
Hindawi Publishing Corporation
VLSI Design
Volume 2013, Article ID 495354, 12 pages
http://dx.doi.org/10.1155/2013/495354

Research Article
Faster and Energy-Efficient Signed Multipliers

B. Ramkumar and Harish M. Kittur

VLSI Division, School of Electronics Engineering, VIT University, Vellore 632014, Tamilnadu, India

Correspondence should be addressed to B. Ramkumar; bramvlsi@gmail.com

Received 13 December 2012; Accepted 22 April 2013

Academic Editor: Juan Sanchez-Garcia

Copyright © 2013 B. Ramkumar and H. M. Kittur. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We demonstrate faster and energy-efficient column compression multiplication with very small area overheads by using a
combination of two techniques: partition of the partial products into two parts for independent parallel column compression and
acceleration of the final addition using new hybrid adder structures proposed here. Based on the proposed techniques, 8-b, 16-b, 32-
b, and 64-b Wallace (W), Dadda (D), and HPM (H) reduction tree based Baugh-Wooley multipliers are developed and compared
with the regularW, D, H based Baugh-Wooleymultipliers.The performances of the proposedmultipliers are analyzed by evaluating
the delay, area, and power, with 65 nm process technologies on interconnect and layout using industry standard design and layout
tools.The result analysis shows that the 64-bit proposed multipliers are as much as 29%, 27%, and 21% faster than the regularW, D,
H based Baugh-Wooley multipliers, respectively, with a maximum of only 2.4% power overhead. Also, the power-delay products
(energy consumption) of the proposed 16-b, 32-b, and 64-b multipliers are significantly lower than those of the regular Baugh-
Wooley multiplier. Applicability of the proposed techniques to the Booth-Encoded multipliers is also discussed.

1. Introduction

High-speed multiplication is a primary requirement of high-
performance digital systems. In recent trends, the column
compression multipliers are popular for high-speed compu-
tations due to their higher speeds [1, 2]. The first column
compression multiplier was introduced by Wallace in 1964
[3]. He reduced the partial product of 𝑁 rows by grouping
into sets of three-row set and two-row set using (3,2) counter
and (2,2) counter, respectively. In 1965, Dadda altered the
approach of Wallace by starting with the exact placement
of the (3,2) counter and (2,2) counter in the maximum
critical path delay of the multiplier [4]. Three-dimensional
minimization- (TDM-) based column compression approach
was proposed in 1996 to perform fast multiplication [5].
Since the 2000s, a closer reconsideration of Wallace and
Dadda multipliers has been done and proved that the Dadda
multiplier is slightly faster than the Wallace multiplier and
the hardware required for Dadda multiplier is lesser than
the Wallace multiplier [6, 7]. The HPM-based column com-
pression was developed in 2006, and it has standard layout
structure than Eriksson et al.’smultiplier [8].Thedetailed case

for HPM-based Baugh-Wooley multiplier against the Booth-
Encoded multipliers has been described in [9]. In this work,
we implement the proposed techniques with the W, D, H
based Baugh-Wooley multipliers, and the improved perfor-
mance is compared with that of the same regular multipliers.

The Baugh-Wooley (BW) algorithm is a relatively
straightforward way of doing signed multiplications [10];
Figure 1 illustrates the algorithm for an 8-bit case, where the
partial-product bits have been reorganized as specified by
Själander and Larsson-Edefors in his work [11]. The creation
of the reorganized partial-product array comprises three
steps: (i) the most significant bit (MSB) of the𝑁 − 1 partial-
product rows and all bits of the last partial-product row,
except its MSB, are inverted; (ii) a “1” is added to the 𝑁th
column; (iii) the MSB of the final result is inverted. The
total delay of the multiplier can be split up into three parts:
due to the partial-product generator (PPG), partial-product
summation tree (PPST), and final CPA [12]. Of these, the
dominant components of the multiplier delay are due to the
PPST and the final adder. The relative delay due to the PPG
is small. Therefore, a significant improvement in the speed
of the multiplier can be achieved by reducing the delay in

