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Abstract
Doppler estimation is an essential problem for the mesosphere–stratosphere–troposphere (MST) radar data for estima-
tion of atmospheric parameters. The Doppler is estimated by computing the power spectral density using either para-
metric or non-parametric method. A recent class of spectral estimation technique referred as Sparse Iterative Covariance 
Based Estimation (SPICE) is introduced in literature. SPICE is a sound, user-parameter free, good resolution, iterative and 
globally convergent method which exhibits the enhanced results than the current spectral estimation methods, at the 
high computational cost. This letter presents the fast implementation of the SPICE algorithm for the MST radar data and 
the estimation of various wind parameters at a lesser computational time and is validated with the radiosonde data.
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1 Introduction

Spectrum estimation has wide range of applications [1]. 
Different spectral estimation methods have been devel-
oped to solve the problems, and they may be classified as 
nonparametric, parametric and semiparametric.

The nonparametric methods for spectrum estimation 
do not presume any model (deterministic or statistical) 
for data, except that it is zeroed outside the observation 
interval. A very well-known nonparametric method is the 
periodogram which is defined as

where N is the number of sample points, {x(n)}N−1
n=0

 are the 
observed samples of a signal. The nonparametric methods 
endure fundamental limitations. In the recent times, SPICE 
(Semiparametric/Sparse Iterative Covariance-based Esti-
mation), a novel method for spectral estimation has been 

proposed [2], which is developed from the ideas of sparse 
estimation. This method is a user parameter free iterative 
technique that gives superior resolution. It is globally con-
vergent and has minor sidelobe levels. However, it suffers 
from high computational complexity. SPICE is an iterative 
algorithm. In this paper, we present a method to reduce 
the computational load of SPICE algorithm which is based 
on Gohberg–Semencul (GS) Factorization. The inverse of 
the sample covariance matrix � is decomposed by GS fac-
torization and the fast schemes are used for computation 
of �−1x . The Toeplitz structure of � is exploited for efficient 
manipulation of the matrix in each iteration. After GS fac-
torization, a Fast Fourier Transform (FFT) is applied to still 
improve the computational speed of spectral estimation 
algorithm.

The MST radar data retrieved from the “National Atmos-
pheric Research laboratory” (NARL) is an evenly spaced com-
plex signal containing both in-phase (I) and quadrature (Q) 
phase components. The wind data provided by NARL in 
atmospheric regions of the mesosphere, stratosphere and 
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troposphere, starting from 3.6 km, maintains a resolution of 
150 m. The “Atmospheric Data Processor” (ADP) is found to 
give an agreeable Doppler profile up to a height of 11 km 
where noise is less. Since the lower stratosphere extends 
from 10 to 20 km above the earth’s surface, any spectrum 
estimating algorithm is expected to give good results in 
this particular range. There arises a need to go for a better 
functioning spectrum estimation method, especially at the 
height range of 14–17 km, as the existing methods [3–6] at 
this height fail to estimate the power spectrum accurately. 
Hence, semiparametric techniques can be focused on to 
improve the spectral estimation accuracy even for ill-con-
ditioned data.

In this letter, vectors are represented using the lowercase 
bold letters and the matrices using the uppercase boldface. 
The scalars are indicated using the normal letters. Notations 
|⋅| , ‖⋅‖ , (⋅)∗ , (⋅)T , and E(⋅) represents the modulus, Frobenius 
norm, Hermitian transpose (complex conjugate transpose), 
the transpose and the expectation respectively. The sub-
script [.]k denotes the vector kth element, and IN represents 
an identity matrix of order N.

2  Review of spice algorithm

SPICE is a newly introduced technique for the sparse sig-
nal recovery based on the covariance fitting criterion. It is 
a hyper parameter free and gives better performance than 
other methods.

Let yn be the complex signal data, which is the weighted 
combination of C complex exponentials with frequencies

where C is a constant, 
{
tn
}N

n=1
 representing the instants of 

sampling time that can be irregularly spaced. The magni-
tude of the rth frequency component Ωr is qr , ε

(
tn
)
 is the 

“additive white gaussian noise” component related to the 
 nth sampling time. Let R ≫ C , be the number of frequency 
points that the frequency axis is sampled.

