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Abstract

In this paper, we discuss fixed point theorems for a new χ -set contraction condition

in partially ordered Banach spaces, whose positive coneK is normal, and then

proceed to prove some coupled fixed point theorems in partially ordered Banach

spaces. We relax the conditions of a proper domain of an underlying operator for

partially ordered Banach spaces. Furthermore, we discuss an application to the

existence of a local fractional integral equation.
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1 Introduction and preliminaries

A measure of non-compactness (MNC) for the first time was given by Kuratowski [1]. It

is combined with the algebraically and analytically studies for establishing the existence

of nonlinear problems [2]. The fractional calculus is a subject of a long history and has

gained great interest in different fields of applied science, and many authors considered

this topic [3–7].

Let (X,‖ · ‖) be an infinite dimensional Banach space and θ be its zero element. B(ϑ , ζ )

will denote the closed ball with center ϑ are radius ζ and Bζ will stand for B(θ , ζ ). More-

over,MX will denote the family of nonempty bounded subsets ofX andNX is its subfamily

consisting of all relatively compact sets.

Definition 1.1 ([8]) Amappingμ :MX →R
+ is said to be ameasure of non-compactness

(MNC, for short) in X if it satisfies the following conditions (Y ,Y1,Y2 ∈MX):

(1◦) kerμ := {Y ∈MX : μ(Y) = 0} �= ∅ and kerμ ⊂NX,

(2◦) Y1 ⊆ Y2 ⇒ μ(Y1)≤ μ(Y2),

(3◦) μ(Y) = μ(Y),

(4◦) μ(convY) = μ(Y),

(5◦) μ(λY1 + (1 – λ)Y2) ≤ λμ(Y1) + (1 – λ)μ(Y2) for λ ∈ [0, 1],

(6◦) μ(Y1 ∪Y2) = max{μ(Y1),μ(Y2)},
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(7◦) if (Yn) is a decreasing sequenceof nonempty closed sets inMX and if limn→∞ μ(Yn) =

0, then the set Y∞ =
⋂∞

n=1Yn is nonempty and compact.

A map α :MX → R
+ is said to be a Kuratowski MNC [1] if

α(Y) = inf

{
ǫ > 0 : Y ⊂

n⋃

k=1

Sk ,Sk ⊂X,diam(Sk) < ǫ(k ∈N)

}
. (1.1)

We denote by 	(X) a nonempty, bounded, closed and convex set on Banach space X.

The following extensions of the topological Schauder fixed point theorem and classical

Banach fixed point theorem were proved by Darbo (DFPT, in short) in 1955.

Theorem 1.2 ([8]) Let X be a Banach space, Y ∈ 	(X) and F : Y → Y be a continuous

operator such that there exists a λ ∈ [0, 1) with

μ
(
F(A)

)
≤ λμ(A)

for any ∅ �=A⊂ Y , here μ is the Kuratowski MNC on X. Then we can conclude that F has

a fixed point.

We define 
 := {ψ : R+ → R
+} is a non-decreasing function, and limn→∞ ψn(t) = 0 for

each t ≥ 0.

Definition 1.3 ([9]) Denote byH the collection of all functions � :R+ →R+ and let � be

the collection of all functions


(◦; ·) :H(R+) →H(R+), � → 
(�; ·)

satisfying:

(i) 
(�; ζ ) > 0 for ζ > 0 and 
(�; 0) = 0,

(ii) 
(�; ζ ) ≤ 
(�, ξ ) for ζ ≤ ξ ,

(iii) limn→∞ 
(�; ζn) = 
(�; limn→∞ ζn),

(iv) 
(�;max{ζ , }) = max{
(�; ζ ),
(�; ξ )} for some � ∈H(R+).

Arab [10] used Definition 1.3 to generalize the result of Aghajani et al. [11].

Theorem 1.4 Let Y ∈ 	(X) and let F : Y → Y be a continuous operator satisfying



(
�;χ

(
F(�)

)
+ ϕ

(
χ

(
F(�)

)))
≤ ψ

(



(
�;χ (�) + ϕ

(
χ (�)

)))
,

for any ∅ �= � ⊂ Y , where χ is an arbitrary MNC, � ∈ H(R+), ψ ∈ 
 , 
(◦; ·) ∈ � and a

continuous function ϕ :R+ →R
+. Then we find that F has at least one fixed point.

