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Abstract In this paper, a newly proposed embedded Runge–Kutta fourth order with four stages

arithmetic Heronian mean method is employed and verified in determining the distribution of ther-

modynamic variables inside the extra-solar protoplanets formed through gravitational instability at

their initial stages. In specific, the case of conduction–radiation is considered regarding the trans-

ference of heat inside the protoplanets. A general brief theoretical framework for the proposed

numerical method is stated in addition to pseudo code followed by error estimation description.

The results based on newly proposed explicit RKAHeM(4,4) method are found to be optimal

and efficient in comparison with the ones obtained with classical fourth order Runge–Kutta

method.
� 2015 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier

B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Indeed numerical computations play an indispensable and sig-
nificant role in solving real time mathematical, physical and

engineering problems to provide optimal and efficient
solutions. In the case of numerical computation, three phases
are of importance, such as construction of appropriate
numerical technique, implementation of the method to

obtain effective solution and validation of the obtained results.
But, before selection and/or construction of new techniques,
one needs to consider different factors, namely types of equa-
tions, types of availability of machines/systems, programing

and maintenance, execution speed, accuracy of the obtained
solutions and their validity, etc. The proposed explicit
RKAHeM(4,4) is an embedded hybrid Runge–Kutta method

to solve various real world problems involving ordinary differ-
ential equations arising in some of the scientific areas such as
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celestial mechanics, weather modeling, reaction rates, infec-
tious diseases, genetic variation, population competition and
stock trends, interest rates and the market equilibrium

price changes. Any type of Runge–Kutta method
including RKAHeM(4,4) is said to be consistent, if the trunca-
tion error tends to zero when globally the step size tends to

zero.
Shampine and Gordon (1975) discussed the normal order

of a Runge–Kutta algorithm having the approximate number

of leading terms of an infinite Taylor series, which calculates
the trajectory of a moving point. Evans and Yaacob (1995)
introduced a new fourth order Runge–Kutta method based
on the Heronian mean formula for solving initial value

problem in numerical analysis. Bader (1987, 1998) introduced
the RK–Butcher algorithm for finding the truncation error
estimates, intrinsic accuracies and the early detection of

stiffness in coupled differential equations that arises in theoret-
ical chemistry problems. A new fourth order embedded
RKAHeM(4,4) method and algorithm based on Runge–

Kutta arithmetic Heronian mean with error control is
proposed to solve the real time application problem under ras-
ter scheme by Ponalagusamy and Senthilkumar (2009) and

through time-multiplexing approach by Ponalagusamy and
Senthilkumar (2011) in image processing under CNN environ-
ment efficiently. A detailed illustration related to local trunca-
tion error (LTE), global truncation error (GTE) and error

estimates (ERREST) and control for fourth order with four
stages Runge–Kutta numerical algorithms is eventually
reported by Senthilkumar (2009).

The formation of the planetary system has been a topic of
interest to the mankind ever since the dawn of civilization.
However, scientific theories for the formation of the system

largely date from Descartes (1644) when he proposed his
vortex theory of planetary formation. Since then many theo-
ries with regard to the planetary formation both inside and

outside the solar system have been advanced through the
works of many authors (e.g., McCrea and Williams, 1965;
Cameron, 1978; Boss 1997; Boley et al., 2010; Cha and
Nayakshin, 2011). The viable mechanism, disk instability,

advocated in the past, in principle, can form giant planets
and are believed to be the promising route for the rapid forma-
tion of giant planets both in our solar system and elsewhere

(Boss, 1997, 1998). This theory with disk instability and the
gravitational collapse of an unsegregated protoplanet was
actually in vogue during 1970s when a great deal of now

forgotten work was carried out has been reformulated with
fragmentation from massive protoplanetary disks (see, Paul
et al., 2012) and has been advanced through the works of many
authors (see, e.g., Nayakshin, 2010; Mayer et al., 2002, 2004;

