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Extrapolating the effect of deleterious nsSNPs in
the binding adaptability of flavopiridol with CDK7
protein: a molecular dynamics approach
C George Priya Doss1*, N Nagasundaram1, Chiranjib Chakraborty2,3, Luonan Chen4,5 and Hailong Zhu2*

Abstract

Background: Recent reports suggest the role of nonsynonymous single nucleotide polymorphisms (nsSNPs) in
cyclin-dependent kinase 7 (CDK7) gene associated with defect in the DNA repair mechanism that may contribute to
cancer risk. Among the various inhibitors developed so far, flavopiridol proved to be a potential antitumor drug in
the phase-III clinical trial for chronic lymphocytic leukemia. Here, we described a theoretical assessment for the
discovery of new drugs or drug targets in CDK7 protein owing to the changes caused by deleterious nsSNPs.

Methods: Three nsSNPs (I63R, H135R, and T285M) were predicted to have functional impact on protein function by
SIFT, PolyPhen2, I-Mutant3, PANTHER, SNPs&GO, PhD-SNP, and screening for non-acceptable polymorphisms (SNAP).
Furthermore, we analyzed the native and proposed mutant models in atomic level 10 ns simulation using the
molecular dynamics (MD) approach. Finally, with the aid of Autodock 4.0 and PatchDock, we analyzed the binding
efficacy of flavopiridol with CDK7 protein with respect to the deleterious mutations.

Results: By comparing the results of all seven prediction tools, three nsSNPs (I63R, H135R, and T285M) were
predicted to have functional impact on the protein function. The results of protein stability analysis inferred that
I63R and H135R exhibited less deviation in root mean square deviation in comparison with the native and T285M
protein. The flexibility of all the three mutant models of CDK7 protein is diverse in comparison with the native
protein. Following to that, docking study revealed the change in the active site residues and decrease in the
binding affinity of flavopiridol with mutant proteins.

Conclusion: This theoretical approach is entirely based on computational methods, which has the ability to identify
the disease-related SNPs in complex disorders by contrasting their costs and capabilities with those of the
experimental methods. The identification of disease related SNPs by computational methods has the potential to
create personalized tools for the diagnosis, prognosis, and treatment of diseases.
(Continued on next page)
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Lay abstract: Cell cycle regulatory protein, CDK7, is linked with DNA repair mechanism which can contribute to
cancer risk. The main aim of this study is to extrapolate the relationship between the nsSNPs and their effects in
drug-binding capability. In this work, we propose a new methodology which (1) efficiently identified the deleterious
nsSNPs that tend to have functional effect on protein function upon mutation by computational tools, (2) analyze d
the native protein and proposed mutant models in atomic level using MD approach, and (3) investigated the
protein-ligand interactions to analyze the binding ability by docking analysis. This theoretical approach is entirely
based on computational methods, which has the ability to identify the disease-related SNPs in complex disorders
by contrasting their costs and capabilities with those of the experimental methods. Overall, this approach has the
potential to create personalized tools for the diagnosis, prognosis, and treatment of diseases.
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Introduction
Cyclin-dependent kinase 7 (Cdk7), a regulatory enzyme for
the initiation of cell cycle progression, was initially identi-
fied from a search for cDNA encoding protein kinase(s) re-
lated to Cdk1 [1]. For activation of Cdk1, Cdk2, Cdk4, and
Cdk6, the catalytic subunit of the Cdk-activating kinase re-
quires the association of Cdk7 with a regulatory subunit,
cyclin H and the phosphorylation of a conserved threonine
residue at position 170 within its own T loop [2,3]. Subse-
quently, both CDK7 and the partner cyclin H were found
to be associated with the general transcription factor
TFIIH, suggesting additional roles of CDK7 in transcrip-
tion. Given that CDK7 activates the main CDKs at different
cell cycle transitions, it is possible to assume that the over
expression of CDK7 also contributes to breast cancer cell
proliferation [4]. In addition, CDK7 plays a vital role in hu-
man DNA repair mechanism (in NER pathway). Evidences
support the hypothesis that mutations are early events in
carcinogenesis, so the defects in DNA repair probably rep-
resent a high risk factor for many types of cancer [5,6].
Consistent with these actions, CDK7 was treated as a po-
tent therapeutic target to inhibit the activity of cell cycle in
cancerous cells. Currently, in phase-III trials for chronic
lymphocytic leukemia, flavopiridol a potential antitumor
drug has shown better inhibitory effect towards CDK7 [7].
It is known that flavopiridol decreases transcription by
inhibiting CDK7 [8], which is responsible for the phosphor-
ylation of the C-terminal domain of the largest subunit of
RNA polymerase II, an activity essential for both transcrip-
tional initiation and elongation [9,10]. Analyzing the human
genetic variation promises to have a significant impact on
the ability to understand the basis of individual variation in
response to therapeutics. As we are entering the age of
“personalized genomics”, it is expected that the knowledge
of human genetic variations could provide a basis for un-
derstanding the differences in susceptibility to diseases and
designing individualized therapeutic treatments [11,12]. It
was estimated that 90% of human genetic variations were
caused by single nucleotide polymorphisms (SNPs) [12].
For example, changes in amino acids of proteins, such as

the nonsynonymous single nucleotide polymorphisms
(nsSNPs) in the gene coding regions could account for
nearly half of the known genetic variations linked to human
inherited diseases [13]. The nsSNP might change the physi-
cochemical property of a wild-type amino acid that affects
the protein stability and dynamics and disrupts the
interacting interface, protein-small molecule, and protein-
protein interaction [14-17]. Taken together, single mutation
may affect binding ability of the inhibitory molecule. Recent
progress in high throughput human genome research has
provided a wealth of information detailing tens of millions
of human genetic variations between individuals, including
SNPs [11,18]. Numerous efforts have been carried out to il-
lustrate how nsSNPs produce deleterious effects on the sta-
bility and function of a protein [19-23]. Given the large
number of SNPs, a detailed experimental study on the ef-
fect of mutation in biological function is a daunting task.
An effective alternative is the use of in silico methods.
These approaches were based on the biochemical severity
of the amino acid substitution, as well as the protein se-
quence and/or structural information, which can provide a
more feasible method for phenotype prediction.
Recently, more sophisticated in silico algorithms were de-

