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H I G H L I G H T S

• The “apparent size dependence” of the

extracted elasto-plastic fracture proper-

ties is shown.

• The “apparent size dependence” is not

an intrinsic material property.

• The benefits and drawbacks of Bridge

notch and through thickness notch for

elasto plastic fracture mechanics are

identified.

• A tomographic reconstruction of crack

front shows it's heterogeneity.

• Recommendations for elasto plastic

fracture mechanics at the micron scale

are given.
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Experimental fracturemechanics at themicroscale becamean indispensable tool for understanding and develop-

ing advanced material systems. In case of linear elastic fracture mechanics, stringent requirements are typically

only warranted for very brittle materials. The material properties of semi-brittle materials might be accessible

by elasto-plastic fracturemechanics. However, challenges exist in determining the crack length, in producing ge-

ometry and notch geometry, in defining of the initiation toughness and in extracting the size independent crack

resistance curves. In this study, we assess current approaches ofmeasuring the fracture toughness of semi-brittle

materials by elasto-plastic fracture mechanics.We investigate the notch geometry (through thickness notch and

bridge notch), the notch depth and themethod of determining in situ the crack length for ultrafine grained tung-

sten. Further challenges due to the overlap of sample size and crack process zone are identified. Finally, we pro-

pose a workflow for analyzing the elasto-plastic fracture toughness of material systems at the microscale.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The continuous trend of device miniaturization and shrinking com-

ponent length scales has forced the scientific community to understand

the mechanical properties of materials at ever smaller length scales

[1–4]. Today, a complimentary toolbox of various small scale testing

protocols, which are all based on nanoindentation [5] and focus ion

beam (FIB) milling, exist [1,2]. The advantage of testing at the
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microscale compared to testing at the macroscale is the ability of prob-

ing the constituents of a complexmicrostructurewith high spatial reso-

lution using local micromechanical testing techniques [2]. As such, one

can characterize the mechanical properties of i.e. individual grains,

grain boundaries, phases and interfaces.

Besides the local plastic properties, fracture at the micrometer

length scale has attracted severe attention during the last decade. For in-

stance, Di Maio and Roberts first reported on microcantilever bending

tests to evaluate the fracture toughness of thin coatings [6]. Further-

more, thin film intermetallic cantilevers were used to understand the

fracture behavior of TiAl [7]. Later, micro bending was used to deter-

mine the toughness for brittle materials like oxides [8], amorphous car-

bon coatings [9], thin films [10,11], single crystalline silicon [4,12],

metallic glass [13], quartz [14] and microporous silver [3].

Linear elastic brittle fracture occurred in all mentioned studies, i.e.

the sample broke after linear elastic loading and without noticeable

plastic deformation. The concepts of linear elastic fracture mechanics

(LEFM) can – under certain conditions – be used to evaluate the sample

size independent critical stress intensity factor. This critical stress inten-

sity factor is called fracture toughness KIC and a material parameter

under plane strain conditions. The most stringent condition for LEFM

is the absence of pronounced notch tip plasticity, which does depend

on the material strength, toughness, and stress state (see Fig. 1).

While the plane strain state suppresses plasticity in the sample center,

the sample surface always exhibits a plane stress state which causes

high shear stress and promotes plasticity. Consequently, the varying

stress state along the crack front leads to an intrinsic critical stress inten-

sity KI variation, which strongly limits the comparison of the fracture

toughness of semi-brittle materials at the microscale [15]. One can ob-

tain a validmaterial fracture toughness KIC only if the sample size is sub-

stantially larger than the plastic zone size. Fig. 1 presents an overview of

various materials, their fracture toughness, yield strength and plastic

zone size.

At the macroscale, the minimum sample dimensions for obtaining a

valid KIC are defined in the ASTM standards E399 (Eq. (1)) [24], with

DLEFM being the shortest dimension of sample thickness, crack length

and ligament size (the sample height reduced by the notch depth as

marked in Fig. 2). σy is the 0.2% yield strength.

DLEFM ¼ 2:5
K IC

σY

� �2

ð1Þ

The sample size independent fracture toughness cannot be obtained

as soon as one sample dimension dissatisfies Eq. (1). Only for extremely

brittle materials (Fig. 1, upper left corner, area marked μLEFM) the plas-

tic zone size is sufficiently small tomeasure a valid LEFM fracture tough-

ness in micrometer sized samples.

In the last century, various approaches of elasto-plastic fracture

mechanics (EPFM) had been developed to measure the fracture

toughness of ductile materials using reasonable macroscopic sample

sizes [25] (lower right corner in Fig. 1 denoted Macro EPFM). How-

ever, this establishment and standardization did not occur for

microsamples. Only very brittle materials can be tested by linear

elastic micro fracture mechanics (see Fig. 1) due to the stringent as-

sumption of negligible plasticity around the notch tip. When using

elasto-plastic fracture concepts, the critical dimension of the sample

is DEPFM (Eq. (2))

DEPFM ¼ 10…50
JIc
σy

; ð2Þ

where JIc is the critical J integral under mode I loading. The pre-factor

varies in literature from 10 [26] to 50 [27].