With the above discussion in mind, an attempt has been made to give a monotone ver-

sion of Lemma 1.4 with the relaxed conditions of domain of an underlying operator into

partially ordered Banach spaces. To achieve the proposed results in partially ordered Ba-

nach spaces, we define a notion of MNC. Then we use this notion to prove some FPTs
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for χ -set contraction condition in partially ordered Banach spaces whose positive cone K

is norm. We will relax the conditions of bounds, closed and convexity of the domain of

operator at the expense of the operator being monotone and bounded. Next, we use the

obtained FPTs to establish the existence of the solution of local fractional integral equa-

tion.

2 FPTs

Let X be a Banach space with the norm ‖ · ‖ whose positive cone is defined byK = {x ∈X :

x ≥ 0}. (X,‖ · ‖) is a partially ordered Banach space with the order relation ⊑ induced by

cone K.

Denote by � a collection of continuous and strictly increasing function ω :R+ →R+.

We now discuss our results in partially ordered Banach spaces.

Theorem 2.1 Let (X,‖ · ‖,⊑) be a partially ordered Banach space, whose positive cone K

is normal. Suppose that F :X →X is a continuous, non-decreasing and bounded mapping

satisfying the following contraction:



(
�;χ

(
F(�)

)
+ω

(
χ

(
F(�)

)))
≤ ψ

(



(
�;χ (�) +ω

(
χ (�)

)))
, (2.1)

for all bounded subset � inX, where χ denotes the arbitrary MNC, � ∈H(R+), 
(◦; ·) ∈ �,

ψ ∈ 
 , ω ∈ �.

If ∃ an element ς0 ∈ X such that ς0 ⊑ Fς0, then F has a fixed point ̺∗ and the sequence

{Fnς0} of successive iterations converges monotonically to ̺∗.

Proof Assume ς0 ∈X and define a sequence {ςn} ⊂X by

ςn+1 = Fςn, n ∈N
∗ =N∪ {0}. (2.2)

Since F is non-decreasing and ς0 ⊑ Fς0, we have

ς0 ⊑ ς1 ⊑ ς2 ⊑ · · · ⊑ ςn ⊑ · · · (2.3)

Denote Bn = conv{ςn,ςn+1, . . .} for n ∈ N
∗. By (2.2) and (2.3), each Bn is a bounded and

closed subset in X and

B0 ⊃B1 ⊃ · · · ⊃Bn ⊃ · · · . (2.4)

Following (2.1), we obtain



(
�;χ (Bn+1) +ω

(
χ (Bn+1)

))

= 

(
�;χ

(
Conv

(
F(Bn)

))
+ω

(
χ

(
Conv

(
F(Bn)

))))

= 

(
�;χ

(
F(Bn)

)
+ω

(
χ

(
F(Bn)

)))

≤ ψ
(



(
�;χ (Bn) +ω

(
χ (Bn)

)))

≤ ψ2
(



(
�;χ (Bn–1) +ω

(
χ (Bn–1)

)))
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≤ · · ·

≤ ψn
(



(
�;χ (B0) +ω

(
χ (B0)

)))
. (2.5)

Taking the limit n → ∞ in (2.5), we have by the virtue of ψ ∈ 


lim
n→∞



(
�;χ (Cn+1) +ω

(
χ (Bn+1)

))
= 0.

By the virtue of (iii) of Definition 1.1, we get



(
�; lim

n→∞
χ (Bn+1) + lim

n→∞
ω

(
χ (Bn+1)

))
= 0,

and therefore

lim
n→∞

χ (Bn+1) = 0. (2.6)

SinceBn ⊂Bn–1, we have

B∞ =

∞⋂

n=1

Bn �= ∅ and B∞ ∈ Kerβ .

Hence, for every ǫ > 0 there exists an n0 ∈N such that

β(Bn) < ǫ, ∀n≥ n0.