veloped to predict the impact of amino-acid substitutions
on protein structure and function. Some of the variation
tolerance methods follow a similar procedure, in which a
missense variant is first labeled with properties, related to
the damage it may cause to the protein structure or func-
tion [24]. However, in other methods, predictions are based
on the difference in the free energy of unfolding (DDG) be-
tween a native-type and mutant protein. The methods that
use energy functions can be subdivided into physical, statis-
tical, and the empirical potential approaches [25]. The ul-
timate goal of all these approaches is to determine the
deleterious nsSNPs from the neutral ones. In general, in
silico methods can provide a feasible and the high-
throughput way to determine the impact of large numbers
of nsSNPs on protein function. To understand the atomis-
tic level changes and the dynamic behavior of the molecule
with respect to the potential mutations, we conducted
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molecular dynamics (MD) simulations analysis. MD simu-
lations can help us understand the effects of mutation on
protein structure, which allow exploring how one amino
acid substitution can create a ripple effect throughout the
protein structure. Offman et al. found a strong correlation
between MD analysis and the experimental work on the
molecular basis of the most common protein upon N370S
mutation in causing Gaucher's disease [26,27]. Thus, we as-
sume that MD simulation analysis might provide more reli-
able structural information upon CDK7 mutations.
Although deleterious nsSNPs of CDK7 gene have re-

ceived considerable attention from experimental biolo-
gists, the functional consequence of most of the nsSNPs
in CDK7 at the structural level is still unknown. The main
goal of this in silico analysis is to determine the most dele-
terious variants in CDK7 gene. In this context, publicly
available in silico tools such as Sorting Intolerant From
Tolerant (SIFT; J. Craig Venter Institute, Rockville, USA)
[28], Polymorphism Phenotyping (PolyPhen) version 2
[29], PANTHER [30], I-Mutant3 [31], SNPs&GO (Bol-
ogna Biocomputing Group, Bologna, Spain) [32], predictor
of human deleterious single nucleotide polymorphisms
(PhD-SNP; Bologna Biocomputing Group) [33], and
screening for non-acceptable polymorphisms (SNAP; Bol-
ogna Biocomputing Group) [34] were used to analyze the
nsSNPs in CDK7 gene. As a next step, we subjected MD
simulation study in the native and mutant models of
CDK7 proteins using GROMACS 4.5.3 package [35,36].

MD simulations will reveal the level of structural confor-
mations changes with respect to the incorporation of dele-
terious mutations in CDK7 protein. Finally, the binding
capability of CDK7 inhibitor, flavopiridol, was analyzed
with respect to the structural mutations. Docking study
was carried out with the help of AutoDock4 (The Scripps
Research Institute, La Jolla, USA) and PatchDock [37-39].
The proposed protocol is represented schematically in
Figure 1.

Results
Dataset
Dataset for the evaluation of potential nsSNPs in CDK7
gene was retrieved from dbSNP [40] and SwissProt [41]
database. We selected 14 nsSNPs for further consideration,
and their associated biomedical informations were re-
trieved from OMIM (Johns Hopkins University, Baltimore,
USA) [42], PubMed, and Swiss-Prot database. Related ex-
perimental data about the CDK7 protein and Protein Data
Bank (PDB) structural information with PDB ID 1UA2
[43] were obtained from Swiss-Prot database and PDB,
[44] respectively. The ligand molecule, flavopiridol, was
obtained from Drug Bank database [45].

Prediction of deleterious nsSNPs by in silico tools
Identifying the deleterious nsSNPs has become possible
with the aid of improved in silico algorithms. Here, we ana-
lyzed 14 nsSNPs of CDK7 gene with seven different in

Figure 1 Outline of proposed protocol for nsSNPs analysis. This protocol explains the different steps followed in nsSNP analysis via
experimental (grey color) and computational methods. Box displayed in orange color indicates the effectiveness of computational over
experimental methods.
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silico tools specifically SIFT, PolyPhen2, I-Mutant3, PAN-
THER, SNPs&GO, PhD-SNP, and SNAP to determine the
protein structural and functional significance. Table 1 dis-
plays the distribution of the deleterious and neutral varia-
tions of CDK7 gene with the corresponding amino acid
substitution. SIFT makes inferences from sequence similar-
ity using mathematical operations. SIFT constructs a mul-
tiple sequence alignment (MSA) and considers the position
of the missense variants. Based on the amino acids
appearing at each position in the MSA, SIFT calculates the
probability and classifies a missense variant ‘tolerated’.
SIFT can be applied not only to naturally occurring nsSNPs
but also to identify artificial missense mutations. Among
the 14 nsSNSPs analyzed by SIFT, six were identified as
deleterious which obtained a SIFT score ≤0.05. PolyPhen2
utilizes a combination of sequence and structure-based at-
tributes for the description of an amino acid substitution,
and the effect of mutation is predicted by a native Bayesian
classifier. The sequence-based features include position
specific independent count (PSIC) scores, MSA proper-
ties, and position of mutation in relation to domain
boundaries as defined by Pfam [46]. The structure-derived
features are solvent accessibility, changes in solvent acces-
sibility for buried residues, and crystallographic B-factor.
By PolyPhen2, nine nsSNPs were predicted as probably
and possibly damaging, having the effect on protein struc-
ture and function of CDK7 protein; the remaining five
were classified as benign which obtained score less than
0.15. In order to verify the prediction accuracy of SIFT
scores, we used hidden Markov model (HMM)-based evo-
lutionary approach PANTHER to verify the effect on pro-
tein function upon a single point mutation. Out of 14
nsSNPs, 7 were designated as deleterious with a score