Cai et al., 2006; Boley et al., 2010; Cha and Nayakshin,
2011). But despite substantial study and progress in recent dec-
ades, the initial structures of isolated gaseous giant protoplan-

ets formed via disk instability are still unknown and different
models predict different initial characteristics (see, Boss,
1997; Helled and Schubert, 2008; Senthilkumar and Paul,

2012; Paul and Bhattacharjee, 2013). Boss (1997) in his inves-
tigation assumed an initial protoplanet to be fully radiative,
Helled and Schubert (2008) found such protoplanets to be fully

convective with a thin outer radiative zone. Paul et al. (2012)
and Senthilkumar and Paul (2012) in their investigations
neglected the radiative thin zone and assumed initial proto-
planets to be fully convective, while Paul and Bhattacharjee
(2013) analyzed initial structures of protoplanets assuming
them to be in conductive-radiative equilibrium.

In this study, we intend to reinvestigate the problem of Paul

and Bhattacharjee (2013) employing the newly proposed expli-
cit RKAHeM(4,4) algorithm to see how the obtained results
compare the ones obtained in Paul and Bhattacharjee (2013)

and those obtained through other investigations. Further, it
is our interest to exhibit that if masses and radii are prescribed,
then the distribution of thermodynamic variables can uniquely

be determined suggesting that formation of protoplanets via
disk instability is a reasonable hypothesis.

The remainder of the article is structured as follows. Section 2
discusses theoretical foundation of the problem in addition to

boundary conditions. Section 3 addresses a notion on structure
determination including numerical approach employed. A brief
note on the analysis of explicit embedded Runge–Kutta fourth

order with four stages arithmetic Heronian mean method is pre-
sented in Section 4 along with pseudo code, local truncation
error and error control. Results and discussion are presented

in Section 5. Finally, conclusion is given in Section 6.
2. Theoretical foundation

As in Paul and Bhattacharjee (2013), our model assumes a

non-rotating, non-magnetic spherical giant gaseous object in
the mass range 0.3–10 MJ, where MJ represents the mass of
Jupiter. The object being formed via disk instability and is

assumed to be of solar composition, which is in a steady state
of quasi-static equilibrium. The mode of heat transport inside
such an object is assumed to be conductive-radiative. Then the

structure of the object, following Paul et al. (2008) and Paul
and Bhattacharjee (2013), can be given by the following set
of equations.

The equation of hydrostatic equilibrium,

dPðrÞ
dr
¼ �GMðrÞ

r2
qðrÞ: ð1Þ

The equation of conservation of mass,

dMðrÞ
dr

¼ 4pr2qðrÞ: ð2Þ

The equation of conductive-radiative heat flux,

8rH

3� 10�24
T3ðrÞ
qðrÞ þ g

� �
dTðrÞ
dr
¼ � CR

4pR
GM2ðrÞ

r3
: ð3Þ

The gas law,

PðrÞ ¼ k

lH
qðrÞTðrÞ: ð4Þ

In Eqs. 1–4, P(r), M(r), T(r) and q(r) represent pressure,
mass, temperature and density, respectively, inside a protoplanet
with r measuring the distance from the center;H is the mass of a

hydrogen atom; g is the thermal conductivity of the gas of
the protoplanet; G the universal gravitational constant; l is the
mean molecular weight; CR is an arbitrary constant; r is the

Stefan–Boltzmann constant, and k is the Boltzmann constant.
2.1. Boundary conditions

The mass inside a sphere of infinitesimal radius r at the center

of a protoplanet treating q sensibly constant in this sphere is



Figure 1 Temperature profiles inside some initial protoplanets.
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given by MðrÞ ¼ 4
3
pr3q. Hence, as r fi 0, M(r) fi 0. Clearly,

M(r) = M at the surface. Also, central temperature of an ini-
tially formed protoplanet should fairly be low (Paul et al.,