Wurster and co-workers [28] were the first to apply EPFM to mi-

cron sized samples and extended the microscale testing to other

classes of materials, i.e. tungsten (see Fig. 1). Since their pioneering

work, several authors have used EPFM to extend the number of ma-

terial classes, which are tested at the microscale [20,29–32]. Various

methods for sample preparation (e.g. micro electrical discharge ma-

chining [20] or femtosecond laser ablation [33]) and different canti-

lever geometries (rectangular, pentagonal [6,34] or triangular [14])

are used for small scale LEFM and EPFM today. The community

discussed thoroughly the importance of FIB milled notches, which

ideally are atomically sharp, free of residual stresses and without

chemical ion interactions. Additionally, several different notch ge-

ometries are used: through thickness notch [11,29–31,35–38],

bridge notch [4,32,39–42], chevron notch [14,20], and less promi-

nent geometries. All of these notch geometries have specific benefits

and are applied according to the specific project needs. Since stan-

dardized testing protocols do not exist, the comparison of the mea-

sured EPFM fracture toughness is challenging. In case of LEFM, the

role of notch and sample geometry was investigated previously

[4,42] and can be corrected – to some extend – by finite element

modelling [15,42]. However, the influence of sample and notch ge-

ometries on the evaluated elasto-plastic fracture toughness for

semi-brittle materials is not understood.

Moreover, significant differences exist among various research

groups during data analysis and interpretation. In absence of an ASTM

standard for micro fracture testing, Wurster and co-workers defined

the conditional J-integral (JQ) as the intersection of two fitted lines

(crack blunting line and stable crack growth region) in the crack resis-

tance curve (J vs.∆a curve,∆a is the crack extension) [28]. To determine

JQ, Bohnert et al. [20] – in contrast – use a blunting line parallel, which is

shifted by a crack extension ∆at/2. Here, at is the crack tip opening dis-

placement with an opening angle of 90°. The third criteria for JQ follows

the spirit of the macroscale ASTM standard and allows for some varia-

tion in sample size. Pippan et al. [1] shift the blunting line by Δa =

0.02W (W is the cantilever height) and define the intersection of this

line with the J vs. ∆a curve as JQ. The forth approach to determine JQ is

based on a fixed crack extension ∆a = 0.2 μm [35,37]. Hence, also

data analysis and interpretation of JQ lack appropriate standards. This

shortcoming renders the quantitative comparison of toughness from

different laboratories challenging.

The aim of this work is to shed light on the elasto-plastic fracture

toughness for various notch geometries and methods for analyzing the

crack length at the micron scale. We identify challenges during crack

lengthmeasurements and discuss the important role of notch geometry

and sample size in the regime denoted μEPFM in Fig. 1. Finally, some

first guidelines are suggested for μEPFM testing.

Fig. 1. Ashby map showing the plastic zone size of various materials depending on the

fracture toughness and yield strength. Regions of linear elastic fracture mechanics at the

microscale (μLEFM) and possible regions of elasto-plastic fracture mechanics at the

microscale (μEPFM) are highlighted [4,16–23].
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2. Experimental method

2.1. Material selection

In this study, we used a polycrystalline tungsten sheet (10 μm thick;

supplied by GoodFellow GmbH, Hamburg, Germany) with submicron

grains (~400 nm) for three reasons:

1. Tungsten is a model material exhibiting elastic isotropy and showing

semi-brittle fracture at themicrometer length scale. Using Eq. (1) we

estimate that the minimum sample size for obtaining KIC is DLEFM =

100 μm, which exceeds the metal sheet thickness. Hence, we expect

an elasto-plastic fracture process. Assuming JIc of ≈ 1400 J/m2 [22]

and a yield strength of 3 GPa (obtained from tensile tests on wires

with identical grain size), we expect a critical dimension for a valid

JIc of DEPFM ≈ 5…25 μm according to Eq. (2).

2. Long range dislocation pile-ups near the neutral plane (or the ten-

sion/compression interface) are suppressed, because the grain size

is considerably smaller than the cantilever dimensions. Hence,

crack shielding – caused by dislocation pile-ups – does not change

systematically during crack propagation because no long range

back stresses occur.

3. The 10 μm thick sheet metal requires predominantly 2D FIB cutting

which allows for an ample sample number due to the reduced mill-

ing time and, also, FIB redeposition is minimized.

2.2. Microsample preparation

All microcantilevers had a rectangular cross-section with the notch

plane perpendicular to the rolling direction of the sheet metal and the

crack propagation perpendicular to the normal direction of the sheet.