From this we conclude thatBn0 and consequentlyB0 is a compact chain inX. Hence, {ςn}

has a convergent subsequence. Applying themonotone property of F and the normality of

coneK , thewhole sequence {ςn} = {Fnς0} convergesmonotonically to a point, say ̺∗ ∈B0.

Finally, from the continuity of F, we get

F̺∗ = F

(
lim
n→∞

ςn

)
= lim

n→∞
Fςn = lim

n→∞
ςn+1 = ̺∗. �

On different setting of functions � ∈H(R+), 
(◦; ·) ∈ �, ω :R+ →R
+ satisfying the con-

dition (2.1) in Theorems 2.1, we can get some new DFPTs. For example, if we set first

ω(t) = 0 and secondly ψ(ζ ) = λζ (λ ∈ (0, 1)) and finally � = identity map with 
(�; ζ ) = ζ ,

then we have following DFPTs, respectively.

Theorem 2.2 Let (X,‖ · ‖,⊑) be a partially ordered Banach space, whose positive cone K

is normal. Suppose that F :X →X is a continuous, non-decreasing and bounded mapping

satisfying the following contraction:



(
�;χ

(
F(B)

))
≤ ψ

(



(
�;χ (B)

))
, (2.7)

for all bounded subsetB inX,where χ denotes the arbitraryMNC, � ∈ H(R+).
(◦; ·) ∈ �,

ψ ∈ 
 .

If ∃ an element ς0 ∈ X such that ς0 ⊑ Fς0, then F has a fixed point ̺∗ and the sequence

{Fnς0} converges monotonically to ̺∗.
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Theorem 2.3 Let (X,‖ · ‖,⊑) be a partially ordered Banach space, whose positive cone K

is normal. Suppose that F :X →X is a continuous, non-decreasing and bounded mapping

satisfying the following contraction:



(
�;χ

(
F(B)

)
+ω

(
χ

(
F(B)

)))
≤ λ

(



(
�;χ (B) +ω

(
χ (B)

)))
, (2.8)

for all bounded subsetB inX,where χ denotes the arbitraryMNC, � ∈ H(R+),
(◦; ·) ∈ �,

ψ ∈ 
 , ω ∈ �.

If ∃ an element ς0 ∈ X such that ς0 ⊑ Fς0, then F has a fixed point ̺∗ and the sequence

{Fnς0} of successive iterations converges monotonically to ̺∗.

Theorem 2.4 Let (X,‖ · ‖,⊑) be a partially ordered Banach space, whose positive cone K

is normal. Suppose that F :X →X is a continuous, non-decreasing and bounded mapping

satisfying the following contraction:

χ
(
F(B)

)
+ω

(
χ

(
F(B)

))
≤ ψ

(
χ (B) +ω

(
χ (B)

))
, (2.9)

for all bounded subsetB in X, where χ denotes the arbitrary MNC, ψ ∈ 
 , ω ∈ �.

If ∃ an element ς0 ∈ X such that ς0 ⊑ Fς0, then F has a fixed point ̺∗ and the sequence

{Fnς0} of successive iterations converges monotonically to ̺∗.

If we take diam(B) = diameter ofB, then we have the following.

Proposition2.5 Let (X,‖·‖,⊑) be a partially orderedBanach space,whose positive cone K

is normal. Suppose that F :X →X is a continuous, non-decreasing and bounded mapping

satisfying the following contraction:

diam
(
F(B)

)
+ω

(
diam

(
F(B)

))
≤ ψ

(
diam(B) +ω

(
diam(B)

))
(2.10)

for all bounded subsetB in X, where ψ ∈ 
 , ω ∈ �.

If there exists an element ς0 ∈ X such that ς0 ⊑ Fς0, then F has a fixed point ̺∗ and the

sequence {Fnς0} of successive iterations converges monotonically to ̺∗.

Proof Theorem2.1 and Proposition 3.2 [12] claim the existence of aF-invariant nonempty

closed convex subset B with diam(B∞) = 0, that is, B∞ has a singleton element, hence

we have a fixed point of F �= ∅.

