 and M2 are perfect. To make M3 and M4 perfect, include the edges ((m, j), (m, j + 1)), j odd, 
1 ≤ j ≤ n in M3 and ((1, j), (1, j + 1)), j odd, 1 ≤ j ≤ n in M4. �
Lemma 2. Let G be the cylinder network CYm×n where m is even and n is odd, m > 2, n > 2. Then χ ′

e(G) ≥ 5.

Proof. Suppose {M1, M2, M3, M4} covers the edge set of G . Consider the cycle Cn: (1, 1)(1, 2)...(1, n)(1, 1) where 
deg(1, j) = 3, 1 ≤ j ≤ n in G . The edges incident with each of these vertices (1, j), 1 ≤ j ≤ n whose other end is 
(2, j) ∈ V (G\Cn) should be in exactly one Mi , since deg(2, j) = 4, 1 ≤ j ≤ n. Thus in order to have a perfect matching 
alternate edges in Cn should be in two Mi ’s which is not possible, since Cn is of odd length. �

The following theorem proves that the bound obtained in Lemma 2 is sharp.

Theorem 8. Let G be the cylinder network CYm×n where m is even and n is odd, m > 2, n > 2. Then χ ′
e(G) = 5.

Proof. Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n − 1

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n

}
,
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M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 2 ≤ j ≤ n − 1

} ∪ {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, j = 1,n

}
,

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1

}

and

M5 = {(
(i,1), (i,n)

)
, 1 ≤ i ≤ m

} ∪ {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 2 ≤ j ≤ n − 3

}
.

Clearly M1 ∪ M2 ∪ M5 covers all edges parallel to X-axis and M3 ∪ M4 covers all edges parallel to Y -axis. To make Mi , 
1 ≤ i ≤ 5 perfect, include the edges ((i, n), (i + 1, n)), i odd, 1 ≤ i ≤ m in M1, ((i, 1), (i + 1, 1)), i odd, 1 ≤ i ≤ m in M2, 
((i, 1), (i, n)), i = 1, m in M3, ((i, j), (i, j + 1)), i = 1, m, j odd, 1 ≤ j ≤ n − 1 and ((i, n), (i + 1, n)), i odd, 1 ≤ i ≤ m in M4
and ((i, n − 1), (i + 1, n − 1)), i odd, 1 ≤ i ≤ m in M5. �
Theorem 9. Let G be the cylinder network CYm×n where m and n are odd. Then χ ′

e(G) = 4.

Proof. Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n

} ∪ {(
(i,n), (i + 1,n)

)
, i odd, 1 ≤ i ≤ m

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n, j mod n

} ∪ {(
(i,1), (i + 1,1)

)
, i odd, 1 ≤ i ≤ m

}
,

M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 2 ≤ j ≤ n − 1

} ∪ {(
(i,1), (i,n)

)
, 1 ≤ i ≤ m

}

and

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 1 ≤ j ≤ n

}
.

Clearly M1 ∪ M2 ∪ M3 covers all edges parallel to X-axis and M1 ∪ M2 ∪ M3 ∪ M4 covers all edges parallel to Y -axis. Moreover 
M1 and M2 are near-perfect. To make M3 and M4 near-perfect, include the edges ((m, j), (m, j + 1)), j even, 1 ≤ j ≤ n − 3
in M3 and ((1, j), (1, j + 1)), j odd, 1 ≤ j ≤ n in M4. �
4.3. Excessive index for torus

The torus network Tm×n where m and n are even is a regular bipartite graph. Hence by Theorem 3, excessive index is 4. 
The following result shows that even if one of m, n is odd, the excessive index of the torus network is 4.

Theorem 10. Let G be the torus network Tm×n where m + n odd, m > 2, n > 2. Then χ ′
e(G) = 4.

Proof. Without loss of generality let m be even and n be odd.
Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n

} ∪ {(
(i,n), (i + 1,n)

)
, i odd, 1 ≤ i ≤ m

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n, j mod n

} ∪ {(
(i,1), (i + 1,1)

)
, i odd, 1 ≤ i ≤ m

}
,

M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 2 ≤ j ≤ n − 1

} ∪ {(
(i,1), (i,n)

)
, 1 ≤ i ≤ m

}

and

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 1 ≤ j ≤ n, i mod m

}
.

Clearly M1 ∪ M2 ∪ M3 covers all edges parallel to X-axis and M1 ∪ M2 ∪ M3 ∪ M4 covers all edges parallel to Y -axis. Also 
each Mi , 1 ≤ i ≤ 4 is perfect. �
Lemma 3. Let G be the torus network Tm×n where m and n are odd. Then χ ′

e(G) ≥ 5.

Proof. By Theorem 4, since |E| = 2 × mn > 4 × � |mn|
2 �, χ ′

e(G) ≥ Δ + 1 = 5. �
The following theorem proves that the bound obtained in Lemma 3 is sharp.

Theorem 11. Let G be the torus network Tm×n where m and n are odd. Then χ ′
e(G) = 5.
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Proof. Let

M1 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j odd, 1 ≤ j ≤ n − 1

} ∪ {(
(i,n), (i + 1,n)

)
, i odd, 1 ≤ i ≤ m

}
,

M2 = {(
(i, j), (i, j + 1)

)
, 1 ≤ i ≤ m, j even, 1 ≤ j ≤ n

} ∪ {(
(i,1), (i + 1,1)

)
, i odd, 1 ≤ i ≤ m

}
,

M3 = {(
(i, j), (i + 1, j)

)
, i odd, 1 ≤ i ≤ m, 2 ≤ j ≤ n − 1

} ∪ {(
(i,1), (i,n)

)
, 1 ≤ i ≤ m

}
,

M4 = {(
(i, j), (i + 1, j)

)
, i even, 1 ≤ i ≤ m, 1 ≤ j ≤ n

}

and

M5 = {(
(1, j), (m, j)

)
, 1 ≤ j ≤ n

}
.

Clearly M1 ∪ M2 ∪ M3 covers all edges parallel to X-axis and M1 ∪ M2 ∪ M3 ∪ M4 ∪ M5 covers all edges parallel to Y -axis. 
Moreover M1 and M2 are near-perfect. To make Mi , 3 ≤ i ≤ 5 near-perfect, include the edges ((m, j), (m, j + 1)), j even, 
1 ≤ j ≤ n − 3 in M3, ((1, j), (1, j + 1)), j odd, 1 ≤ j ≤ n − 2 in M4 and ((i, j), (i, j + 1)), 2 ≤ i ≤ m − 1, j odd, 1 ≤ j ≤ n − 2
and ((i, n), (i + 1, n)), i even, 1 ≤ i ≤ m − 3 in M5. �
5. Conclusion

In this paper we determine the excessive index of mesh, cylinder and torus networks. Computing the excessive index for 
other interconnection networks such as hypercube, Benes, circulant network, hypertree, Christmas tree are under investiga-
tion.
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