The ratios height (W):width (B):length (L) of milled cantilevers were

kept constant at 1:1:7. The cantilever height was maintained constant

(6.5 to 7 μm). Each cantilever was prepared in three steps: i) plasma

FIB assisted coarse cutting, ii) Ga FIB based medium and fine milling,

followed by iii) notching and post-notch cleaning (in case of straight

through thickness notches). The coarse cutting was performed by Xe

plasma FIB milling (FEI Helios PFIB) using 30 kV energy and a current

of 1.3 μA. The intermediate and fine milling as well as the notching

were made inside a Zeiss Auriga® dual beam microscope operated at

30 kV and equipped with a Nano Patterning and Visualization Engine

(NPVE). The intermediate milling was carried out at 16 nA current

until a dose of 40 nC/μm2was reached (16 nA||40 nC/μm2) which is fur-

ther reduced to 600pA||30 nC/μm2 for fine milling.

The microcantilever beams were prepared with two notch types,

through thickness and bridge notches. Three different notch-to-

thickness (a0/W) ratios 0.2, 0.3 and 0.4 were prepared for each notch

type. In order to achieve a sharp notch tip, 30 kV and 10 pA were se-

lected for notching. The doses for the various depths were optimized

by inspecting cross-sections on the same tungsten sample (see appen-

dix of [39]). Depending on the target a0/W, we used doses of 80 nC/

μm2, 160 nC/μm2, 260 nC/μm2. For cantilevers with through thickness

notches, the side surfaces were re-polished to assure a uniform depth

throughout the sample width and to avoid side-notch effects (over-

FIBing). The initial notch depth (a0) was measured by SEM imaging be-

fore and/or after the micro fracture experiments. In case of cantilevers

with bridge notches, we kept the bridges thin and symmetric.

Redeposition on the cantilever surface was reduced by a successive re-

duction of milling current and by using a thin sheet metal instead of

bulk tungsten.

2.3. Microcantilever fracture experiments

The in situ micro fracture experiments were performed in a Zeiss

Gemini 500 SEM. An ASMEC UNAT II indenter equipped with a 10 μm

wide diamondwedgewas used for cantilever bending in a displacement

open loopmode. The crack initiation and propagationwas observed and

recorded with high resolution in situ imaging during the entire micro

bending test. In few cases, undesired slip of the wedge indenter on the

sample surface was observed. However, this slip only occurred near

the end of the experiment and such experiments were not used in the

analysis. Moreover, a precise alignment of the wedge indenter is vital

for reliable experiments, because such alignment assures that the

wedge indenter forms a line contact and avoids any torque. We aligned

the sample on the macroscale similar to the protocol introduced in the

appendix of [43] and we did not rely on microscopic alignment inside

the SEM.

Fig. 2. Schematic sketches of the crack length measurements using a) using the unloading stiffness or b) in situ SEMmeasurements. The different notch geometries are investigated: c) a

straight through thickness notch vs. d) a bridge notch. Left images show an inclined side view while the right images display the fracture surface.
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One main challenge in elasto-plastic fracture testing at the micro-

scale is to accurately measure the crack length throughout the experi-

ment. In this study, two techniques are used for crack length

measurements: (i) The crack length was measured indirectly using

the unloading stiffness of the cantilever [28,35,43,44] (see also

Section 2.4). (ii) The crack length at the surface is directly observed

based on in situ SEM imaging [28,29,31,36]. In this case, we define the

crack length as the vertical distance from the top-surface of the cantile-

ver stub to the visible crack tip (as schematically shown in Fig. 2b). Note

that themeasurements are corrected for the sample tilt and thesemea-

surements are only possible for through thickness notches.

The validity of the crack length measurements was analyzed by

post-mortem cross-sectioning on three microcantilevers. In addition,

we observed the crack length variation along the crack front.

2.4. Fracture toughness analysis

The fracture toughness of tungsten is estimated by the J-integral ap-

proach, which was implemented in earlier elasto-plastic micro fracture

experiments [28]. The J integral for elasto-plastic materials is obtained

by adding the elastic and plastic contributions according to Eq. (3).

J ið Þ ¼ J
ið Þ

elastic
þ J

ið Þ

plastic
ð3Þ

The elastic contribution Jelastic is obtained from LEFM, where KIQ
(i) rep-

resents the plane strain stress intensity factor at time increment i (cal-

culated from Eqs. (4) and (5)).

J
ið Þ

elastic
¼ K

ið Þ
IQ

� �2 1−ν2
� �

E
; ð4Þ

K
ið Þ
IQ ¼

F
ið Þ
Q L

BW3=2
f

a ið Þ

w

� �

; ð5Þ

Here, ν is the Poisson's ratio, E is the elastic modulus of thematerial,

FQ
(i) is the force at time increment i and L is the bending length from the

notch to the point of force application. All other cantilever dimensions

are defined in Fig. 2. The dimensionless factor f ð
a

W
Þ for rectangular can-

tilevers (Eq. (6)) is taken from Matoy et al. [8] and a through thickness

notch is assumed in all samples.

f
a

w

� �

¼ 1:46þ 24:36
a

W

� �

−47:21
a

w

� �2

þ 75:18
a

w

� �3

: ð6Þ

The unloading stiffness (k) is one way of determining the crack

length in this study. This stiffness was calculated at several unloading

cycles and used to estimate the ligament length (W− ai) using (Eq. (7))

W−ai ¼

ffiffiffiffiffiffiffiffiffiffiffi

4kL3

BE
:

3

s

ð7Þ

The ligament length is used to obtain the crack length (ai) at time in-

crement i. Due to the use of a wedge indenter, no residual imprint was

observed which eliminates the requirement of force-displacement

data correction.