To prove uniqueness, we suppose that there exist two distinct fixed points ζ , ξ ∈B, then

we may define the set 	 := {ζ , ξ}. In this case diam(	) = diam(F(	)) = ‖ξ – ζ‖ > 0. Then

using (2.10), we get

diam
(
F(	)

)
+ω

(
diam

(
F(	)

))
≤ ψ

(
diam(	) +ω

(
diam(	)

))
,

a contradiction with the property of ψ ∈ 
 , ψ(t) < t for each t > 0 and hence ξ = ζ . �

The following is the generalized classical fixed point result derived fromProposition 2.3.
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Theorem 2.6 Let (X,‖ · ‖,⊑) be a partially ordered Banach space, whose positive cone K

is normal. Suppose that F :X →X is a continuous, non-decreasing and bounded mapping

satisfying the following contraction:

‖Fζ – Fξ‖ +ω
(
‖Fζ – Fξ‖

)
≤ ψ

(
‖ζ – ξ‖ +ω

(
‖ζ – ξ‖

))
(2.11)

for all ζ , ξ ∈ X, where ψ ∈ 
 , ω ∈ �. If there exists an element ς0 ∈ X such that ς0 ⊑ Fς0,

thenF has a unique fixed point ̺∗ and the sequence {Fnς0} of successive iterations converges

monotonically to ̺∗.

Proof Let χ : MX → R
+ be a set quantity defined by the formula χ (X) = diamX, where

diamX = sup{‖ζ – ξ‖ : ζ , ξ ∈ X} stands for the diameter of X . It is easily seen that χ is a

MNC in a space X in the sense of Definition 1.1. Therefore from (2.11) we have

sup
ζ ,ξ∈X

[
‖Fζ – Fξ‖ +ω

(
‖Fζ – Fξ‖

)]
≤ sup

ζ ,ξ∈X

‖Fζ – Fξ‖ +ω
(

sup
ζ ,ξ∈X

‖Fζ – Fξ‖
)

≤ sup
ζ ,ξ∈X

ψ
[
‖Fζ – Fξ‖ +ω

(
‖Fζ – Fξ‖

)]

≤ ψ
[

sup
ζ ,ξ∈X

‖ζ – ξ‖ +ω
(

sup
ζ ,ξ∈X

‖ζ – ξ‖
)]

,

which implies that

diam
(
F(X)

)
+ω

(
diam

(
F(X)

))
≤ ψ

(
diam(X) + φ

(
diam(X)

))
.

Thus following Proposition 2.3, F has an unique fixed point. �

3 Coupled FPTs

In this section, we prove some coupled fixed point theorems. We begin our discussion by

recalling some definitions and notions.

Definition 3.1 ([13]) An element (̺∗,σ ∗) ∈X
2 is called a coupled fixed point of amapping

G :X2 →X if G(̺∗,σ ∗) = ̺∗ and G(σ ∗,̺∗) = σ ∗.

Definition 3.2 Let (X,‖ · ‖,⊑) be a partially ordered Banach space and let G : X2 → X

be a mapping. A map G is said to have the monotone property if G(̺,σ ) is monotone

non-decreasing in both variables ̺ and σ , that is, for any ̺,σ ∈ X,

̺1,̺2 ∈X, ̺1 ⊑ ̺2 ⇒ G(̺1,σ )⊑ G(̺2,σ )

and

σ1,σ2 ∈X, σ1 ⊑ σ2 ⇒ G(̺,σ1) ⊑ G(̺,σ2).

Lemma 3.3 [14] Suppose that β1,β2, . . . ,βn are MNCs (in Banach spaces X1,X2, . . . ,Xn),

respectively.We assume that the function G :Rn
+ → R+ is convex and G(ζ1, ζ2, . . . , ζn) = 0 if

and only if ζi = 0 for i = 1, 2, 3, . . . ,n. Then

β(B) = G
(
β1(B1),β2(B2), . . . ,βn(Bn)

)
,
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defines a MNCs in X1 ×X2 ×X3 × · · · ×Xn whereBi denotes the natural projection ofB

into Xi, for i = 1, 2, 3, . . . ,n.