2011) and hence it must have low surface temperature. We
assume in the first approximation that the surface temperature
is zero. Furthermore, the mass of the atmosphere of a proto-

planet is just a minute fraction of its total mass, so we may take
the pressure on its surface as approximately equal to zero.
Therefore, the approximate boundary conditions can be given by

T ¼ 0; P ¼ 0 at r ¼ R

MðrÞ ¼M at r ¼ R

MðrÞ ¼ 0 at r ¼ 0

9>=
>;: ð5Þ

3. Structure determination

3.1. Non-dimensionalization

We introduce the non-dimensional variables x, p, t, and q fol-

lowing Schwarzschild (1958) with the help of the transforma-

tions r= (1 � x)R, PðrÞ ¼ GM2

4pR4 pðxÞ, TðrÞ ¼ lHGM
kR

tðxÞ, M(r) =

q(x)M. By means of the above transformations, Eqs. (1)–(3)
with the help of Eq. (4) can be, respectively, put in the form

dp

dx
¼ pq

tð1� xÞ2
; ð6Þ

dq

dx
¼ � pð1� xÞ2

t
ð7Þ

and

dt

dx
¼ CR

cpq2

ð1� xÞ3ðat4 þ bpÞ
; ð8Þ

as q, given by Eq. (4), with the help of the above transforma-

tions can be put to the form

q ¼ M

4pR3

p

t
: ð9Þ

In Eq. (8), a ¼ 8rH
3�10�24

lHGM
kR

� �3
, b ¼ Mg

4pR3, and c ¼ M2k
16p2R5lH

.

The boundary conditions given by Eq. (5), then in terms of
the non-dimensional variables are transformed to

tðxÞ ¼ 0; pðxÞ ¼ 0 at x ¼ 0

qðxÞ ¼ 1 at x ¼ 0

qðxÞ ¼ 0 at x ¼ 1

9>=
>;: ð10Þ

3.2. Numerical values used

Countable numbers of parameters are involved in our

calculations. The values of masses and radii in this study are
similar to those used in the study of Paul and Bhattacharjee
(2013). Besides the values of masses and radii, we have
used l = 2.3 (Dullemond and Dominik, 2004), r ¼ 5:6686�
10�5 erg cm�2 deg�2 sec, g = 1.2684 · 104 and the remaining
parameters involved in the study have been assumed to have

their standard values.

3.3. Numerical approach

It is obvious that analytic solution of Eqs. 6–8 as they stand

is nevertheless possible. Therefore, any suitable numerical
method and its algorithm should be adopted to yield respective
solutions. It is pertinent to point out here that the numerical
calculations cannot be started right either from the surface

or from the center for the existence of vanishing denominators
in the basic set of equations. These factors indicate that one
needs to develop solution near either of the boundaries.

Based on the boundary conditions, we have developed the
solution near the surface, which can be put in the form

p � a0
y4

ð1� xÞ4
; t � c0y

ð1� xÞ ; q � 1; as x! 0;

where c0 ¼ 0:25 and a0 ¼
ac5o

CRc� bc0
:

With the approximated values mentioned above as initial condi-
tions, inserting the values of the required parameters involved,
we have solved Eqs. 6–8 numerically by the proposed new explicit

RKAHeM(4,4) method from x= 0.01 downwards to the point
0.99 to obtain the distribution of p, q, and t. The proposed explicit
RKAHeM(4,4) method employed in the study is discussed in
Section 4. As the distribution of p and t for varying x are known,

we have determined the density distribution using Eq. (9). The
structures of the protoplanets are found to be dependent on the
parameter CR and best values ofCR for the prescribed protoplan-

etarymasses 0.3MJ, 1MJ, 3MJ, 5MJ, 7MJ and 10MJ satisfying
the third condition of Eq. (10) can be found alike those obtained in
the study of Paul andBhattacharjee (2013) as 0.026, 0.2, 1.27, 2.43,

4.03 and8.4, respectively.The results of our calculations are shown
diagrammatically through Figs. 1–4.