of ≤−3. In order to improve overall prediction accuracy,
we used I-Mutant3, a support vector machine-based sta-
bility prediction tool. A score less than ‘0’ means the muta-
tion decreases the stability. The smaller the score, the more
certain is the prediction. Conversely, a score more than ‘0’
means mutation increases the protein stability. Among the
14 nsSNPs of the CDK7 gene, 13 nsSNPs showed negative
DDG values, were considered to be less stable and deleteri-
ous. The remaining one nsSNP showed a positive DDG
value and classified as non-deleterious. SNPs&GO is an
support vector machines (SVM) classifier based on vari-
ation type and sequence environment information, se-
quence profiles taken from MSAs, predictions from the
program PANTHER, and a function-based log-odd score
describing information about protein function defined by
Gene Ontology (GO) terms. SNPs&GO predicted four
nsSNPs of CDK7 gene, which are related to a disease condi-
tion. SNAP is a neural network-based method that uses in
silico derived protein information (e.g., secondary structure,
conservation, solvent accessibility, etc.) in order to make
predictions regarding functionality of the mutated proteins.
The network takes protein sequences and lists of mutants
as input, returning a score for each substitution. These
scores can then be translated into binary predictions of ef-
fect (present/absent) and reliability indices. SNAP screened
four nsSNPs of CDK7 gene as non-neutral, and it may
cause phenotypic changes. PhD-SNP is a prediction method
based on single sequence profile-based SVM, trained on
Swiss-Prot variants. The single sequence SVM classifies the
missense variant to be pathogenic or neutral, based on the
nature of substitution and properties of the neighboring se-
quence environment. PhD-SNP classified four nsSNPs as
deleterious. Comparing the results of all seven prediction

Table 1 List of nsSNPs showing deleterious/non-deleterious scores by SIFT, PolyPhen2, I-Mutant3, PANTHER SNP&GO,
SNAP and PhD-SNP

Rs IDs and variants information Amino acid position SIFT Polyphen2 I-Mutant3 PANTHER SNPs&GO SNAP PhD-SNP

rs193107048 V5M 0.84 0.039 −0.7 −4.76277 Neutral Neutral Neutral

rs145665301 I43L 0.01 0.765 −0.58 −1.92299 Neutral Neutral Neutral

rs137960738 I63R 0.00 1.000 −1.49 −8.80751 Disease Non- neutral Disease

rs17849960 Q130R 0.5 0.000 0.09 −4.57361 Neutral Neutral Neutral

VAR_023118 G163A 0.12 0.849 −0.94 −4.76811 Neutral Neutral Neutral

rs201535403 N166S 0.21 0.014 −0.95 −2.03457 Neutral Neutral Neutral

rs180962343 V174A 0.07 0.417 −2.26 −2.27717 Neutral Neutral Neutral

rs142560750 H135R 0.00 1.000 −0.02 −11.54699 Disease Non-neutral Disease

rs202024894 L229W 0.00 0.98 −0.04 −4.40368 Disease Non- neutral Disease

rs201088666 P238L 0.00 0.997 −0.04 −2.34273 Neutral Neutral Neutral

rs201381439 M240I 0.12 0.11 −0.03 −1.56205 Neutral Neutral Neutral

rs34584424 T285M 0.00 1.000 −0.22 −8.58685 Disease Non-neutral Disease

rs200939840 R298Q 0.32 0.006 −0.63 −0.67728 Neutral Neutral Neutral

rs200143477 T332A 0.80 0.000 −0.23 −0.20296 Neutral Neutral Neutral

Highly deleterious by SIFT, PolyPhen2, I-Mutant3, PANTHER, SNPs&GO, SNAP, and PhD-SNP are italicized.
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tools, three nsSNPs at corresponding amino acid position
I63R, H135R, and T285M with a highest SIFT tolerance
index of 0.00 and PSIC score difference 1.0 were selected
for structural analysis.

Analysis of secondary structure and surrounding amino
acid changes
Structural information could play a vital role in unveiling
the molecular mechanisms leading to a disease. Based on
this, we proposed modeled structures for all the three mu-
tants (I63R, H135R, and T285M) of CDK7 protein using
PyMOL (Schrödinger, Bangalore, India) [47]. Substitution
of an amino acid may produce changes at the structural
level. Changes in the secondary structure with respect to
the substituted amino acid were analyzed in PDBsum
(Cambridge, UK). Additional file 1: Figure S1 displays the
secondary structural elements of the native and mutant
models. The number of secondary structure elements such
as beta sheets, beta hairpins, beta bulges, strands, helices,
helix-helix interactions, beta turns, and gamma turns was
calculated for both the native and mutant models (Table 2).
It has to be noted that the observed numbers of secondary
structural elements are equal in both native and mutant
models except the turns. There was a slight increase in the
number of beta turns in all the three mutant models. The
native protein exhibited only 30, while mutants obtained 31
beta turns. Substitution of arginine in the modeled H135R
protein leads to decrease in the number of gamma turns
as six, whereas the native and remaining mutants I63R
and T285M obtained seven gamma turns. Further, the
surrounding amino acid residue changes were visualized
from the point of mutational position. A residue change
within 4A° surroundings was observed through PyMOL
(Figure 2A–C). In addition, the number of cation-pi
interacting residues for both the native and three mutants
was calculated using Protein Interactions Calculator server
[48]. A cation-pi interaction plays a vital role in maintaining
the protein structural stability and is recognized as an im-
portant non-covalent binding interaction in structural biol-
ogy [49,50]. Change in the secondary structural elements
may bring about some changes in the cation-pi interacting
residues in the mutant models. It has to be noted that the
number of intramolecular cation-pi interactions in the
native protein is seven. The substitution of deleterious
amino acid increased the number of cation-pi interactions

in the mutants I63R, H135R, and T285M as eight, nine, and
eight, respectively (Additional file 2: Table S1). Cation-pi
interacting residue distances and angles varied in mutant
model showed the deleterious effects of substituted amino
acid. Overall, the structural analysis results inferred that the
three deleterious mutations had brought a drastic change in
the CDK7 protein, and it could affect the protein function.