Theorem 3.4 Let (X,‖ · ‖,⊑) be a partially ordered Banach space whose positive cone K

is normal. Suppose that G : X2 → X is a continuous and bounded mapping, having the

monotone property and satisfying



(
�;β

(
G(B1 ×B2)

)
+ω

(
β
(
G(B1 ×B2)

)))

≤
1

2
ψ

[



(
�;β(B1) + β(B2) +ω

(
β(B1) + β(B2)

))]
(3.1)

for all bounded subsetsB1,B2 in X, where β denotes the MNC in X
2, � ∈H(R+), 
(◦; ·) ∈

�, ψ ∈ 
 , ω ∈ �.

If ∃ elements ̺0,σ0 ∈ X such that ̺0 ⊑ G(̺0,σ ) for any σ ∈ X and σ0 ⊑ G(σ0,̺) for any

̺ ∈X, then G has at least a coupled fixed point (̺∗,σ ∗).

Proof We consider the following map Ĝ :X2 →X
2:

Ĝ(̺,σ ) =
(
G(̺,σ ),G(σ ,̺)

)
.

Due to the assumption, Ĝ is also a continuous and bounded mapping, having the mono-

tone property.

Following Lemma 3.3, forB =B1 ×B2, we define a new MNC as

β̂(B) = β(B1) + β(B2),

where Bi, i = 1, 2, denote the natural projections of B. Now let B =B1 × B2 ⊂ X
2 be a

nonempty bounded subset. Due to (3.1) we conclude that



(
�; β̂

(
Ĝ(B)

)
+ω

(
β̂
(
Ĝ(B)

)))

≤ 

(
�; β̂

(
G(B1 ×B2)× G(B2 ×B1)

)
+ω

(
β̂
(
G(B1 ×B2)× G(B2 ×B1)

)))

= 

(
�;β

(
G(B1 ×B2)

)
+ω

(
β
(
G(B1 ×B2)

)))

+

(
�;β

(
G(B2 ×B1)

)
+ω

(
β
(
G(B2 ×B1)

)))

≤
1

2
ψ

(



(
�;β(B1) + χ (B2) +ω

(
β(B1) + β(B2)

)))

+
1

2
ψ

(



(
�;β(B2) + β(B1) +ω

(
β(B2) + β(B1)

)))

= ψ
(



(
�;β(B1) + β(B2) +ω

(
β(B1) + β(B2)

)))

= ψ(

(
�; β̂(B) +ω

(
β̂(B)

))
,

that is,



(
�; β̂

(
Ĝ(B)

)
+ω

(
β̂
(
Ĝ(B)

)))
≤ ψ(


(
�; β̂(B) +ω

(
β̂(B)

))
.
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Next, we show that there is â̺0 ∈B such that̺̂0 ⊑ Ĝ (̺̂0). Indeed, there exist two elements

̺0,σ0 ∈ X such that ̺0 ⊑ G(̺0,σ ) for any σ ∈ X and σ0 ⊑ G(σ0,̺) for any ̺ ∈ X, set ̺̂0 =

(̺0,σ0). Then, by the definition of Ĝ , we have

̺̂0 = (̺0,σ0) ⊑
(
G(̺0,σ0),G(σ0,̺0)

)
= Ĝ(̺0,σ0)

= Ĝ (̺̂0).

Theorem 2.1 implies that Ĝ has a fixed point, and hence G has a coupled fixed point. �

Theorem 3.5 Let (X,‖ · ‖,⊑) be a partially ordered Banach space whose positive cone K

is normal. Suppose that G : X2 → X is a continuous and bounded mapping, having the

monotone property and satisfying



(
�;β

(
G(B1 ×B2)

)
+ω

(
β
(
G(B1 ×B2)

)))
(3.2)

≤ ψ
[



(
�;max

{
β(B1),β(B2)

}
+ω

(
max

{
β(B1),β(B2)

}))]
(3.3)

for all bounded subsetsB1,B2 in X, where β denotes the MNC in X
2, � ∈H(R+), 
(◦; ·) ∈

�, ψ ∈ 
 , ω ∈ �. If there exist elements ̺0,σ0 ∈ X such that ̺0 ⊑ G(̺0,σ ) for any σ ∈ X

and σ0 ⊑ G(σ0,̺) for any ̺ ∈X, then G has at least a coupled fixed point (̺∗,σ ∗).