2 VLSI Design

x7 x6 x5 x4 x3 x2 x1 x0

y7 y6 y5 y4 y3 y2 y1 y0

1 #p70 p60 p50 p40 p30 p20 p10 p00

#p71 p61 p51 p41 p31 p21 p11 p01

#p72 p62 p52 p42 p32 p22 p12 p02

#p73 p63 p53 p43 p33 p23 p13 p03

#p75 p65 p55 p45 p35

p36 p26 p16 p06

p05

p04p34

p66#p76

#p57 #p47

#s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s2s3 s0

#p17#p27#p37#p67

#p74

p771

p56 p46

p25

p44p54p64 p14

p15

p24

#p07

inverted
bit positions

Figure 1: Illustration of an 8-bit Baugh-Wooley multiplication.

the PPST and the final adder stage of the multiplier. In this
work, the delay of PPST is reduced by using two independent
structures in the partial products. The proposed hybrid
CPA, based on arrival profile aware design [12, 13] and the
BEC (Binary to Excess-1 Converter) Logic [14, 15], computes
the final products much faster. Arrival profile aware hybrid
adders have been reported earlier [12, 13]. Recently, further
investigations on the same are reported in [16].

This paper is structured as follows. Sections 2 and 3
describe the design of parallel structures for the PPST and the
design of hybrid final adder structure, respectively. Section 4
reports the ASIC implementation details and the simulation
results. Finally, Section 5 summarizes the result analysis.
Throughout the paper, it is assumed that the number of bits
in the multiplier and multiplicand is equal.

2. Design of Parallel Structures

The multiplication process begins with the generation of all
partial products in parallel using an array of AND gates. The
next major steps in the design process are partitioning of the
partial products and their reduction process. Each of these
steps is elaborated in the following subsections.

2.1. Partitioning the Partial Products. We consider two 𝑛-bit
(8-bit) operands of Baugh-Wooleymultiplier partial products
which form a matrix of 𝑛 rows and 2𝑛 columns as shown
in Figure 1. Initially for the partial product of Baugh-Wooley
multiplication, we assign an integer as shown in Figure 2(a);
for example, p00 is given an index 0, p10 an index 1, and
so on. For convenience, we rearrange the partial products as
shown in Figure 2(b).The two longest columns in the middle
of the partial products contribute to the maximum delay in
the PPST. Therefore, in this work, we split up the PPST into
two parts as shown in the Figure 2(c), in which both parts
share equal number of columns. That is, part0 consists of

𝑛 columns and part1 also consists of 𝑛 columns. We then
proceed to sum up each column of the two parts in parallel.
The summation procedure adopted in this work is described
in the next section.

2.2. TheW, D, H Based Reduction. Next, the partial products
of each part are reduced to two rows by the using (3,2) and
(2,2) counters based on the W, D, H reduction algorithm.
The HPM-based reduction is shown in Figures 3 and 4.
The grouping of 3-bits and 2-bits indicates (3,2) and (2,2)
counters, respectively, and the different colors classify the
difference between each column.The bit positions s0, 22, and
29 are added using (3,2) counter to generate sum s2 and carry
c2. The final two rows of each part are summed using a carry
lookahead adder (CLA) to perform fast addition, and it forms
the partial final products of a height of one-bit column, which
is indicated at the bottom of Figures 3 and 4.

The two parallel structures in Figures 3 and 4 based
on the HPM method are shown in Figure 5, where HA,
FA, p0, p1, and p denote half adder ((2,2) counter)), full
adder ((3,2) counter), partial final product from part0, partial
final product from part1, and final product, respectively. The
numerals residing on the HA and FA indicate the position of
partial products.The outputs of part0 and part1 are computed
independently in parallel, and those values are added using a
high-speed hybrid final adder to get the final product.