Docking analysis
In vitro studies of flavopiridol showed inhibitory activity to-
wards CDK7 protein and lead to programmed cell death in
cancerous cells [51]. Substitution of deleterious amino acid
in CDK7 protein may affect the binding ability of CDK7
with flavopiridol. This has to be analyzed to improve the
potentiality of the drug to inhibit CDK7 protein. Hence, we
analyzed the binding ability of flavopiridol with native and
mutant models of CDK7 protein using in silico docking
tool, Autodock4 and PatchDock [39]. Before entering into
docking analysis, we evaluated the binding sites of native
CDK7 protein. Flavopiridol binds at the ATP binding site of
the native CDK7 protein and made contact with 12 amino
acid residues. Twelve residues specifically GLY21, GLN22,
PHE23, ALA24, VAL26, LYS41, PHE91, ASP97, ASN141,
LEU144, ALA154, and SER161 were involved in protein-
ligand interaction. This information was in concordance
with the study conducted by Carlson et al. [51] and
Worland et al. [52]. In their analysis, it was observed that
flavopiridol directly inhibits CDK7 by competing for to the
ATP binding site. In addition, these 12 residues were also
involved in protein-ATP interaction observed by Lolli et al.
[2] in their crystallography analysis. In the mutant models
(I63R, H135R, and T285M), we observed the number of
contact residues as six, seven, and six, respectively
(Additional file 3: Table S2). Decrease in the number of
residue contacts will definitely affect the complementarities
between mutant protein and flavopiridol compound as
shown in Figure 3A–D. Further, we observed the inter-
action of flavopiridol with native and mutant proteins by
LIGPLOT (Additional file 4: Figure S2). Shape complemen-
tarity and non-covalent interactions were believed to drive
protein-ligand interaction. Non-covalent bonds such as
hydrogen bonds, van der Waals contacts and electrostatic
forces are the dynamic forces involved in protein-ligand in-
teractions. Calculating the interaction energies of non-
covalent bonds is a key point in understanding the binding

Table 2 The number of secondary structure element in the native and mutant structures of CDK7 protein

Native and mutant models Sheets Beta hairpins Beta bulges Strands Helices Helix-helix interacts Beta turns Gamma turns

Native 2 5 4 8 12 15 30 7

I63R 2 5 4 8 12 15 31 7

H135R 2 5 4 8 12 15 31 6

T285M 2 5 4 8 12 15 31 7

Changes in the secondary elements are italicized.
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efficiency of a ligand molecule. The number of hydrogen
bonds formed between protein and ligand, and van der
Waals interacting energies and electrostatic interacting en-
ergies was computed using Autodock4. The binding energy
and the non-covalent bond interaction energy between

CDK7 protein (native and mutant) and flavopiridol mol-
ecule were calculated and shown in Table 3. In the native
complex, the significant contribution of van der Waals and
electrostatic energy was observed as −9.18 and −9.07 kcal/
mol, respectively. On the contrary, mutant models I63R,

Figure 2 Change in the surrounding amino acid residues in CDK7 protein by the substitution of deleterious amino acid. (A) The native
type isoleucine residue (green) at position 63 and the surrounding residues. Substitution of I63 residue with arginine (red) brings more
surrounding residues in contact at position 63. (B) The native type histidine residue (green) at position 135 and its surrounding amino acid
residues. Substitution of arginine (red) at position 135 brings more amino acids in the surrounding region. (C) Native type residue threonine
(green) at position 285 and its surrounding amino acid residues. Substitution of methionine (red) at position 285 brings two more residues val192
and met196 within the 4 A0 surrounding.
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Figure 3 (See legend on next page.)
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H135R, T285M interacting with flavopiridol showed an in-
crease in van der Waals and electrostatics energies as
−5.52, −5.53, and −5.57, and −0.65, −0.6, and −0.68 kcal/
mol, respectively. The total ligand receptor binding energy
exhibited by the native, I63R, H135R, and T285M com-
plexes were −8.27, −5.57, −5.53, and −5.65 kcal/mol, re-
spectively. Lower binding energy of native complex
indicates better interaction and good compatibility with the
flavopiridol compound.
In order to determine the consistency in docking analysis,

in addition to Autodock4 analysis, we performed docking
in PatchDock [39]. Docking was performed between the
drug flavopiridol with both the native type and mutant
modeled structures of CDK7 protein to find out the bind-
ing efficiency in the form of PatchDock score and atomic
contact energy (ACE) values (Table 4). In this analysis, we
found that native type CDK7 protein obtained high
PatchDock score and ACE as 5,956 and −0.25, respectively.
But, all the three mutant structures (I63R, H135R, and
T285M) obtained less PatchDock scores (4,148, 4,136, and
4,978) and high ACEs (8.98, 19.92, and 21.05). Notably,
high PatchDock score and less ACE value were obtained in
the native complex which is considered as a good docked
complex than those of other three mutant complexes. This
implies the concordances of computational algorithms in
docking analysis and gives a ‘theoretical quantitative’ assess-
ment on the binding efficiency of CDK7 mutant protein
with flavopiridol.