Then the complex signal can be replicated as

{
Ωr

}N

r=1
�
[
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]

(2)yn =
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r=1

qre
j�r tn + �n

(3)y =
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(4)where y =
[
y1, y2,… , yN

]T

q =
[
q1, q2,… , qR

]T
 , ||qr||2 is the power value corresponding 

to the rth frequency component that is to be calculated.

where �1 = �2 = ⋯ = �N = �2 , �2 is the noise variance.
The N × N covariance matrix RN of the received signal 

is given as

where D =
[
d1d2d3 … ..dRIN

]
=
[
d1 …… ..dR+N

]

The SPICE algorithm is based on minimizing the 
weighted covariance function f .

where R−1∕2

N
 represents the Hermitian square root of R−1

N
 , 

‖⋅‖ denotes the Frobenius norm.
SPICE estimate [7, 8] of the mr ’s is an iterative process 

of the form:

where i is the iteration number and mr(i) is the estimate of 
mr at the ith iteration. The method is initialized with an 

initial estimate of the mr’s, i.e., mr(0) =
�d∗

r
y�2
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periodogram.
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The computational complexity of O
(
N2R

)
 increases 

with increase in signal points N and frequency domain 
sampling points R . In the next section we introduce a 
method to reduce the computational complexity of the 
algorithm.

3  Implementation of spice algorithm using 
Gohberg–Semencul Factorization (SPICE_
GS)

The computational complexity of the algorithm, to a 
much extent, depends on the computation of u = R−1

N
y . 

The direct implementation of SPICE does not take into 
account the Toeplitz arrangement of Hermitian matrix 
RN . Based on GS factorization [9–13] the inverse of covar-
iance matrix �N is denoted by a sequence of the Toeplitz 
matrices. The matrix product can be enhanced by this 
factorization. The Levinson–Durbin algorithm (LDA) and 
the Fast Fourier Transform can be employed to increase 
the computational speed.

3.1  Fast computation of the covariance matrix R
N

The covariance matrix of observed data is defined as 
RN = E(yy∗) = DPD∗.

We rewrite RN as

where r−m = r∗
m

 , m = 0,1,… N − 1.
Each element of the Eq. (15) is specified by

rn =
K−1∑
r=0

mre
−j2�nr∕K  , n = 0, 1, 2,… ,N − 1 which indi-

cates that 
{
rm
}N−1

m=0
 are the first elements of the

K-point FFT of 
{
mr

}K−1

r=0
 , where K = (R + N).

Using the first N values of the FFT of mr , RN can be 
formulated. This requires O(K log2 (K ) flops.

3.2  Fast computation of �−1
N
�

As soon as the first column of RN is presented, the vector 
u can be involved in the linear equation RNu = y.

(15)

�N =

⎡
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R+N�
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mrdrd
H
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The fast computation of R−1
N

 will help to reduce the 
computational complexity of SPICE algorithm. There are 
two approaches to compute R−1

N
 taking into account the 

Hermitian Toeplitz structure of RN . The first approach is 
based on Choleskey decomposition, where the inverse 
of the correlation matrix of order N is given in terms of 
all the autoregressive (AR) coefficients up to order N − 1 . 
The second approach uses Gohberg–Semencul (GS) fac-
torization [14, 15] to compute the inverse using only AR 
coefficients of order N − 1 which is described below.

3.2.1  The Gohberg–Semencul Relation

Let us proceed in the following way to express R−1
N

 only in 
terms of the coefficients of prediction error filter of order 
N − 1

(
i.e., 1, aN−1(1),… , aN−1(N − 1)

)
.

First, we built a positive definite Hermitian Toeplitz matrix 
of size 2N × 2N.

where the values rN , rN+1,… , r2N−1 are recursively com-
puted using Yule-Walker equation

Let us define L1 and L2 as N × N lower triangular Toeplitz 
matrices

(16)
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Let X be 2N × 2N matrix, 

Observe that (N + 1) left columns of X have Toeplitz struc-
ture, and GX = YZ where Y is a (2N × 2N) upper triangular 
matrix with unity elements in its main diagonal and Z is 
(2N × 2N) diagonal matrix.

Since XH and GX are upper triangular and since XHGX is 
Hermitian, it results in XHGX = Z and G−1 = XZ−1XH.