Proof We consider the map Ĝ :X2 →X
2 defined by

Ĝ(̺,σ ) =
(
G(̺,σ ),G(σ ,̺)

)
.

Then Ĝ is a continuous and bounded mapping, having the monotone property.

For anyB =B1 ×B2, we define a new MNC in the space X2 as

β̂(B) = max
{
β(B1),β(B2)

}

whereBi, i = 1, 2, denote the natural projections ofB. Now letB⊂ X
2 withB =B1 ×B2

be a nonempty bounded subset. We can conclude



(
�; β̂

(
Ĝ(B)

)
+ω

(
β̂
(
Ĝ(B)

)))

≤ 

(
�; β̂

(
G(B1 ×B2)× G(B2 ×B1)

)
+ω

(
β̂
(
G(B1 ×B2)× G(B2 ×B1)

)))

= 

(
�;max

{
β
(
G(B1 ×B2)

)
,β

(
G(B2 ×B1)

)}

+ω
(
max

{
β
(
G(B1 ×B2)

)
,β

(
G(B2 ×B1)

)}))

≤ ψ

(



(
�;max

{
max{β(B1),β(B2)} +ω(max{β(B1),β(B2)}),

max{β(B2),β(B1)} +ω(max{β(B2),β(B1)})

}))

= ψ
(



(
�;max

{
β(B1),β(B2)

}
+ω

(
max

{
β(B1),β(B2)

})))

= ψ
(



(
�; β̂(B) +ω

(
β̂(B)

)))
.

That is,



(
�; β̂

(
Ĝ(B)

)
+ω

(
β̂
(
Ĝ(B)

)))
≤ ψ

(



(
�; β̂(B) +ω

(
β̂(B)

)))
.
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Next, we show that there is a ̺̂0 ∈B such that ̺̂0 ⊑ Ĝ (̺̂0). There exist elements ̺0,σ0 ∈X

such that ̺0 ⊑ G(̺0,σ ) for any σ ∈ X and σ0 ⊑ G(σ0,̺) for any ̺ ∈ X, set ̺̂0 = (̺0,σ0).

Then, by the definition of Ĝ , we have

̺̂0 = (̺0,σ0) ⊑
(
G(̺0,σ0),G(σ0,̺0)

)
= Ĝ(̺0,σ0)

= Ĝ (̺̂0).

Theorem 2.1 implies that Ĝ has a fixed point, and hence G has a coupled fixed point. �

4 Fractals

Recently, a fractional derivative without singular kernel with its details was given in [15,

16]. The local fractional derivative of K(̺) of order 0 < γ ≤ 1 is inserted by

DγK(̺) =
dγK(̺)

̺γ

∣∣∣∣
̺=̺0

= lim
̺→̺0

dγ [K(̺) –K(̺0)]

[d(̺ – ̺0)]γ
,

where the expression dγ [K(̺) – K(̺0)]/[d(̺ – ̺0)]
γ is the Riemann–Liouville fractional

derivative given by

dγK(̺)

d̺γ
=

1

Ŵ(1 – γ )

d

d̺

∫ ̺

0

K(t)

(̺ – t)γ
dt

and we have the integral operator as follows:

(
IγK

)
(̺) =

1

Ŵ(γ )

∫ ̺

0

(̺ – t)γ–1K(t)dt. (4.1)

The operator in (4.1) is well defined and it is represented to the classical fractional calculus.

The function K is called local fractional continuous at ̺0 if for all ε > 0 there is a κ that

satisfies

∣∣K(̺) –K(̺0)
∣∣ < εγ

provided |̺ – ̺0| < κ . We denote the space of all local fractional continuous functions by

Cγ . For K ∈ Cγ , the local fractional integral is defined by

I
γ

[a,b]K(ς ) =
1

Ŵ(1 + γ )

∫ b

a

K(ς )(dς )γ ,

where (see [17])

(dς )γ = dγ ς =
ς1–γ

Ŵ(2 – γ )
dςγ .