Molecular dynamics, structural stability, and flexibility
analysis
Molecular dynamic simulations studies were carried out to
unravel the atomic level changes in the CDK7 protein with

respect to the time scale. The overall protein stability
changes upon mutation were evaluated by root mean
square deviation (RMSD) values. We calculated the back-
bone RMSD for all the atoms from the initial structure, and
this is considered to be a primary criterion to measure the
convergence of the protein system concerned. The back-
bone RMSD was calculated for both the native and mutant
models from the appropriate trajectory files (Figure 4). We
observed a significant structural deviation in the mutant
proteins I63R, H135R, and T285M when compared to na-
tive CDK7 protein structure. All the four structures
attained a significant deviation at last 5 ns. The native and
T285M mutant structure obtained a mean RMSD of ap-
proximately 0.35 nm in the last 5 ns, and mutant models
I63R and H135R exhibited a deviation range from about
0.25 to 0.3 nm. This difference in the deviation range in
mutant model explains the stability change and reflects the
impact of substituted amino acid in the protein structure.
In order to determine the structural flexibility of both the
native and mutant models of CDK7 protein, we calculated
the root mean square fluctuation (RMSF) values from the
10 ns simulation trajectory data. The RMSF values of native
and mutant models are shown in Figure 5. In the entire 10
ns simulation period, native residues from approximately
25 to 150 nm showed a high fluctuation in comparison
with I63R, H135R, and T285M mutant models. In the
remaining residue range from around 150 to 260 nm, the
mutant model I63R exhibited high fluctuation. Overall,
RMSFs of all the mutant models were significantly deviated
from the native structure in the entire simulation period. A
change in the RMSFs specify the mode of flexibility changes
in the mutant models and reflects the impact of deleterious
amino acid substitution in CDK7 protein.

Table 3 Binding and non bonded interaction energies of native and mutant proteins of CDK7 with flavopiridol

Proteins Binding
energy

van der Waals
energy

Electrostatic
energy

H-bond
between
protein
and
ligand

Inhibition
constant

Inter molecular
energy

Internal
energy

Torsional
energy

Ref
RMS

(Kcal/mol) (Kcal/mol) (Kcal/mol) (Kcal/mol) (Kcal/mol) (Kcal/mol)

Native −8.27 −9.18 −9.07 ASP97:
OD1

869.56 nM −8.86 −0.85 0.6 38.92

I63R −5.57 −5.52 −0.65 GLN130:
OE1

82.18 μM −6.17 −0.7 0.6 8.55

SER70: O

H135R −5.53 −5.53 −0.6 GLN130:
OE1

87.9 μM −6.13 −0.68 0.6 8.34

T285M −5.65 −5.57 −0.68 GLN130:
OE1

71.61 μM −6.25 −0.56 0.6 8.58

(See figure on previous page.)
Figure 3 Interaction of flavopiridol with native and mutant models of CDK7 protein. (A) Flavopiridol binds deeply with native CDK7
protein and makes contact with 12 amino acid residues. (B) Substitution of I63 with arginine reduced the binding affinity of flavopiridol in
mutant model I63R. (C) Substitution of H135 with arginine, results in weak interaction of ligand flavopiridol with H135R model. (D) Flavopiridol
binds shallowly on the surface of mutant model T285M and the number of amino acid contact become reduced.
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Effects of deleterious mutations in hydrogen bonding,
salt bridges and electrostatic potential of CDK7 protein
Hydrogen bonds and salt bridges are the key parameters in
determining the stability of protein [53,54]. Non-
synonymous SNPs can affect wild type protein function by
affecting hydrogen bond formation [55-57]. Figure 6 de-
picts the number of hydrogen bonds formed in native and
mutant structures of CDK7 protein. Native structure of
CDK7 protein exhibits an average number of approxi-
mately 160 to 200 hydrogen bonds throughout the 10 ns
simulation period. Mutant models I63R and H135R
obtained more close number of hydrogen bonds, about
160 to 195 in comparison with native structure. Interest-
ingly, T285M mutant model showed less number of hydro-
gen bonds around 160 to 190, when compared with the
native and remaining two mutant models. Overall, it has to
be noted that all the three mutant models obtained less
number of hydrogen bonds in comparison with the native
protein. The reduction in the number of hydrogen bonds
in mutant proteins might be due to the incorporation of
deleterious amino acid, and it may destroy the ability of
hydrogen bond formations in CDK7 protein.
Salt bridge distances of CDK7 protein in both native

and mutant proteins were calculated from the 10 ns tra-
jectory data and shown in Additional file 5: Figure S3. In

a period of about 1,000, 5,000, and 7,000 ps, native pro-
tein obtained a low salt bridge distance of approximately
0.2 nm and maintained an average range distance
around 0.45 nm throughout the 10-ns simulation period.
Two mutant models (I63R and H135R) maintained a
similar distance like the native protein. The mutant
model T285M exhibited high range of salt bridge dis-
tance in the maximum simulation period when com-
pared to the native, I63R, and H135R structures. From
this analysis, we conclude that salt bridges are more
stable in I63R and H135R mutant models when com-
pared to the mutant model T285M.

Discussion
The central objective in molecular biology and population
genetics is to identify and characterize the nsSNPs that are
functionally related from those that are not. This under-
standing not only provides insight into cancer biology but
also highlights the anticancer therapeutic targets and diag-
nostic markers. NsSNPs in coding region can lead to
amino acid change. This can lead to alterations in protein
function and account for susceptibility to disease and al-
tered drug response. Identification of deleterious nsSNPs
from tolerant nsSNPs is ideal for analyzing individual sus-
ceptibility to disease, understanding the pathogenesis of

Table 4 PatchDock scores and ACE values of CDK7 wild type and mutant type complexes

Native and mutant proteins PatchDock score Area ACE Kcal/mol

Native 5965 667.90 −0.25

I63R 4148 514.50 8.98

H135R 4136 594.30 19.92

T285M 4978 575.30 21.05

Figure 4 Backbone RMSD of wild type and mutant structure of CDK7 protein. The ordinate is RMSD (nm), and the abscissa is time (ps).
Black, red, green, and blue lines indicate native, I63R, H135R, and T285M mutant structures, respectively.
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disease, identifying molecular targets for drug treatment,
and conducting individualized pharmacotherapy. Several
experimental studies were carried out to analyze the rela-
tionship between nsSNPs and drug response in cancer
treatments. Chambers et al. [58] reported the involvement
of nsSNPs in the modulation of protein structure and
function. Another finding by Giovannetti et al. [59] dem-
onstrated the role of nsSNPs in the DNA-repair protein to
be the potential biomarkers of primary resistance to
gemcitabine/cisplatin-based polychemotherapeutic agent
in the treatment of pancreatic cancer. In another analysis,
Wang and Moult [60] reported the role of nsSNPs in indi-
viduals by inducing or influencing the disease by affecting
protein-protein interactions, protein expression, alternative
splicing, stability, folding, and ligand binding or catalysis.