Thus

Since RN and G are Hermitian Toeplitz matrices, 
they are centro-Hermitian and their inverses are also 
centro-Hermitian.

Applying this to (18), we obtain

where J is a (N × N) exchange matrix with unity elements 
in the cross diagonal and zeros elsewhere. Since J2 = I and 
JR−1

N
J =

(
R−1
N

)∗

Using the fact that J
(
LH
2

)∗
J = L2&JL

∗
2
J = LH

2
,

which is the G–S relation.
The matrices L1 and L2 involved in R−1

N
 are Toeplitz 

matrices, hence R−1
N
y  can be computed using FFT, as 

a Toeplitz matrix operating on a vector can be viewed 
as linear convolution operation and linear convolution 
can be converted into equivalent circular convolution 
by appropriate modifications to L1 and L2 matrices and 
the vector y . Thus, R−1

N
y can be computed with an order 

of N log2 N flops. The L–D algorithm needs N2 flops. 

Z = diag[�(N − 1), �(N − 1),… ., �(N − 1), �(N − 2),

�(N − 2),… ., �(1), �(0)]

(18)
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(21)We get R−1
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=
1
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H
1
− L2L

H
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]

Thus the order of flops needed to compute R−1
N
y will be 

N log2 N + N2.

The efficient implementation of the SPICE algorithm for 
MST radar is outlined as follows:

For each iteration of SPICE_GS,

1. Compute the initial power estimate 
{
mr

}
 through 

(R + N) point FFT of the data vector y.
  i.e., mr(i) = |FFT (y)|2, r = 0, 1, 2,… , K − 1.
2. T o  f o r m u l a t e  RN  ,  f i r s t  c o m p u t e 

rn(i) =
K−∑
r=0

mr(i)e
j
2�nr

K , n = 0, 1,… ,N − 1 which indicates

  that 
{
rn
}N−1

n=0
 are first elements of K-point IFFT of {

mr

}K−1

r=0
 where K = R + N.

  Using rn(i) values, RN can be formulated as it is Her-
mitian Toeplitz matrix.

3. Given rn, n = 0, 1,… ,N − 1, �(N − 1) , compute AR coef-
ficients of order (N − 1) using L–D

  Algorithm given in Table 1. Using AR coefficients L1 
and L2 matrices can be formulated and

  u = R−1
N
y  c a n  b e  c o m p u t e d  a s 

u =
1

�(N−1)

[
L1L

H
1
− L2L

H
2

]
y.

4. Calculate w
1

2

r =
‖dr‖
‖y‖  and cr = ��d∗

r
���, � =

R+N∑
l=1

w
1

2

l
mlcl .

5. Update the power values mr ← mrcr∕w
1

2

r � till the con-
vergence criterion is met.

Table 1  Levinson–Durbin algorithm for computing AR coefficients 
and prediction error

Step no. Operation

1. Initialize the recursion
a(0) = 1, �(0) = r0

2. For i = 0, 1,… ,N − 2

ri = ri+1 +
i∑

j=1

ai(j)ri−j+1 , �i+1 = −
ri

�(i)

For j = 1, 2,… , i
ai+1(j) = ai(j) + �i+1a

∗
i
(i − j + 1)

ai+1(i + 1) = �i+1]
�(i + 1) = �(i)

[
1 − ||�i+1

||2
]
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4  Results

4.1  Simulation results

The examples are presented for simulated data to exam-
ine the computational complexity between direct and the 

proposed fast implementation of SPICE. The simulation 
parameters considered are as follows:

With N = 200 and C = 3, the data samples are gener-
ated, which contains the three exponentials at 0.3100 Hz, 
0.3150 Hz and 0.1450 Hz, having amplitudes q1 = 10ej�1 , 
q2 = 10ej�2 , and q3 = 10ej�3 with a interval of 1 s. The phase 
values 

{
�r

}3

r=1
 are uniformly distributed in the range [0, 

Fig. 1  a Spectrum of the original signal; b power Spectrum using periodogram; c SPICE; d SPICE_GS

Table 2  The main operation process of SPICE and SPICE_GS

Method Step Compu-
tational 
complexity

SPICE Covariance matrix calculation N2R

Inverse covariance matrix N2R

SPICE_GS Covariance matrix calculation Rlog2R

Inverse covariance matrix N2 + N log2 N

Table 3  Computational 
complexity of the proposed 
and existing methods for 
various number of data sample 
points

No. of 
data 
points

Time in seconds

SPICE SPICE_GS

64 21.33 0.75
128 29.62 0.86
256 51.23 0.92
512 72.97 1.61
1024 138.89 1.73
4096 265.61 1.91
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2π]. The AWGN with zero mean and variance σ is added 
in the � term.