4. Analysis about newly proposed explicit RKAHeM(4,4)

numerical method

The formulation of RK(4,4) for solving the initial value prob-

lem y0 = f(x, y(x)), x0 6 x 6 xn subject to y(x0) = y0 is based
on the general form of the extrapolation equation

ynþ1 ¼ yn þ Dy

or

ynþ1 ¼ yn þ slope� interval size

or

ynþ1 ¼ yn þmh; ð11Þ
where ‘m’ represents the slope, i.e., weighted average of the
slopes at various points in the interval with interval size h.
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Suppose, if one estimates ‘m’ using slopes at ‘r’ points in the

interval ½xn; xnþ1�, then ‘m’ can be written as
m ¼ w1m1 þ w2m2 þ � � � þ wrmr, where w1, w2,. . ., wr are
weights of the slopes at various points.

Therefore, ynþ1 ¼ yn þ w1m1hþ � � � þ wrmrh

or

ynþ1 ¼ yn þ
Xr
i¼1

wimih

or

ynþ1 ¼ yn þ
Xr
i¼1

wiki ð12Þ

By considering the above initial value problem without loss
of generality,

dy

dx
¼ fðx; yÞ; x0 6 x 6 xn subject to; yðx0Þ ¼ y0; ð13Þ

the general s-stage Runge–Kutta method can be written as
follows.

k1 ¼ hfðxn;ynÞ; ki ¼ hfðxnþ cih;ynþ
Xi�1
j¼1

aijkjÞ; i¼ 2; . . . ; s; ð14Þ

ynþ1 ¼ yn þ
Xs
i¼1

wiki: ð15Þ

The Runge–Kutta formula approximates the integrand f (xn,
u(xn)) with a weighted average of its values at the two endpoints

and at themidpoint, whereu represents slope. Runge–Kuttameth-
ods are a specializationof one-step numericalmethodswhich essen-
tially characterize that the error is of the formEi = Chk, whereC is

a positive real constant, the number k is called the order of the
method. In case ofRunge–Kuttamethod, number of stages implies
that number of times the function is evaluated at each one step i,
which is important concept because, the evaluation of the function

requiresa computational cost (sometimeshigher) and thereforepre-
ferred methods with minimum number of stages as possible.

4.1. Pseudo code of explicit RKAHeM(4,4) technique for
solving IVPs

The pseudo code for newly proposed explicit RKAHeM(4,4)
method to solve any initial value problem prescribed by

Eq. (13) is as follows:
Input: initial values x0, y0 and number of steps n

Output: approximation to y at the n+ 1 values of x

Step 1: Set h ¼ ðxn � x0Þ=n
x= x0
y= y0

Output ðx; y; y�Þ
Step 2: For i ¼ 1 to n do steps 3-5

Step 3: Set k1 ¼ fðx; yÞ ¼ k�1
k2 ¼ fðxþ h

2 ; yþ
hk1
2 Þ ¼ k�2

k3 ¼ fðxþ h
2 ; yþ

hk2
2 Þ

k4 ¼ fðxþ h; yþ hk3Þ
k3 ¼ fðxþ 1

2 h; y� 1
48 hk1 þ 25

48 hk2Þ ¼ k�3
k4 ¼ fðxþ h; y� 1

24 hk1 þ 47
600 hk2 þ 289

300 hk3Þ ¼ k�4
Step 4: Set y ¼ yþ h

3 ½
k1þk2

2 þ k2þk3
2 þ k3þk4

2 � (Compute yi)

y� ¼ yþ h
9 ½k
�
1 þ 2ðk�2 þ k�3Þ þ k�4 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jk�1k

�
2j

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jk�2k�3j

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jk�3k�4j

p
� (Compute y�i )

x ¼ xþ ih (Compute xi)