However, beforewe proceed to carry out the final addition
with the proposed hybrid adder, we first carry out the final
addition with the faster adder of CLA for both the unparti-
tionedW, D, H Baugh-Wooley multiplier and the partitioned
W, D, H Baugh-Wooley multiplier.This enables us to evaluate
and analyze the effect of partitioning the PPST into two
parts. The simulation results and their comparison are listed
in Tables 1, 2, and 3, in these tables a negative percentage
indicates overhead and a positive percentage indicates a
reduction/improvementwith reference to the comparedmul-
tiplier. The comparison shows the percentage improvement

VLSI Design 3

Table 1: Partitioned Wallace performance.

Regular Wallace multiplier with CLA Partitioned Wallace multiplier with CLA Performance comparison (%)
Word size Delay (ns) Area (𝜇m2) Power (𝜇W) Delay (ns) Area (𝜇m2) Power (𝜇W) Delay Area Power
16 1.84 3,983 0.66 1.76 4,093 0.69 4.34 −2.76 −4.54
32 2.52 14,398 3.21 2.30 14,665 3.33 8.73 −1.85 −3.73
64 3.29 53,896 16.86 2.92 54,449 17.34 11.24 −1.02 −2.84

Table 2: Partitioned Dadda performance.

Regular Dadda multiplier with CLA Partitioned Dadda multiplier with CLA Performance comparison (%)
Word size Delay (ns) Area (𝜇m2) Power (𝜇W) Delay (ns) Area (𝜇m2) Power (𝜇W) Delay Area Power
16 1.69 3,843 0.61 1.66 3,986 0.65 1.77 −3.72 −6.55
32 2.41 13,804 3.14 2.23 14,083 3.26 7.46 −2.02 −3.82
64 3.11 51,885 16.12 2.86 50,517 16.58 8.03 2.63 −2.85

012345678

910111213141516

1718192021222324

25262728293032

39 38 37 36 35 34 33

31

40

48

56

65 64 63 62 61 60 59 58 57

47

55 54 53 52 51 50 49

46 45 44 43 42 41

(a)

0165 64 56 48 40 32 24 8 7 6 5 4 3 2

63 55 47 39 31 16 15 1314 12 11 10 9

62 54 46 38 23 22 21 20 19 18 17

61 53 45 30 29 28 27 26 25

60 52 37 36 35 34 33

59 44 43 42 41

51

58 57

50 49

(b)

65 64 56 48 40 32 24 8 017 6 5 4 3 2

15 1314 12 11 10 9

22 21 20 19 18 17

29 28 27 26 25

63 55 47 39 31 16

62 54 46 38 23

61 53 45 30

60 52 37 36 35 34 33

59 44 43 42 41

51

58 57

50 49Part1 Part2

(c)

Figure 2: Partitioning the partial products: (a) partial-product array diagram for 8 ∗ 8 multiplier, (b) an alternative representation, and (c)
partitioned structure of multiplier showing part0 and part1.

4 VLSI Design

Table 3: Partitioned HPM performance.

Regular HPMmultiplier with CLA Partitioned HPMmultiplier with CLA Performance comparison (%)
Word size Delay (ns) Area (𝜇m2) Power (𝜇W) Delay (ns) Area (𝜇m2) Power (𝜇W) Delay Area Power
16 1.75 3,848 0.63 1.72 4,025 0.67 1.71 −4.59 −6.34
32 2.48 13,817 3.16 2.36 14,173 3.33 4.80 −2.57 −5.37
64 3.18 51,912 16.35 2.99 50,673 16.72 5.97 2.38 −2.26