The spectrum of the original signal before adding noise, 
computed using periodogram, implemented by SPICE and 
also implemented by fast SPICE_GS for SNR = -15 dB are 
shown in Fig. 1a–d respectively. It is apparent from the 
simulations, though the signal is entirely concealed in the 
noise, the SPICE methods, both direct implementation 
as well as Fast implementation, are able to estimate the 
parameters well. The periodogram is attained by padding 
200 time series data points with 312 zeros and calculating 
the 512-point FFT. The number of points for processing for 
both techniques is 512.

The output SNR is estimated from the spectrum of the 
signal utilizing the noise level estimation method [16]. This 
is the widely used technique for noise threshold estima-
tion and removal in atmospheric radar.

The simulations are carried on Intel Core i7-6700 CPU 
3.4 GHz with 8 GB CPU memory. The comparison of the 
main operation process of SPICE and SPICE_GS are tabu-
lated in Table 2. The computational complexity attained 
by the proposed method over the existing is illustrated 
in Table 3, for various data points.

4.2  Results for MST radar data

The radar data is gathered from the “Indian MST radar”, 
which is operated at the NARL, Gadanki, Andhra Pradesh. 
This time-series data is subjected to the ADP, which nor-
mally uses the method of periodogram for the calculation 
of power spectrum. The output SNR estimated using ADP 
and SPICE_GS for east and south beams are depicted in 
Fig. 2.

Figure 3 shows the power spectrum at the range bins 
numbered 63 estimated using ADP and SPICE_GS for the 
east beam of Feb 9,2015 data. SPICE-GS identifies the par-
ticular frequency than the ADP which demonstrates the 
accuracy of the algorithm.

The zonal wind vx , meridional wind vy , and wind speed 
W components obtained using SPICE_GS, ADP and GPS 
radiosonde for the data on Feb 09, 2015, are depicted in 
the Fig. 4. From Fig. 4, it can be seen that the proposed 
SPICE_GS is following the GPS, especially in the range 
14–17 km. However, the wind profile curves obtained 
using the ADP deviate from those obtained using GPS, 
in a considerable measure, after a height of 11 km. The 
direct implementation SPICE and the fast implementation 
SPICE_GS yields the same results and so we have shown 
the fast implementation results.

The comparison of the computational time of direct and 
fast implementation of SPICE for radar data processing is 

Fig. 2  Height profiles of SNR 
estimated using ADP and 
SPICE_GS for data obtained on 
Feb 9, 2015. a The east beam 
and b the south beam
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Fig. 3  Spectrum at bin 63 
of the east beam for data 
obtained on Feb 9, 2015. a ADP 
and b SPICE_GS

Fig. 4  Zonal, meridional and 
wind speed comparing GPS 
radiosonde, SPICE_GS and ADP
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shown in Fig. 5 portraying a substantial time reduction in 
fast implementation than that of direct implementation, 
making the former striking.

Suitability of the method for processing the MST 
radar data is tested by correlation studies. The correla-
tion between the GPS radiosonde data and SPICE_GS 
wind speed is displayed in Fig.  6 for the radar data 
retrieved during Feb 09–12, 2015. The correlation fac-
tor for height less than or equal to 18 km is 0.98230 and 
that for height greater than 18 km is 0.74984.

5  Conclusion

The fast  implementat ion of  semiparametr ic 
method for spectrum estimation, i.e., SPICE_GS, is 
applied to MST radar data retrieved from the NARL. Since 
the Gohberg–Semencul factorization of the covariance 
matrices is applied, we can leverage the Toeplitz/block-
Toeplitz structure to compute the spectral estimate. The 
processed results have revealed noteworthy computa-
tional reductions. A considerable increase in computa-
tional efficiency has been obtained by SPICE_GS, devoid 
of the loss in performance.
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