The plastic contribution to the J integral (Jplastic) is calculated accord-

ing to Eq. (8),

J
ið Þ

plastic
¼

Z

ηAPlasticlocal

B W−aið Þ
; ð8Þ

where η is a constant (η=2). APlasticlocal is the plastic work during crack

propagation. We assume that plasticity is confined within the plastic

zone at the crack tip and therefore obtain the plastic work bymeasuring

Fig. 3. a) Representative load vs. displacement curve for tungsten cantilevers with a straight through thickness notch. The inset represents an SEM image of the initial notch. b) In situ SEM

snapshots of the crack extension at locations indicated in (a).
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the area under the load-displacement curve. Finally, the complete J inte-

gral at each instant of time (i) is calculated (Eq. (9)).

J ið Þ ¼ K
ið Þ
IQ

� �2 1−ν2
� �

E
þ

2 � APl ið Þ

B � w−a0ð Þ
ð9Þ

In absence of ASTM standards, the conditional J integral (JQ is ob-

tained from Pippan's transfer of ASTM standards for small scale experi-

ments [1,38]. We fitted a polynomial function to the analyzed crack

resistance curve (J vs. Δa) and use the blunting line offset of ∆a =

0.02 W to determineJQ [38]. Finally, we calculate KIQ from JIQ as given

in Eq. (10) for a quantitative comparison of the fracture toughness.

K IQ ¼
ffiffiffiffiffiffi

JIQ

q E

1−ν2
� � ð10Þ

3. Results

3.1. Fracture experiments on samples with through thickness notches

The representative load-displacement curve with multiple partial

unloading segments shows the elasto-plastic fracture in ultra-fine

grained tungsten sheets (Fig. 3a). The partial unloading segments,

which are required to calculate the crack propagation, are seen through-

out the deformation. After initially showing elastic behavior, the load vs.

displacement curve documents significant plasticity after a few initial

unloading cycles (from point 1 onwards in Fig. 3a). The pronounced

plasticity in the vicinity of the notch tip is also documented by the snap-

shots in Fig. 3b.

Besides using the unloading stiffness to calculate the crack exten-

sion, we directly measured the crack length on the surface using SEM

snapshots that were recorded at a frame rate of 1 s−1. The first signifi-

cant crack extension is accompanied by plasticity and appears at loca-

tion (2) in Fig. 3a and b. The crack grows along the intended plane

while the plastic zone size significantly increases. On the fracture sur-

face, evenly distributed dimples are identified (see (6) and (7) of

Fig. 3b).

The detailed analysis of themicrocantilever fracture data is shown in

Fig. 4. The stiffness, which is obtained from the unloading segment

slope, continuously reduces and documents stable crack growth in

tungsten cantilevers (see Fig. 4b). The individual measurements (dots)

are subsequently described by a second order polynomial fit. Subse-

quently, this cantilever stiffness is used to calculate the crack extension

according to Eq. (7) (see black points and black line in Fig. 4c). The crack

length obtained from in situ SEM snapshots is plotted as blue triangles

with a fitting curve. At the beginning of the experiment, both methods

show a similar crack length; however, the crack length obtained from

in situ SEM snapshots is smaller compared to the crack length obtained

Fig. 4.Analysis of the load vs. displacement curve presented in Fig. 3a. a) Raw load vs. displacement data with unloading segments fitted for analyzing the unloading stiffness. b) Change in

unloading stiffness due to crack extension. The line shows a polynomial fit to the data. c) Crack length vs. indenter displacement derived from the unloading stiffness and in situ SEM

imaging. d) Polynomial fit to the load vs. displacement curve to calculate the total absorbed energy.

Fig. 5.Crack resistance curve of the sample presented in Fig. 3 (through thickness notch, a/

W = 0.24). The red data is obtained from the unloading stiffness and the blue data is

obtained by in situ SEM imaging of the advancing crack. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this

article.)
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from unloading stiffness during the later stage of the experiment. The

origin of this behavior is discussed in Sections 3.3 and 4.1.

Finally, the load displacement curve (red curve in Fig. 4d) is de-

scribed by a polynomial equation that is chosen to ease the numerical

integration of the absorbed plastic energy (APl(i)) during the cantilever

bending experiment.