01234567
910

10

10

1112131415
171819202122

2526272829
33343536

43 42 41

41

50 49
57

7 6 5

5

4

4

3

3

2

2

1

1

0

0

5 4 3 2 1 0

4 3 2 1 0

3 2 1 0

2 1 0

0

15 14

14

13

13

12

12

11

11

9

9

9

9

9

22

22

29

29

28 27

27

26 25

26 25

21

21

20

20

19

19

18 17

18

11

25
18

11

25
18

11

25
18

18

17

10
17

10
17

10
17

9

9
1

10
17

17

36

36

35 34 33

35 34 33

12

26
19

33

12

26
19

33

26
19

33

28

43

43

42

42

50

50

49

49

21

35
28

42
49

35
42
49

41

13

27
20

34
41

27
20

34
41

57

36
43
50
57

43
50
57

49 4157
50 42 34

253349 4157

57

s0
c0

c0 s2 s1

c0 s5

s9 s8 s7 s6

s4 s3

c0

c2 c1

c2 c4 c3

c2 c8 c7 c6

c5

c5
c9

c9
c15

s15 s14 s13 s12 s11 s10
c14 c13 c12 c11 c10

6

c15 s22 s21 s20 s19 s18 s17 s16
c22 c21 c20 c19 c18 c17 c16

p0[10] p0[9] p0[8] p6p7 p5 p4 p3 p2 p1 p0

Figure 3: Reduction of the partial products of part0 based on the HPM reduction approach.

VLSI Design 5

40
47
54
61

32
39

53
60

65
63 55 47 39

62

65 64 56 48 40 32
63 55

62
47 30
54
61 46

53
60

65

65

65

65

64

64

64

64

56

56

56

48

48
c9 c8 c7 c6

63

63

63

55

55

45 44

44

37

38
45

37
44
51
58

52
59

54

61 53
60

46

64 56 48 40 32 24

31
38
45
52
59

23
30
37
44
51
58

s0

c2 c1
s2 s1

c0

8

s3

s6s7s8s9

s4s540

5354

54

47 46

61

61

61

62

62

62

60

60

60

59

59

59

58

58

58

58

51

51

51

52

52

c5 c4 c3

s14 s13 s12 s11 s10
c14 c13 c12 c11 c10

s20 s19 s18 s17 s16 s15
c20 c19 c18 c17 c16 c15

p1[15] p1[14] p1[13] p1[12] p1[10] p1[8]p1[9]p1[11]

65 64 56

63

53

48
55
62 46

39

24
31
38
45
52
59

16
23
30
37
44
51
58

Figure 4: Reduction of the partial products of part1 based on the HPM reduction approach.

and overhead in delay, area, and power of the partitioned
multipliers with respect to the unpartitioned multiplier.

It can be seen that there is 4.3% improvement in the speed
for 16-b and 11.2% for 64-b size.The speed limitation in lower
bit size multipliers is due to the greater difference between
input arrival profile to the final CPA from part0 and part1.
But with the increase in theword size, this difference becomes
lesser and the improvement in the speed of the partitioned
multipliers increases. There is maximum of 11%, 8%, and 6%

speed improvement for 64-b W, D, H Baugh-Wooley multi-
pliers with 1% area overhead. Having clearly demonstrated
the reduction in the delay of the multipliers due to the par-
titioning of the partial products, we now proceed to further
enhance the speed of the proposed multiplier. There is maxi-
mum of 6% to 7% power overhead in W, D, H based Baugh-
Wooleymultiplier, and this is due to the use of CLA as CPA in
each part. But this power overhead is interestingly reduced by
proposed hybrid CPAwhich is elaborated in the next section.

6 VLSI Design

22 29
FA

FA

FA

FA FA FAFAFA

FA FA FA FA FA FA

FA

FA

FA

36 13

14

15

43

42 3450

49 41 33 25 18 10 2

0

35

HA

HA

HA

HA

HA

HA

21

20

26 11 319

12

28

27 4

7

6

5

P0P1P2P3P4P5P6P7P0[8]P0[9]P0[10]

CLA

(a)

16 8
FA

FA

FA

FA

FA

FA FA FA FAFA

FA FA FA

FA FA

FA

3124
HA

HA

HA

HA

HA

23

30383239

46 45 3740

48

47

55 54 53 52 44

63 56 62 61 60 59 51

P1[15] P1[14] P1[13] P1[12] P1[11] P1[10] P1[9] P1[8]

CLA

(b)

Figure 5: The HPM-based implementation: (a) implementation of part0; (b) implementation of part1.