Step 5: Output ðx; y; y�Þ
Step 6: Stop
The new embedded RKAHeM(4,4) is represented by
Butcher array form as

ð16Þ

where

bT ¼ yAM
nþ1 ¼ yn þ

h

3

k1 þ k2
2
þ k2 þ k3

2
þ k3 þ k4

2

� �
: ð17Þ

b̂T ¼ yHeM
nþ1 ¼ ynþ

h

9
k�1þ 2ðk�2þ k�3Þþ k�4þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jk�1k

�
2j

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jk�2k

�
3j

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
jk�3k

�
4j

q� �

ð18Þ

and the estimation of the local truncation error,

ET ¼ jbT � b̂Tj. In the RKAHeM(4,4) method, four stages

are required to obtain the solution, which share the same set

of vectors k1 and k2 using bT and b̂T approximately, but k3

and k4 use bT while k�3 and k�4 use b̂T.
Figure 2 Pressure profiles inside some initial protoplanets.



Figure 3 Mass distribution inside some initial protoplanets.

Figure 4 Density distribution inside some initial protoplanets.
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4.2. Derivation of LTE for explicit RKAHeM(4,4) technique

According to Lotkin (1951), Ralston (1957) and Lambert
(1973, 1980), the error estimate for the fourth order RK

scheme is given by jwðxn; yn : hÞj 6 ð73=720ÞML4, where M
and L are positive constants. To control the value of step-size

(h), we use the new formation of RKAHeM(4,4) to obtain an
estimate of the local truncation error (LTE) for the
RKAHeM(4,4) as LTE ¼ ynþ1 � y�nþ1. The LTE for the classi-

cal fourth order Runge–Kutta method based on arithmetic

mean (RKAM) is given by

yAM
nþ1 ¼ yn þ LTEAM; ð19Þ

and the LTE for the Runge–Kutta method based on Heronian

mean (RKHeM) is given by

yHeM
nþ1 ¼ yn þ LTEHeM; ð20Þ

where yAM
nþ1 and yHeM

nþ1 are numerical approximations at xnþ1
obtained by AM and HeM, respectively, but LTEAM and
LTEHeM are the LTEs in RKAM and RKHeM, respectively.

Then at xnþ1,

yAM
nþ1 � yHeM

nþ1 ¼ LTEAM � LTEHeM: ð21Þ
But the LTE for RKAM and RKAHeM are, respectively,
given by

LTEAM ¼
h5

2880
�24ff4y þ f4fyyyy þ 2f3fyfyyy � 6f3f2yy þ 36f2f2yfyy

h i
;

ð22Þ

LTEHeM ¼
h5

1; 658; 880
19; 759ff4y � 19; 926f2f2yfyy � 36; 576f3f2yy

h

� 13; 292f3fyfyyy þ 576f4fyyyy
	
: ð23Þ

The absolute difference between LTEAM and LTEHeM is
given by

jLTEAM � LTEHeMj ¼
h5

1; 658; 880
33; 583ff4y þ 40; 662f2f2yfyy

h

þ 33; 120f3f2yy þ 14; 444f3fyfyyy

i
: ð24Þ

According to Lotkin (1951), the step-size (h) selection can
be determined in order to control the error as

121; 809

1; 658; 880
P4Qh5 < Tol or h <

13:618698� Tol

P4Q

� �1=5
; ð25Þ

where Tol = 0.00005, P and Q are positive constants.