The goal of this part is to study the existence and uniqueness of the generalized fractional

integral equation

̺(ς ) =
̺o

Ŵ(2 – γ )Ŵ(1 + γ )
–

λ

Ŵ(1 + γ )

∫ 1

0

̺(ς )(dς )γ

+
1

Ŵ(1 + γ )

∫ 1

0

K
(
ς ,̺(ς )

)
(dς )γ . (4.2)
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For this investigation, we shall apply Theorem 2.6. For our setting, we make the following

assumptions:

(A1) The function K : [0, 1]×Cγ [0, 1] → Cγ [0, 1] is a non-decreasing function in

Cγ [0, 1] satisfying that there occurs a positive constant ℓ > 0 such that

∣∣K(ς ,̺) –K(ς ,η)
∣∣ ≤ ℓ|̺ – η|.

(A2) There is a positive constant L satisfying

L :=
ℓ + λ

Ŵ(1 + γ )Ŵ(2 – γ )
< 1.

Theorem 4.1 Suppose that [A1], [A2] are achieved. If

Ŵ(1 + γ )Ŵ(2 – γ ) > (ℓ + λ), 0 < γ ≤ 1,λ,ℓ > 0,

then Eq. (4.2) admits a unique solution in Cγ [0, 1].

Proof Define the operator 	 : Cγ [0, 1] → Cγ [0.1], it is well defined and given by

(	̺)(ς ) =
̺o

Ŵ(2 – γ )Ŵ(1 + γ )
–

λ

Ŵ(1 + γ )

∫ 1

0

̺(ς )(dς )γ (4.3)

+
1

Ŵ(1 + γ )

∫ 1

0

K
(
ς ,̺(ς )

)
(dς )γ . (4.4)

Set K̃(ς ) = K(ς , 0) and the ballBr = {̺ ∈ Cγ [0, 1] : ‖̺‖ ≤ r}. Nowwe subdivide the operator

	 into two operator 	1 and 	2 on Br as follows:

(	1̺)(τ ) =
1

Ŵ(1 + γ )

∫ 1

0

K
(
ς ,̺(ς )

)
(dς )γ

and

(	2̺)(ς ) =
̺o

Ŵ(1 + γ )Ŵ(2 – γ )
–

λ

Ŵ(1 + γ )

∫ 1

0

̺(ς )(dς )γ ,

where λ is a positive constant. Since K is a non-decreasing and continuous function, this

leads to 	 being also a non-decreasing and continuous mapping.

The proof is as follows.

Step 1. (Boundedness) 	̺ := 	1̺ +	2̺ ∈ Br for every ̺ ∈ Br . In view of [A1], we have

∣∣	̺(ς )
∣∣ ≤

∣∣∣∣
1

Ŵ(1 + γ )

∫ 1

0

K
(
ς ,̺(ς )

)
(dς )γ

∣∣∣∣ +
∣∣∣∣

̺o

Ŵ(2 – γ )Ŵ(1 + γ )

–
λ

Ŵ(1 + γ )

∫ 1

0

̺(ς )(dς )γ
∣∣∣∣

≤
1

Ŵ(2 – γ )Ŵ(1 + γ )

(
(ℓ + λ)|̺| + |̺0| +

∣∣K̃(ς )
∣∣).
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This implies that

‖	̺‖ ≤
‖̺0‖ + ‖K̃‖

Ŵ(2 – γ )Ŵ(1 + γ ) – (ℓ + λ)
:= r. (4.5)

Hence, 	 is bounded, continuous and non-decreasing in Br .

Step 2. 	 is ψ-contraction mapping (condition (2.11)).

For any ̺,η ∈ Br , we obtain

∣∣(	̺)(ς ) – (	η)(ς )
∣∣

≤
1

Ŵ(1 + γ )

∫ 1

0

∣∣K
(
ς ,̺(ς )

)
–K

(
ς ,η(ς )

)∣∣dς

+
λ

Ŵ(1 + γ )

∫ 1

0

∣∣̺(ς ) – η(ς )
∣∣dς

≤
ℓ + λ

Ŵ(2 – γ )Ŵ(1 + γ )

(
|̺ – η|

)
.