VLSI Design 7

BEC adder

5-bit BEC
5 5

5

5

01 10:5 mux 3

3 3

3-bit RCA 8c[10]

p[7:0]

p[7:0]p0[10:8]p1[10:8]

p[10:8]

p1[15:11]

p[15:11]

Figure 6: Hybrid final adder of 8-b multiplier.

3. The Hybrid Final Adder Design

In previous works, the hybrid final adder designs used to
achieve the faster performance in parallel multipliers were
made up of CLA (carry lookahead adder) and CSLA (carry
select adder) [12, 13]. But due to the structure of the CSLA, it
occupiesmore chip area and power than other adders.Thus to
achieve the optimal performance, the proposed hybrid adder
in this work uses BEC logic for fast summation of uneven
input arrival time of the signals originating from the PPST.
The BEC adder provides faster performance than carry save
adder (CSA) and it consumes less area, low power than the
carry select adder (CSLA) [14, 15].

3.1. Hybrid Adder for 8-b Multiplier. Once each part of the
partial products has been reduced to height of one bit column,
we get the final partial products as follows:

p0[10] p0[9] p0[8]
p7 p6 p5 p4 p3 p2 p1 p0
p1[15] p1[14] p1[13] P1[12] p1[11] p1[10] p1[9] p1[8].

The p0[10:8] are the exceeding carry bits of part0 and
p1[15] is the carry bit of part1. The p[7:0] of part0 are directly
assigned as the final products. To find the remaining p[15:8],
we use the RCA and the BEC as shown in Figure 6.

The p0[10:8] and p1[10:8] are added using 3-bit RCA
which finds p[10:8]. To obtain the remaining p[15:11], the
p1[15:11] are assigned to the input of 5-bit BEC,which produce
the two partial results p1[15:11] with Cin of “0” and the 5-
bit BEC output with the Cin of “1.” Depending on the Cout
of RCA (c[10]), the mux provides the final p[15:11] without
having to ripple the carry through p1[15:11].

The 8-bit multiplier uses a 5-bit BEC in the final adder,
but for the large bit sized multipliers requires multiple BEC,
and each of them requires the selection input from the carry
output of the preceding BEC.Therefore, to generate the carry
output from the BEC, an additional block is developed which
is called BECWC. The detailed structures of the 5-bit BEC
without carry (BEC) and with carry (BECWC) are shown in
Figures 7(a) and 7(b). The BEC gets 𝑛 inputs and generates
𝑛 output; the BECWC gets 𝑛 input and generates 𝑛 + 1
output to give the carry output as the selection input of the
next stage mux used in the final adder design of 16-b, 32-b,

Table 4: Function table of 5-BIT BEC and BECWC.

Input BEC without carry BEC with carry
b[4:0] x[4:0] cy x[4:0]
00000 00001 0 00001

...
...

...
...

11110 11111 0 11111
11111 00000 1 00000

and 64-b multipliers.The function table of BEC and BECWC
is shown in Table 4.

3.2. Variable-Size Hybrid Adder. The variable size of adder
blocks always leads to faster performance than a fixed-size
block adder [2, 17]; we, therefore, break down the ripple of
gates in the BEC into variable-size groups according to the
log
2
𝑛method. Based on this approach, the final adder designs

for 16-b, 32-b, and 64-b multipliers are shown in Figure 8.
In BECWC, the mux is getting 𝑛-bits of data input as it is

input for selection input “0” side and 𝑛 + 1-bits of data input
from the BECWC output for selection input “1” side. Thus to
make equal size of the inputs to the mux, the one-bit “0” is
appending with the 𝑛-bits of the data input as “MSB” (most
significant bit).