The elasto-plastic J integral for through thickness notch cantilevers is

quantified by addition of the elastic (Jelastic) and plastic (Jplastic) contribu-

tion as given in Eq. (9). The fracture behavior is analyzed by inspecting

the crack resistance curve (J vs. ∆a) obtained from both crack length

evaluation techniques (see Fig. 5). Both techniques suggest a similar

fracture behavior and both techniques give a similar critical J-Integral.

If one compares the conditional J-integral (JQ) by Pippan's ASTM transfer

criterion [1], only small differences of JQ,Stiffness and JQ, SEM within the

error bars are seen. In all samples, the unloading stiffness method re-

sults in larger crack extensions and the corresponding crack resistance

curves is stretched horizontally.Wewill discuss the origin of this behav-

ior in Sections 3.3 and 4.1.

In total, we have tested successfully 12 cantilevers with through

thickness notches and these cantilevers follow the same fracture behav-

ior as shown here. The combined data will be presented in Chapter 4.

3.2. Fracture experiments on samples with bridge notches

The cantilevers with a bridge notch show characteristic similarities

and differences to the ones with through thickness notches, as seen by

the representative load-displacement curve in Fig. 6a. Similar to the

through thickness notches, the bridge notch cantilevers shows an

elasto-plastic fracture process. However, the load remains constant at

1.3 mN and does not continuously reduce as for through-thickness

notches. Also the in situ SEM information is different: a measurement

of the crack extension by SEM remains impossible here although it

was possible for through thickness notches. Moreover, the progressive

crack opening at the bridge (see Fig. 6b) cannot be used to measure

the crack length. Hence, the fracture analysis is limited to the unloading

stiffness method for bridge notch cantilevers.

A detailed analysis of a bridge notch cantilever is shown in Fig. 7. The

representative load vs. displacement curve shows pronounced plasticity

starting at the 2nd unloading cycle, i.e. at a total indenter displacement

of 3 μm. The stiffness of each consecutive unloading segment drops dur-

ing deformation (see Fig. 7b) which is used to calculate the crack length

at certain indenter displacements (Fig. 7c). The initial notch depth is ob-

tained from post-mortem SEM imaging for all bridge notch cantilevers,

as shown in inset of Fig. 7c. The initial notch depth measured via the

SEM (blue line in Fig. 7c) is ≈1.7 μm for the present cantilever. This

measurement matches well with the crack length determined from

the unloading stiffness (black data).

In total, we have successfully tested 10 cantilevers with bridge

notches and applied the unloading stiffness method. The combined

data will be presented in chapter 4.

Fig. 6. a) Representative load vs. displacement curve for tungsten cantileverswith a bridge

notch. b) In situ SEM snapshots of the crack extension at locations indicated in (a).

Fig. 7. Analysis of the load vs. displacement curve presented in Fig. 6a for a bridge notch cantilever. a) Raw load vs. displacement data with unloading segments fitted for analyzing the

unloading stiffness. b) Change in unloading stiffness due to crack extension. c) Crack extension vs. indenter displacement derived from the unloading stiffness. d) Polynomial fit to the

load vs. displacement curve to calculate the plastic energy.
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3.3. The homogeneity of the crack length

The discrepancy of the crack length measurements by the stiffness

method and by in situ SEM imaging raises questions about the shape of

the crack front. For this purpose, we performed serial sectioning of the

crack front at (i) a critical crack extension Δacritical (Fig. 8) as well as (ii)

the maximum displacement of ≈15 μm (Fig. 9). The initial crack was a

through thickness notch with an a/W ratio of 0.2 in both cantilevers.

Overall, the crack is straight, symmetric andwithout crack tunneling

in the cantilever center. However, the crack shows pronounced length

variations with local crack advancements (see Fig. 8d or Fig. 9e). At

the critical crack length Δacritical, the ratio of the longest crack segment

(≈3 μm) and the shortest crack segment (≈1.5 μm) is 2 and the crack

remained at its initial position in one location while it grew to twice

its length at another (see Fig. 8). The absolute differences of the crack

length are more pronounced for longer cracks (theminimum andmax-

imum crack length is ≈2.7 μm and ≈5 μm in Fig. 9). This observation

documents the challenges in determining the crack length and the

toughness– in samples in which the microstructural length and the ra-

dius of the fracture process zone are similar to the sample size.

4. Discussion

4.1. Comparison of crack length determination methods

We have obtained the crack length by the unloading stiffness

method and from snapshots recorded during in situ SEM imaging.

While the unloading stiffness method gives the average crack length,

SEM imaging only provides the crack extension at the surface. Hence,

the SEM based method is blind to the crack length variation along the

crack front and the obtained crack length might differ from the

unloading stiffness method. One example for pronounced differences

between the methods is Fig. 5, in which the maximum crack extension

is considerably different for the unloading stiffness method compared

to the method that uses SEM imaging. Moreover, the data presented

in Figs. 8 and 9 shows the crack length heterogeneity during crack

growth and the shorter crack length on the surface.