These mounting studies on nsSNPs assert their role in bet-
ter understanding the resultant phenotypic variations
among individuals with an endeavor towards new drug de-
sign and development. The exponential increase in the
number of SNPs makes the determination of biological sig-
nificance of each nsSNP by wet laboratory experiments im-
possible. Alternatively, in silico programs and statistical
methods may be used to predict the effects caused by mu-
tations and elucidate the underlying biological mecha-
nisms. However, in silico tools can be used to examine the
potentially deleterious nsSNPs that might affect important
drug targets before further investigation by wet laboratory
techniques. Previously, our group also identified and ana-
lyzed the effects of deleterious nsSNPs in several proteins
at structural and functional level and drug binding

Figure 5 Carbon alpha RMSF of wild type and mutant structure of CDK7 protein. The ordinate is RMSF (nm), and the abscissa represents
the residues. Black, red, green, and blue lines indicate the native, I63R, H135R, and T285M mutant structures, respectively.

Figure 6 Number of hydrogen bond formed in wild type and mutant structure of CDK7 protein. The ordinate is the number of hydrogen
bond and the abscissa is time (ps). Black, red, green, and blue lines indicate the native, I63R, H135R, and T285M mutant structures, respectively.
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capability using various in silico tools [61-63]. In this paper,
we performed a systematic in silico analysis to determine
the potential deleterious and functional nsSNPs in CDK7
protein along with molecular dynamics and docking study.
To determine the possible effects of nsSNPs in CDK7
gene, we employed seven widely used in silico tools
specifically SIFT, PloyPhen2, I-Mutant3, PANTHER,
SNPs&GO, SNAP, and PhD-SNP. SIFT predicted 6
(42.85%) nsSNPs as deleterious, PolyPhen2 identified 9
(64.28%) substitutions which affect protein structure
and function, I-Mutant3 identified 13 (92.85%) substi-
tutions which affected the stability of protein, PAN-
THER predicted 7 (50%) nsSNPs to be deleterious,
SNPs&GO, SNAP, and PhD-SNP identified 4 (28.57%)
nsSNPs related to the disease condition. The basis for
the predicting impact of nsSNPs in these seven algo-
rithms was different, and we would expect the out-
comes to occur in some ways, dissimilar. However, the
positive predictions that overlap all these seven in
silico tools would provide high reliability to behave
similarly. The difference in their predictions might be
due to the difference in features utilized by the
methods or the training dataset. Comparing the predic-
tion of all the seven methods, three nsSNPs (I63R,
H135R, and T285M) were identified as highly deleteri-
ous and selected for further structure and functional
investigations. To gain insight knowledge on the pro-
tein structure and what kind of harmful modulation
these mutations give rise, the CDK7 protein was ana-
lyzed by MD approach. In the 10 ns simulation trajec-
tory, different parameters were applied to analyze the
level of structural changes. Molecular stability and
flexibility changes were observed by RMSD and RMSF
analyses. Stability is a fundamental property affecting
the bimolecular function, activity, and regulation. Pro-
tein stability analysis results inferred that the stabilities
of I63R and H135R RMSD are less deviated than those
of the native and T285M protein. High or less devi-
ation implies increase or decrease in the stability of
protein. Hence, we believe that reduction in the stabil-
ity of I63R and H135R models could affect the CDK7
protein structure. From the fluctuation analysis, we ob-
served a decrease in the flexibility for all the three mu-
tant models in first half of the residues (approximately
25 to 150) and increase in flexibility for the mutant
model I63R in the rest of the residues (about 150 to
260). Increase in the flexibility could make the protein
more flexible, and decrease in the flexibility makes pro-
tein more rigid. Conformational changes are required for
many protein functions [64-66], but the conformational
flexibility and rigidity must be well balanced [67]. The flexi-
bility of all the three mutant models of CDK7 protein is
heterogeneous in comparison with the native protein. Thus,
from the RMSD and RMSF analysis, it is confirmed that

substitution of amino acid adversely affected the stability
and flexibility of CDK7 proteins. Beside the different elec-
trostatic interactions, the hydrogen bonds and the salt brid-
ges across the binding interfaces and in the protein
interiors serve as main contributors in maintaining the pro-
tein structural conformation. Furthermore, incorporation of
deleterious nsSNP might change the original electrostatic
formations and distances that could affect the protein na-
tive structure. Consequently, CDK7 native protein obtained
maximum of around 200 hydrogen bonds in the 10 ns
simulation period. The mutant models I63R, H135R, and
T285M obtained less hydrogen bonds approximately 195
and 190, respectively. The decrease in the number of
hydrogen bonds may affect the protein structure. In salt
bridge analysis, both the native and mutant models of
CDK7 protein maintained the different patterns of salt
bridge distances. Changes in the salt bridge distances reflect
the displacement of cationic or anionic side chain residues
in mutant models. In conclusion, we observed change in
bonding distance by hydrogen bonding and salt bridge ana-
lysis. Change in residue distance might lead to the loss of
thermodynamic stability. The main aim of this study is to
extrapolate the relationship between the nsSNPs and their
effects in drug-binding capability. In docking analysis, sev-
eral factors involved between protein-ligand interactions
were analyzed, and the analysis revealed the less binding
ability of mutant models. In particular, electrostatic poten-
tial showed substantial agreement with MD analysis. In
conclusion, the given in silico tools can indicate possible
deleterious nsSNPs in CDK7 protein. Then, MD studies
support the structural and conformational changes for the
CDK7 deleterious nsSNP incorporated model. Finally, the
binding ability of mutant model with the drug was validated
to facilitate the study of new drug-targets and discovery of
new drugs for CDK7 protein. In silico approaches reviewed
here generated not only a considerable amount of valuable
data but also the need for further validation by experimen-
tal methods such as in vitro binding/activity assays.