This gives

∥∥(	̺) – (	η)
∥∥ ≤

ℓ + λ

Ŵ(2 – γ )Ŵ(1 + γ )
‖̺ – η‖ := L‖̺ – η‖.

Define two continuous functions ϕ and ψ as follows:

ω(ζ ) =
ζ

2
, ψ(ζ ) =

3

2
ζ .

From the last inequality, we obtain

∣∣(	̺)ς ) – (	η)ς )
∣∣ +ω

(
‖̺ – η‖

)
≤ L‖̺ – η‖ +

‖̺ – η‖

2

≤ ‖̺ – η‖ +
‖̺ – η‖

2

=
3

2
‖̺ – η‖

= ψ
(
‖̺ – η‖ +ω

(
‖̺ – η‖

))
.

In view of [A2], the operator 	 is a ψ-contraction mapping. Taking the sup. over Br , we

have

∥∥(	̺) – (	η)
∥∥ +ω

(
‖̺ – η‖

)
≤ ψ

(
‖̺ – η‖ +ω

(
‖̺ – η‖

))
.

Thus, 	 obeys all the conditions of Theorem 2.6. That is, 	 has a unique fixed point

in Br . �

Example 1 For the initial point ̺0 = 0.1 and γ = 0.5, we have

̺(ς ) =
0.1

(Ŵ(1.5))2
+
0.5(1 – λ)

Ŵ(1.5)

∫ 1

0

ς (dς )0.5. (4.6)
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Then, for all λ ∈ (0, 1), Eq. (4.6) has a unique solution in C0.5[0, 1]. The fixed point approx-

imates the value ς ≈ 1, whenever λ = 113,261/500,000 ≈ 0.22. Furthermore, for γ = 0.9

we have

̺(ς ) =
0.1

(Ŵ(1.9))2
+
0.5(1 – λ)

Ŵ(1.9)

∫ 1

0

ς (dς )0.9. (4.7)

Equation (4.7) has a unique solution in C0.9[0, 1]. The fixed point is approximated to the

value ς ≈ 1, whenever λ = 1,372,727/10,000,000 ≈ 0.137. We proceed by assuming the

following integral equation:

̺(ς ) =
0.7

(Ŵ(1.9))2
+
0.5(1 – λ)

Ŵ(1.9)

∫ 1

0

ς (dς )0.9. (4.8)

Equation (4.8) has a unique solution in C0.9[0, 1]. The fixed point is approximated to the

value ς ≈ 1, whenever λ = 71,017/100,000 ≈ 0.7. Finally, we consider the following fractal

integral:

̺(ς ) =
0.07

(Ŵ(1.9))2
+
0.5(1 – λ)

Ŵ(1.9)

∫ 1

0

ς (dς )0.9. (4.9)

Equation (4.9) has a unique solution in C0.9[0, 1]. The fixed point approximates the value

ς ≈ 1, whenever λ = 101,527/1,000,000 ≈ 0.1.

Remark 4.2

• By applying Theorem 3.5, one can show that the coupled system

̺1(ς ) =
̺o

Ŵ(2 – γ )Ŵ(1 + γ )
–

λ1

Ŵ(1 + γ )

∫ 1

0

̺2(ς )(dς )γ

+
1

Ŵ(1 + γ )

∫ 1

0

K1

(
ς ,̺(ς )

)
(dς )γ ,

̺2(ς ) =
̺o

Ŵ(2 – γ )Ŵ(1 + γ )
–

λ2

Ŵ(1 + γ )

∫ 1

0

̺1(ς )(dς )γ

+
1

Ŵ(1 + γ )

∫ 1

0

K2

(
ς ,̺(ς )

)
(dς )γ ,

where ̺ = (̺1,̺2) and ̺1(0) = ̺2(0) = ̺0, has at least one fixed point.

• All the above fixed point theorems are applicable for both convex and non-convex

domains.
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