To analyze independently the effect of the proposed
hybrid adder, the partitionedmultiplier with CLA final adder
is compared with the partitioned multiplier along with the
proposed hybrid adder. The simulation results of partitioned
W,D,HBaugh-Wooleymultipliers with hybrid CPA are listed
as first column in Tables 5, 6, and 7. The performance of
hybrid CPA (comparison between the partioned multipliers
with CLA and partitioned multipliers with hybrid CPA) and
overall performance of proposed techniques (comparison
between unpartitioned multiplier with CLA and partitioned
multiplier with hybrid CPA) are listed as second column
and third column, respectively, in Tables 5 to 7. The result
analysis clearly shows that the speed increases with the word
size of the multiplier. The hybrid CPA improves the speed
of the W, D, H Baugh-Wooley multipliers by 19%, 20%, 15%,
respectively, for 64-b size without area and power overhead.
The overall improved performance is elaborated in result
summary.

4. ASIC Implementation and
Simulation Results

TheASIC implementation of the proposed design follows the
cadence design flow. The design has been developed using
Verilog-HDL and synthesized in Encounter RTL compiler
using typical libraries of TSMC 65 nm technology. The
Cadence SoC Encounter is adopted for Placement & Routing
(P&R) (Encounter User Guide 2008). Parasitic extraction is
performed using Encounter Native RC extraction tool. The
extracted parasitic RC (SPEF format) is back annotated to
Common Timing Engine in Encounter Platform for static
timing analysis.

8 VLSI Design

Table 5: Improved performance by hybrid CPA and overall performance in Wallace multiplier.

Partitioned Wallace multiplier with hybrid CPA Performance of hybrid CPA Overall performance
Word size Delay (ns) Area (𝜇m2) Power (𝜇W) Delay Area Power Delay Area Power
16 1.58 4,137 0.71 10.22 −1.07 −2.89 14.13 −3.86 −7.57
32 1.98 14,758 3.39 13.91 −0.63 −1.80 21.42 −2.50 −5.60
64 2.35 54,225 17.28 19.52 0.41 0.34 28.57 −0.61 −2.49

b4

b4 b3

b3

b2

b2

b1

b1

b0

b0

x4

x4

x3

x3

x2

x2

x1

x1

x0

x0

(a)

b4

b4

b3

b3

b2

b2

b1

b1

b0

b0

x4

x4

x3

x3

x2

x2

x1

x1

x0

x0

Cout

Cout

(b)

Figure 7: The 5-bit Binary to Excess-1 Code Converter: (a) BEC (without carry); (b) BECWC (with carry).

8 8

8

8

5

4

5

5
8-bit BEC 4-bit BECWC 4-bit RCA 16

1 0

0

1 0 4

4 4
p1[31:24]

p[31:24]

16:8 mux

p1[23:20]

10:5 mux

p[19:16]

p1[19:16] p0[19:16]

p[15:0]

p[15:0]

c[23], p[23:20]

(a)

4-bit
15

15

15

15

15-bit BEC

1 0 1 0

0

8

0

1 030:15 mux 18:9 mux

8-bit BECWC
9 9

4

9

p1[48 : 41]

5

5

5

5

5

325 5-bit RCA

10:5 mux

BECWC

p[63:49] p1[40:37] p1[36:32] p0[36:32]

p[36:32]

p[31:0]

p[31:0]c[48], p[48:41] c[40], p[40:47]

(b)

30-bit BEC

30

30

30

30

1 1 1 10 0 0 0

0

8

0 0

60:30 mux 34:17 mux

17

17

17

16

64
9

9

9
8-bit BECWC

18:9 mux

4 6

6

6

55

5

6-bit RCA
4-bit BECWC16-bit BECWC

10:5 mux

p1[127:98]

p[127:98]

p1[97:82] p1[81:74] p0[63:0]

p0[63:0]p[69:64]

p1[73:70]

c[97], p[97:82] c[81], p[81:74] c[73], p[73:70]

p1[69:64] p0[69:64]

(c)

Figure 8: Hybrid final adder: (a) for 16-b multiplier, (b) for 32-b multiplier, and (c) for 64-b multiplier.