4.2.1. Error estimation for RKAHeM(4,4) technique

It is significant to point out that in explicit RKAHeM(4,4)
technique with error control program, we choose error esti-

mate as the difference between the fourth order Arithmetic
Mean (RKAM) method and the Heronian Mean (HeM)
method. From Eq. (25), the error estimation (ERREST) can

be expressed as (see, Senthilkumar and Paul, 2012)

ERREST ¼ YAM � YHeMj j � 121; 809

1; 658; 880
: ð26Þ
5. Results and discussion

We have determined the structures of the protoplanets formed
by disk instability in the mass range 0.3–10 Jovian masses in
their initial stages under approximate zero boundary condition

by the novel explicit RKAHeM(4,4) method. Following Paul
and Bhattacharjee (2013), the protoplanets have been assumed
to be spheres of solar composition each of which is in a steady

state of quasi-static equilibrium, where the energy equation
assumes the conduction–radiation heat transport. Fig. 1
depicts temperature profile inside the protoplanets with masses

0.3MJ, 1 MJ, 3 MJ, 5MJ, 7 MJ and 10 MJ. It can be seen from
the figure that the more massive the object the more hotter is
its interior. The distribution for the temperature that came
out through the study can be found to be in excellent agree-

ment with the ones presented in Paul and Bhattacharjee
(2013). Our presented temperature distribution for the proto-
planets with prescribed masses and radii can also be found

to be compared well with the ones presented in Helled and
Schubert (2008), Nayakshin (2010), Senthilkumar and Paul
(2012). Fig. 2 depicts our calculated results for pressure distri-

bution inside the protoplanets with the prescribed masses. It
can be realized from the Fig. 2 that from a point little depth
of the surface down to the core region, the pressures at a cor-
responding depth inside the protoplanets increase with their



Table 1 Comparative distribution of thermodynamic variables inside a 1 Jupiter mass protoplanet.

r/R Classical 4th order Runge–Kutta method New explicit RKAHeM(4,4) algorithm

P (dyne cm�2) T (�K) q (gm cm�3) P (dyne cm�2) T (�K) q (gm cm�3)

0.99 3.8954527 · 10�07 1.6102493 · 1000 6.4512556 · 10�15 3.8954527 · 10�07 1.6102493 · 1000 6.4512556 · 10�15

0.90 5.4656957 · 10�03 1.7901342 · 1001 8.1421533 · 10�12 5.4657120 · 10�03 1.7901356 · 1001 8.1421716 · 10�12

0.80 1.3290122 · 10�01 4.0709788 · 1001 8.7058176 · 10�11 1.3290142 · 10�01 4.0709803 · 1001 8.7058273 · 10�11

0.70 1.0706637 · 1000 7.0401377 · 1001 4.0555650 · 10�10 1.0706647 · 1000 7.0401392 · 1001 4.0555678 · 10�10

0.60 5.6569018 · 1000 1.0969770 · 1002 1.3751831 · 10�09 5.6569052 · 1000 1.0969772 · 1002 1.3751838 · 10�09

0.50 2.4262787 · 1001 1.6205682 · 1002 3.9925723 · 10�09 2.4262796 · 1001 1.6205684 · 1002 3.9925736 · 10�09

0.40 9.2395087 · 1001 2.3108465 · 1002 1.0662455 · 10�08 9.2395105 · 1001 2.3108466 · 1002 1.0662457 · 10�08

0.30 3.2328971 · 1002 3.1822282 · 1002 2.7091933 · 10�08 3.2328972 · 1002 3.1822281 · 1002 2.7091934 · 10�08

0.20 1.0297073 · 1003 4.1622901 · 1002 6.5972184 · 10�08 1.0297070 · 1003 4.1622896 · 1002 6.5972177 · 10�08

0.10 2.7969290 · 1003 4.9796902 · 1002 1.4978163 · 10�07 2.7969272 · 1003 4.9796890 · 1002 1.4978157 · 10�07

0.01 1.0954682 · 1004 6.1391756 · 1002 4.7584900 · 10�07 1.0954650 · 1004 6.1391687 · 1002 4.7584812 · 10�07

Table 2 Comparison of LTE, GTE, EE for the fourth order four stage explicit RK-embedded HeM technique.