Please note that the pronounced crack length variation across the

sample (Figs. 8 and 9) is not caused by experimental artefacts. This var-

iation is caused by the microstructure variation in the fracture process

zone. The local grain orientation causes a strong variation in the local

Fig. 8. Through thicknessmeasurements of the crack length at a crack extension close toΔacritical, i.e. at the corresponding crack extension to JQ. The individual cross-sections are indicated

in the plot. For selected examples the measured crack length is indicated in black.

Fig. 9. Through thickness measurements of the crack length at the maximum displacement. The individual cross-sections are indicated in the plot.
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crack growth resistance, e.g. differently oriented cleavage planes and

crack shielding by dislocation pile-ups at grain boundaries. While the

crack length variation documents the strength of micro fracture testing

in quantifying fracture mechanisms, the variation also emphasizes the

difficulties of determining meaningful material parameters at small

length scales. At these scales, the local crack length variation is signifi-

cant with respect to the crack length (e.g. the crack length doubled in

Fig. 8).

It should be noted that the critical JIQ is not altered significantly by

neither the crack length differences due to the two methods nor the

crack length variation (see Fig. 5). Moreover, crack branching and de-

flection is observed, if we employ an alternate cantilever geometry

with crack growth in the sheet rolling direction. Since crack branching

in complex geometries - like the present cantilever geometry – cannot

be captured by analyticalmodels,we do not address this geometry here.

Even when investigating all cantilevers, the identified JIQ does not

vary significantly from the unloading stiffness method compared to

the method based on in situ SEM imaging. By comparing 17 cantilevers

with varying a/W ratio, we observe that the fracture toughness is 5%

smaller if obtained by in situ SEM imaging than if obtained by the

unloading stiffness (see Figs. 10, 5% difference is calculated from the av-

erage toughness values irrespective of initial notch depth). The small

differences could be explained by a curved crack front advancing further

in the sample center compared to the sample surface. However, as doc-

umented in Figs. 8 and 9 this was not observed. Hence, the origin of the

apparently smaller toughness analyzed by in situ SEM imaging remains

unclear. Please note that the toughness was obtained on the same can-

tilever by both methods.

4.2. Effect of notch geometry

Secondly, we analyze the importance of the notch geometry

(straight through thickness vs. bridge notches) on the obtained fracture

toughness. The geometry factor f ð
a

w
Þ differs for through thickness and

bridge notches according to LEFM [42]. In LEFM cantilevers with bridge

notches, crack initiation is ideally localized and sequential, i.e. the crack

initiates first in the bridges and after bridge failure the main crack de-

velops in the center of the notch. In contrast, during elasto-plastic frac-

ture much larger crack and plastic process zones develop which do not

allow to spatially or sequentially separate failure sites. Moreover, the

plasticity leads to large deformationswhich are less defined than during

LEFMandwhich influence the crack driving force. Theuncertainty of the

crack shape during the fracture process prevents a proper implementa-

tion of the evolving notch geometry, i.e. the elastic contributions to the J

integral have a high uncertainty. Moreover, the thin bridges are entirely

in plane stress state while the main crack is assumed to fail predomi-

nantly under plane strain. Please note that the plane stress state leads

to a larger plastic zone according to fracture mechanics. This enlarged

plastic zone is observed in this study in the present bridges (see

Fig. 6b (3–5)). Due to all these reasons, it is expected that the obtained

fracture toughness shows pronounced differences for bridge notch and

through thickness notch cantilevers in semi-brittle materials.

The differences of bridge notch cantilevers and through thickness

notch cantilevers is quantified in Fig. 11. Since the crack tip is invisible

for bridge notches, we only use crack lengths that were obtained from

the unloading stiffness method for this comparison. The results show

that bridge notch cantilevers appear to have a higher fracture toughness

than through thickness notch cantilevers for all a=W ratios. The tough-

ness obtained from bridge notch cantilevers is up to 20% higher than the

one from through thickness notch cantilevers. This difference is of the

same order as the differences in geometry factor for the two notch

types according to LEFM [42]. One could hypothesize that the difference

in the present EPFM study originates fromanunknowngeometry factor.

However, since the J-Integral is dominated by the plastic contribution,

the changes in the LEFM based contribution do not significantly alter

the total J-Integral. More likely, the differences originate from the pro-

nounced plasticity in the bridge notches.

In summary, the obtained fracture toughness strongly depends on

the chosen notch geometry. Due to the unknown geometry for the

bridge notches evolving during the fracture process, due to the non-

localized and non-sequential fracture with large process zones and

due the plasticity caused by the plane stress state in the material brid-

ges, it is highly recommended to use through thickness notches for

semi-brittle materials. Since bridge-notches appear inferior compared

to straight notches for EPFM, we measured the crack front shape for

the superior geometry (Fig. 9) but not for the inferior cantilever

geometry.