VLSI Design 9

Table 6: Improved performance by hybrid CPA and overall performance in Dadda multiplier.

Partitioned Dadda multiplier with hybrid CPA Performance of hybrid CPA Overall performance
Word size Delay (ns) Area (𝜇m2) Power (𝜇W) Delay Area Power Delay Area Power
16 1.49 4,028 0.66 10.24 −1.05 −1.53 11.8 −4.81 −8.19
32 1.92 14,100 3.29 13.90 −0.12 −0.92 20.3 −2.14 −4.77
64 2.27 49,877 16.47 20.62 1.26 0.66 27.0 3.87 −2.17

Table 7: Improved performance by hybrid CPA and overall performance in HPMmultiplier.

Partitioned HPMmultiplier with hybrid CPA Performance of hybrid CPA Overall performance
Word size Delay (ns) Area (𝜇m2) Power (𝜇W) Delay Area Power Delay Area Power
16 1.59 4,071 0.70 7.55 −1.14 −4.47 9.14 −5.79 −11.11
32 2.10 14,266 3.38 11.01 −0.65 −1.50 15.32 −3.24 −6.96
64 2.52 50,301 16.65 15.71 0.73 0.41 20.75 3.10 −1.83

Re
du

ct
io

n
(%

)

30

25

20

15

10

5

0

−5

−10

16 32 64

Delay
Area
Power

Word size

(a)

30

25

20

15

10

5

0

−5

−10

16 32 64

Delay
Area
Power

Word size

Re
du

ct
io

n
(%

)

(b)

25

20

15

10

5

0

−5

−10

16 32 64

Delay
Area
Power

Word size

−15

Re
du

ct
io

n
(%

)

(c)

Figure 9: Overall performance of the proposed multipliers: (a) Wallace, (b) Dadda, and (c) HPM.

10 VLSI Design

In order to approximate typical signal arrival times and
drive strengths, D flip-flops are used on the primary inputs.
These flip-flops drive multiple buffers to distribute input
signals to 𝑁2 AND gates, where 𝑁 is the multiplier word
size. Delay simulations were performed for each cell library
to resolve the maximum number of buffers that a single D
flip-flop can drive and the maximum number of AND gate
inputs that a single buffer can drive. The Common Timing
Engine used for timing simulation which takes as inputs
a design’s netlist, cell library process information, parasitic
resistance and capacitance data, and simulation environment
parameters such as temperature and voltage. All of the timing
analysis is performed at the nominal voltage level 0.9 V, for
the 65 nm process technology. Temperature was set at 25∘C.
The worst case delays of the multipliers are examined with
back-annotation of parasitic resistances and capacitances
extracted from the layouts. Each standard cell library used for
this design includes LEF (Library Exchange Format) files and
timing files. A LEF file contains the physical information for
a process technology as well as geometric abstracts of all of
the cells. All of the timing files used for this research is for
the nominal temperature, voltage, and process corner, often
named “typical.lib.”

The power simulations were performed using Virtuoso
UltraSimwhich takes as inputs a design’s netlist, RC parasitics
file in SPEF format, process technology information, temper-
ature and voltage, and a vector stimulus file. For each word
size of the multiplier, the VCD (value changed dump) data
is generated for all possible input conditions and imported
the same to power simulation tool. All the power simulations
were performed at the nominal voltage level of 0.9 V for
the 65 nm process technology. The simulation temperature
was set at 25∘C. Area estimate is based on total cell area of
the design. All the multipliers were placed and routed using
NanoPlace and NanoRoute of Cadence’s Encounter platform.
Though five or more layers of metal were available for each
process, the 8 by 8 multipliers were routed using three layers
of metal and the large 64 by 64 multipliers were routed
using four layers of metal. In this work, we have used the
same technology and similar design flow for all the designs
including the conventional designs used for comparison of
the delay, area, and power characteristics.