Explicit RK-embedded

technique

Local truncation error (LTE) Global truncation error (GTE) Error estimation (EE)

Explicit RK-embedded

arithmetic Heronian

mean (present paper)

LTEAM � LTEHeM 6 ð 121;8091;658;880ÞP
4 �Qh5

¼ jyAMnþ1 � yHeM
nþ1 j 6

121;809
1;658;880P

4 �Qh5
jenj 6 ð h4

1;658;880LDÞ �MðeDLðxn�x0Þ � 1Þ ERREST ¼ jYAM � YHeMj � 121;809
1;658;880
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increasing masses, except for the protoplanet with mass 10 MJ.
The pressure distribution obtained in our investigation agrees

fairly well with the corresponding result presented in Paul and
Bhattacharjee (2013) but the central pressures obtained in the
investigation of corresponding protoplanets can be found to be

higher than the ones presented in Helled and Schubert (2008),
Senthilkumar and Paul (2012). It is to be noted here that
Helled and Schubert (2008) assumed the initial protoplanets

to be convective with a thin outer radiative zone, while
Senthilkumar and Paul (2012) assumed such protoplanets to
be fully convective, which is consistent with Helled et al.
(2005). Fig. 3 shows our mass distribution inside the proto-

planets with the assumed masses. It is obvious from the figure
that in the protoplanetary atmosphere, the matter is not dis-
tributed uniformly and gravitational stratification may be the

reasons of variation in parameters. This is as to be expected
for initially formed unsegregated protoplanets. Fig. 4 depicts
our calculated density distribution inside the protoplanets hav-

ing assumed masses. It is obvious from the figure that the more
massive the protoplanet, the greater the density of the material
except for the protoplanets with masses 0.3MJ and 10 MJ. The
results in this case are also found to be in general agreement

with the ones found in Paul and Bhattacharjee (2013). But
our study presents centrally dense and surfacically rarer proto-
planets with the ones presented in Senthilkumar and Paul

(2012). The distribution of thermodynamic variables obtained
employing the new explicit RKAHeM(4,4) method with the
ones obtained with the classical Runge–Kutta method for a

1 Jupiter protoplanet is presented in Table 1 for direct compar-
ison. It is obvious from Table 1 that the distribution of the
thermodynamic variables obtained in the study inside a 1

Jupiter mass protoplanet agrees fairly well with the ones
obtained with classical Runge–Kutta method. The distribution
of thermodynamic variables inside other protoplanetary
masses can also be found to be compared well with the results
obtained with the classical Runge–Kutta method. But to show
all results in tabular form would only be space consuming,

they have been avoided. Likewise Paul and Bhattacharjee
(2013), we have also tested our results with the ones obtained
with varying end points. The results are found to be insensitive

to the choice of the end points. However, the system possesses
unique solution suggesting that the protoplanetary formation
via disk instability is a reasonable hypothesis. Finally,

Table 2 shows the comparison of the Local Truncation Error
(LTE), the Global Truncation Error (GTE) and the Error
Estimation (EE) of a newly proposed explicit RKAHeM(4,4)
method.
6. Conclusion

In order to determine the distribution of thermodynamic vari-
ables inside extra-solar protoplanets, formed by gravitational

instability, at their initial stages, a newly proposed explicit
RKAHeM(4,4) algorithm is employed, verified and the
obtained results are validated. A general brief theoretical
framework for the proposed numerical method is stated in

addition to pseudo code followed by error estimation descrip-
tion. The results based on newly proposed embedded Runge–
Kutta fourth order with four stages arithmetic Heronian mean

method are found to be optimal and efficient in comparison
with the ones obtained with the classical Runge–Kutta
method. In our calculation, the effect of radiative heating

has not been considered. Also, we have used the Clapeyron
equation, which is valid for gas at not very high pressure.
But our research work concentrates on the investigation of ini-

tial structures of protoplanets formed via disk instability con-
sidering an appropriate equation of state valid for
protoplanetary atmosphere taking into the factor mentioned
to see how the results compare our calculated results.
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