4.3. Effect of notch depth (a0/W)

Geometrical constraints exist for the cantilever to determine a

size independent JIC. The dominant constraint is the minimal sample

dimension, which is estimated from Eq. (2). For ultrafine grained

tungsten with JIQ = 1400 N/m and σy = 3 GPa, we estimate the min-

imum cantilever dimension ranging from 5 to 25 μm. In this study,

the cantilever width and height was 8 μm and the ligament size

Fig. 10. Fracture toughness (KIQ) of through thicknessmicrocantilever as function of notch

depth (a0/W), calculated by two crack lengthmethods; a) unloading stiffness (circles) and

b) in situ SEM imaging (triangles).

Fig. 11. Fracture toughness (KIQ) of ultrafine grained tungsten as a function of notch

geometry (through thickness vs bridge) and notch depth (a0/W).
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(W − a0) is 5 μm at (a0/W) = 0.4. All of these dimensions are at the

lower limit of the required size according to Eq. (2). To investigate

the influence of the shortest dimension, i.e. ligament size, we vary

it and draw conclusions about the minimum cantilever dimension

to obtain size independent JIQ.

Figs. 10 and 11 suggest that the extracted fracture toughness is size

dependent: larger a0/W ratios, i.e. smaller ligament sizes, lead to higher

apparent KIQ. While a mild change is observed for KIQ (Figs. 10 and 11),

the crack resistance curves document the vastly different fracture be-

havior, as shown in Fig. 12. The large changes in the crack resistance

curve must not be interpreted as size scaling of the fracture toughness,

because the microstructural dimensions are identical irrespective of

the initial crack length. Hence, intrinsic scaling of the fracture toughness

originating from the material is excluded. Note that Fig. 12 shows the

crack resistance curve: above a threshold critical crack length, the J-

value increases significantly and then the gradient of the J-value de-

crease as the crack progresses. This behavior is typical for crack resis-

tance curves even at the macroscale. In this diagram, we added JIQ for

the individual samples according to Pippan's transfer criterion. We ob-

serve that the extracted toughness increases with decreasing ligament

size (increasing a0/W ratio).

Based on LEFM, one could hypothesize that a steady state behav-

ior is reached above a critical length and that the fracture behavior

becomes dimension independent above this crack length. This hy-

pothesis is not the case. Longer initial notches (smaller ligament

sizes) show a significantly tougher crack-growth (see Fig. 12). The

ligament dependent fracture toughness was found at the macroscale

showing a mild change in initiation toughness but tremendous dif-

ferences in the crack resistance curve [27,45]. Generally at the mac-

roscale, longer ligaments resulted in tougher crack resistance

curves because the plastic zone is not constrained [27,45]. However,

very short ligaments result in an increased crack resistance curve at

the macroscale [27]. The same toughness increase with decreasing

ligament size is observed at the microscale in this study. The stress

state and plastic zone size differ significantly for short and long ini-

tial ligaments and the behavior of the tungsten cantilevers is not

dominated by elasticity, especially for deep initial notches. Conse-

quently, we cannot report size independent fracture toughness or

crack resistance curves (see Fig. 12) within this study. Hence, the

elastic-plastic fracture toughness depends on a crack length and ge-

ometry for micrometer components, e.g. MEMS.

We conclude that a conservative estimate of the pre-factor is re-

quired in Eq. (2) for a size independent crack resistance curve. The fac-

tor should – in accordancewith themacroscale and ASME standard – be

50 [27] and not 10 (as used in the present study).

5. Recommendations for EPFM

Based on this study of elasto-plastic fracture mechanics, we recom-

mend the subsequent workflow for analyzing the fracture toughness

at the microscale. To execute this workflow, an a priori estimate of the

strength and toughness is beneficial.

I) Identify if LEFM is applicable. If possible, choose a sample size

which allows one to observe brittle fracture (Eq. (1)). In this

case, we recommend to use samples with these dimensions be-

cause all challenges (determine crack length and shape, the crite-

rion for crack initiation and growth) are prevented.

In cases, in which EPFM cannot be excluded safely, we recom-

mend a microcantilever with straight through thickness notch,

as this shape is also applicable in EPFM.

II) Sample requirements for EPFM. If the material and experimental

constrain do not allow for LEFM compatible samples, the best ap-

proach is to use EPFM according to the present approach

[1,28,29].

a. However, stringent assumptions for a minimum sample size

exist. Eq. (2) defines the minimum sample dimensions and it

is recommended to use a conservative pre-factor significantly

higher than 10.

b. If one wants to determine a sample size independent fracture

toughness, we recommend that the fracture process zone

should be substantially smaller than the sample size. This re-

quirement might be challenging for single crystals, in which

dislocations move to large distances.

III) Prepare the sample using FIB. Through thickness notches and a a/

W ratio of 0.2–0.3 are recommended for EPFM. These parameters

result in an elbowed fracture resistance curve as prescribed by

macroscale standards.

The cantilevers should be at least 5 times longer than their width

and heights in order to limit the influence of shear stresses [42].