Materials and methods
Computational methods for finding deleterious variants
The ability to distinguish pathogenic and benign variants
from a pool of data is a daunting task. Recently, many com-
putational algorithms have been developed for the feasible
prediction of disease-associated variants. Some of the
methods classify deleterious variants according to the pre-
dicted pathogenicity, and other methods predict the dele-
terious variants based on protein-stability changes upon
mutation. We used both these approaches to identify dele-
terious variants in the CDK7 gene. Sequence evolutionary
information-based methods (SIFT, PANTHER, and PhD-
SNP) and the combination of protein structural and func-
tional parameter-based methods (PolyPhen2, I-Mutant3,
SNAP, and SNPs&GO) are some of the most reliable tools
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used for deleterious nsSNP prediction. SIFT, PANTHER,
PhD-SNP, SNAP, SNPs&GO, and I-Mutant3 give results in
two prediction categories, either tolerated or deleterious,
while PolyPhen2 gives results in three categories: benign
(probably lacking any phenotypic effect), possibly dam-
aging, and probably damaging (should affect protein func-
tion). Sequence-based prediction includes all types of effect
at the protein sequence level and can be applied to any hu-
man protein with known relatives. Structure-based ap-
proach is feasible to implement for proteins with 3D
structures. Analyzing deleterious nsSNPs by both sequence
and structure level has the added advantage of being able
to assess the reliability of the generated prediction results
by cross-referencing the results from both approaches.
SIFT predicts whether an amino acid substitution affects
protein function based on sequence homology and the
physical properties of amino acids. A SIFT score ≤0.05 indi-
cates that the amino acid substitution is intolerant or dele-
terious, whereas a score ≥0.05 is predicted as tolerant
[68,69]. PANTHER estimates the likelihood of a particular
nsSNP causing a functional impact on the protein. PAN-
THER uses HMM-based statistical modeling methods and
multiple sequence alignments to perform evolutionary ana-
lysis of coding nsSNPs. PANTHER subPSEC scores vary
from 0 (neutral) to about −10 (more likely to be deleteri-
ous). Protein sequences having subPSEC values ≤−3 is said
to be deleterious. PolyPhen2.0 uses sequence, phylogenetic,
and structural information in characterizing the deleterious
substitution. A mutation is classified as ‘probably damaging’
if the probabilistic score is above 0.85 to 1; mutation is clas-
sified as ‘possibly damaging’ if the probabilistic score is
above 0.15 to 0.84; the remaining mutations are classified
as benign. I-Mutant3 is an SVM-based method for the
automatic prediction of protein stability changes upon a
single point mutation. The output file shows the predicted
free energy change (DDG) which is calculated from the
unfolding Gibbs free energy change of the mutated protein
minus the unfolding free energy value of the native protein
(Kcal/mol). DDG >0 means that the mutated protein has
high stability and vice verse. PhD-SNP is a single sequence
SVM method (SVM sequence) that discriminates disease-
related mutations based on the local sequence environment
of the mutation at hand and a sequence-profile-based
SVM. The tool aims to predict whether an nsSNP causing a
single point protein mutation would be a neutral poly-
morphism or one that is deleterious. SNPs&GO is a
method based on SVMs, which predicts disease-associated
mutations from protein sequence, evolutionary informa-
tion, and functions as encoded in the gene ontology terms.
The use of functional GO terms is the main aspect of nov-
elty of this tool over other existing bioinformatics tools.
From the output of the programs, we only took the binary
prediction (pathogenic/neutral) into consideration without
taking into account any confidence values provided by

some of the programs. SNAP is based on neural network
and advanced machine-learning approach to predict the
functional effects of nsSNPs in proteins. It uses sequence,
functional and structural (secondary structure, solvent ac-
cessibility) annotations, and biophysical and evolutionary
(residue conservation within sequence families) characteris-
tics to predict a gain or loss in protein function. SNAP pre-
dicts whether the mutation is neutral or non-neutral with
expected accuracy.

Protein-ligand docking analysis
Protein-ligand interaction study was performed between
the native and mutant models of CDK7 protein with the
inhibiting compound, flavopiridol. In order to carry out
the docking analysis, we used the AutoDock4 suite as a
molecular-docking tool. AutoDock4 is a suite of programs
making it possible to predict how ligands bind to large
macromolecules. In this docking simulation, we used
semi-flexible docking protocols. Throughout the docking
simulation, the target protein is kept rigid. The ligand be-
ing docked is usually flexible and, therefore, explores an
arbitrary number of torsional degrees of freedom in
addition to the six spatial degrees of freedom spanned by
the translational and rotational parameters. AutoDock4
provides different optimization algorithms to search the
space of possible protein-ligand combinations, such as
simulated annealing, genetic algorithm (GA), and hybrid
evolutionary algorithms EA termed Lamarckian GA
(LGA) combining the GA with a local search strategy [70].
The Lamarckian Genetic Algorithm (LGA) was chosen to
search for the best conformers. The best docking solution
(minimum docked free energy) is reported by AutoDock
for each GA run. The total number of clusters and the
rank of each docking mode (cluster rank) are also reported
in the cluster analysis performed by AutoDock. Docking
modes were selected on the basis of two criteria: extent of
ligands associations with the key residues of the receptor
and the thermodynamic stability of the docked complex
so obtained. The lowest energy docking mode that would
conform to the above said two parameters was selected
from over 10 GA runs and hence 10 total docking mode
times. The grid boxes were centered on the root of macro-
molecule with spacing of 0.375 Å. The estimated binding
free energies were calculated using the following equation:
Ebinding = Eintermolecular + Einternal + Etorsional − Eunbound.
The unbound structure of ligand is the same as the bound
state (crystal structure), so the Einternal is equal to Eunbound,
and they do not contribute to the total energy. On the
other hand, the Etorsional is calculated based only on the
number of torsional bond in ligand, so this term remains
the same in each complex. It is clear that there are signifi-
cant differences between nine charge methods in the esti-
mated binding free energies, so the difference should come
from the Eintermolecular, including energies of dispersion/
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repulsion, hydrogen bonding (hbond), desolvation poten-
tial, and electrostatic interactions. The energy functions
used in docking simulations attempt to account for the
intermolecular energies between the protein and the lig-
and, as well as the intramolecular energies arising from the
ligand conformation itself. AutoDock4 uses a grid-based
approach to approximate the energy calculations used by
the energy function. During the evaluation of a candidate
conformation, the grids were used as lookup tables which
store the values used in the calculation, thus making the
overall docking simulation exceptionally fast. The Graph-
ical User Interface program ‘Auto Dock Tools’ was used to
prepare, run, and analyze the docking simulations. Kollman
united atom charges, solvation parameters, and polar hy-
drogens were added into the receptor PDB information for
the preparation of protein in docking simulation. Gasteiger
charges were added in the ligand PDB file.
In addition to the Autodock4 study, we used PatchDock