While bridge notches are beneficial in brittle materials, it is not

recommended to use bridge notches for EPFM as they overesti-

mate the toughness (see Fig. 11). We also recommend to use

rectangular beam cross-sections as plasticity in the compression

domain cannot be excluded for pentagonal beams.

IV) Avoid residual imprints. Raw force-displacement data is well-

suited for measuring the crack propagation by the unloading

stiffnessmethod. However, a residual imprint alters the displace-

ment data, which must be corrected before calculating the crack

length [29]. It is recommended to use a wedge indenter with a

line contact and aminimumcantilever length of 5 times the sam-

ple heightW. These precautions prevent a residual imprint, as in

the present study. Note that the wedge indenter requires align-

ment in two directions because – otherwise – unwanted torque

is introduced.

V) Use an intrinsically displacement controlled device. The testing

rig has to follow a load-displacement curve of the sample includ-

ing a load decrease for large displacement of through thickness

notches. Hence, an intrinsically displacement controlled device

is required. Force controlled or pseudo displacement controlled

indenters might not be able to follow the force displacement

curve.

VI) Determine the crack length in situ. The unloading stiffness

method probes a mean crack length which is different than the

surface crack length obtained by in situ SEM imaging. This

study shows that the crack length depends on themicrostructure

and the tougheningmechanism in the process zone at this length

scale. Both measurements individually cannot reflect the crack

length distribution. Both measures give a more complete under-

standing of the fracture mechanisms.

In passing, both methods result in a similar crack initiation

Fig. 12. The crack resistance curve for several cantilevers with through thickness notches

calculated from in situ SEM crack measurement. Each point superimposed to the

individual crack resistance curve indicates the JIQ value according to Pippan's transfer

criterion.
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toughness with slightly higher values for the unloading stiffness

method. Hence, the initiation toughness from in situ SEM imag-

ing is more conservative.

VII) Is the crack front straight? It is recommended to perform serial

sectioning on the crack to investigate the homogeneity of the

crack extension. In case of large variations in the crack length,

the extracted J is an average of different tougheningmechanisms

in the crack process zone. When a microstructure independent

toughness is required, crack length variations cannot be accepted

and larger sample sizes are required, that representatively aver-

age the microstructure.

VIII) How to determine the crack initiation toughness? Several criteria

for the crack initiation toughness had been proposed.We recom-

mend to use Pippan's ASTM transfer [1] that includes size scaling.

We note that when fitting the steady state crack extension by a

polynomial function eases the application of Pippan's transfer

criterion. Also, note that we strictly follow the suggestion of

Pippan with Δa = 0.02W. Using different Δa values can result

in substantially different toughness values.

IX) Is JIQ = JIC? A critical assessment is required after EPFM analysis

to determine the validity of the extracted fracture toughness

KIQ or JIQ. One needs to show that JIQ (or KIQ) is size independent.

We recommend to

a. Use Eq. (2) to evaluate, if the sample size was large enough.

b. Test at least two different sample sizes (width, height, crack

length or ligament size) and proof the size independence of

the crack resistance curve.

c. Show the crack resistance curves for all samples and show that

these curves have a similar shape, preferably with a pro-

nounced elbow.

Otherwise, a system (i.e. material plus geometry) dependent frac-

ture behavior is measured and not a size independent material

property.

6. Conclusions

Linear elastic fracture mechanic (LEFM) experiments are commonly

used formeasuringmaterial properties at themicroscale and during the

development of hard coatings. However, this approach for extracting

valid fracture toughness is only applicable to very brittle materials. To

extend the applicability of small scale testing to elasto-plastic fracture

mechanics (EPFM), the present study present a critical evaluation of

its current state. To improve the understanding of fracture mechanics,

the reliability and generality of the apparent fracture toughness, within

this work we assessed different sample geometries and different

methods for determining the crack length. We can conclude:

I) The obtained fracture toughness depends on themethod used for

determining the crack length. The unloading stiffness shows a

mildly larger toughness compared to in situ SEM imaging.

Hence, the SEM approach results in a more conservative fracture

toughness.

II) The crack length is subjected to significant variations across the

crack width. The local crack length depends on toughening

mechanisms in the local crack process zone. If the process zone

size is similar to the sample size, a size and microstructure de-

pendent fracture toughness is obtained.

III) The extracted toughness depends on the geometry of the initial

notch. The bridge notches – which can be beneficial in LEFM –

show extended ductile tearing and an elevated fracture tough-

ness. Therefore, only through thickness notches are recom-

mended for EPFM.

IV) It is vital to confirm the size independence of the initiation

toughness and the crack resistance curve by using Eq. (2), by pre-

senting the crack resistance curves and by validating the geome-

try independence of the crack resistance curve.

V) To assure a comparability of the EPFM fracture toughness at the

microscale, the community needs to develop standardized test-

ing protocols and similar geometries. The workflow presented

in this study is only the first step.

VI) Challenges arising from sample size scaling remain and need to

be addressed in the future especially when the plastic and frac-

ture process zones reach the sample dimensions.
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