for docking native and mutant CDK7 proteins with the
drug flavopiridol. PatchDock performs docking based on
molecular shape representation and surface patch matching
plus filtering and scoring. PatchDock is more reliable be-
cause of its fast transformational search, which is driven by
local feature matching rather than brute force searching for
the six-dimensional transformation space. It further speeds
up the computational processing time by utilizing advanced
data structures and spatial pattern detection techniques,
such as geometric hashing and pose clustering. Protein and
the ligand molecule were given as input in performing the
docking experiments with default root-mean-square devi-
ation (RMSD) value (4.00 Å). It generated several complex
structures based on docking scores. The complex structure
file, with the best docking score was selected for further
analysis. The geometry of both wild type and mutant type
CDK7 structures were optimized through Steepest Descent
method with 1000 steps each of GROMACS 4.5.3 package.
Each minimization was carried out with GROMOS-96 [71]
43a1 force field.

Molecular dynamics simulation protocol
Molecular dynamics simulations for the native and mu-
tant models were done with MD simulation package
GROMACS 4.5.3 that adopts GROMOS96 43a1 force
field parameter for energy minimizations. Energy mini-
mized structures of the native CDK7 and three mutant
models were used as a starting point for MD simula-
tions. All the proteins were solvated in a cubic box with
wall extending at least 0.9 nm from all atoms and filled
with SPC [72] water molecules. A periodic boundary
condition was applied that the number of particles, pres-
sure and the temperature were kept constant in the sys-
tem. In order to obtain electrically neutralized system,
we utilized GENION procedure from the GROMACS
package to replace random water molecule with Na+ or

Cl- ions. The temperature was kept constant by using a
Berendsen algorithm [73] with a coupling time of 0.2.
The minimized system was equilibrated for 10,000ps
each at 300 K by position restrained molecular dynamics
simulation in order to soak the water molecules into the
macromolecules. The equilibrated systems were then
subjected to molecular dynamics simulations for 10 ns
each at 300 K. In all simulations, the temperature was
kept constant at 300 K. The particle mesh Ewald method
[74] was used to treat long-range Coulombic interac-
tions and the simulations performed using the SANDER
module [75]. The SHAKE algorithm was used to con-
strain bond lengths involving hydrogen's permitting a
time step of 2fs. The coordinates were saved at regular
time intervals of 1ps. The van der Waals force was
maintained at 1.4 nm, and Coulomb interactions were
truncated at 0.9 nm.

Analysis of molecular dynamics trajectories
Structural properties of the native and mutant models of
CDK7 protein were calculated from the trajectory files with
the built-in functions of GROMACS 4.5.3 The trajectory
files were analyzed through the use of g_rmsd and g_rmsf
GROMACS utilities in order to obtain the RMSD and
RMSF values. The number of distinct hydrogen bonds
formed in the protein during the simulation was calculated
using g_hbond utility. The number of hydrogen bond was
determined on the basis of donor-acceptor distance less
than 3.9 nm and of donor-hydrogen-acceptor angle larger
than 90° [76]. Salt bridge formed in CDK7 protein was ana-
lyzed using g_salt GROMACS. If the distance is ≤4.0 nm,
the pair is counted as a salt bridge [77]. In order to generate
the three-dimensional backbone RMSD, RMSF of carbon
alpha-carbon, hydrogen bond and salt bridge analysis, and
motion projection of the protein in phase space of the sys-
tem were plotted for all four simulations using Graphing,
Advanced Computation and Exploration program.

Additional files

Additional file 1: Figure S1. Secondary structural elements changes in
mutant models of CDK7 protein. (A) Secondary structural elements of
native CDK7 protein. (B) Secondary structural element changes in the
mutant model I63R due to the substituted of arginine. (C) Substitution of
histidine at position 135 showing the secondary structural changes in
H135R mutant model. (D) Substitution of methionine at position 285
showing the secondary structural changes in T285M mutant model. All
the substituted amino acids are indicated by green boxes.

Additional file 2: Table S1. Involvement of cation-Pi interaction in wild
type and mutant structure of CDK7 protein.

Additional file 3: Table S2. Flavopiridol interacting residues with CDK7
wild type and mutant type structures.

Additional file 4: Figure S2. LIGPLOT analysis of CDK7-flavopiridol
complex in both native and mutant states. (A) Native complex showing
high number of residues interacting with ligand. (B) LIGPLOT showing
interaction between mutant model I64R and flavopiridol. (C) LIGPLOT
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showing interaction between mutant model H135R and flavopiridol. (D)
LIGPLOT showing interaction between mutant model T285M and
flavopiridol.

Additional file 5: Figure S3. Salt bridge forming distances of wild type
and mutant structures of CDK7 protein. The ordinate is distance (nm) and
the abscissa is time (ps). Black, red, green, and blue lines indicate native,
I63R, H135R, and T285M structures, respectively.
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