5. Result Summary

The comparison between the unpartitioned multipliers with
CLA and partitioned multipliers with hybrid CPA is listed as
third column in Tables 5 to 7.These overall performances are
plotted in Figure 9. It summarizes the enhanced performance
of the proposed techniques and exhibits that the area of
the partitioned multipliers with hybrid CPA is maximum of
5.7% higher than the unpartitioned multipliers with CLA
in 16-b word size. But with increasing word size, the area
overhead reduces. It is clear that the area overhead of the
proposed techniques continuously decreases with increas-
ing word size and is only 0.6% overhead and 3.9%, 3.1%
improvement for the 64-bW,D,HBaugh-Wooleymultipliers,
respectively.

The power consumption of the proposed multiplier is
11% more than regular multipliers for the 16-b word size.
With increasing word size, the power requirement for the
proposed techniques is reduced. Thus the 64-b partitioned
W, D, H Baugh-Wooley multipliers with hybrid CPA requires
only 2.5%, 2.2%, and 1.9%, respectively. The percentage
overhead of the power-delay products (PDPs) of the proposed
multipliers with respect to the regularmultipliers is plotted in
Figure 10. Negative values indicate an overhead and positive
values a reduction. The PDP values increase with the word
size and achieved maximum of 27%, 25%, and 19% reduction
in the PDP for the 64-bW,D,H, respectively.The delay values
clearly indicate that the proposed techniques much improve
the speed ofmultiplication, also with increasing word size the
percentage reduction of the delay increases. Thus, the speed
is significantly improved by 29%, 27%, and 21% for the 64-b
W, D, H multipliers, respectively.

Though the main goal of this work is to demonstrate
the faster and energy-efficient column compression multipli-
cation and not make a comparison of the Wallace, Dadda,
and HPM based multipliers, a comparison of the proposed
three multipliers shows that for all bit sizes, the Dadda
based multipliers are the fastest, consume least power, and
therefore also have the lowest PDP. The HPM is based on
the Dadda reduction scheme but a direct comparison of the
original Dadda with the HPM has not been reported in [8].
A comparison in terms of the TOPS/W (Tera Operations per
Watt) in the 65 nm shows that the proposed Dadda based
multipliers have the highest TOPS/W for all the bit sizes
where for 16-b: 1017 TOPS/W, 32-b: 158 TOPS/W, and 64-b:
27 TOPS/W. Implementation of the proposed multipliers in
the 32 nm or 22 nm nodes could lead to much higher values
of TOPS/W.

6. Modified-Booth Multiplier Evaluation

Booth’s algorithm is another signed multiplication algorithm
that multiplies two signed binary numbers. Here, the partial
products of the multipliers are generated by using Modified
Booth Encoding (MBE) algorithm which reduce the number
of partial product rows to 𝑛/2 + 1, thus reducing the size and
enhancing the speed of the reduction tree [18]. Later, some
approaches have been proposed to generate more regular
partial product arrays with 𝑛/2 rows for theMBEmultipliers;
thus the area, delay, and power consumption of the reduction
tree, as well as the whole MBE multiplier, have been reduced
[19].

In this work, in order to explore the applicability of
the proposed techniques to the MBE multipliers, we have
implemented the MBE with the recent HPM-based reduc-
tion. The experimental results for the 32-b HPM-based MBE
multiplier, without and with the techniques proposed in this
work are shown in Table 8. It shows 11% speed improvement
than the regular MBE multiplier with 10% power overhead.
Referring to the results depicted in Figures 9 and 10 with
increasing bit size, the speed improvement will increase,
power overhead decrease, and the PDP reduce. The MBE
in Table 8 has a rating of about 82 TOPS/W ±%1 which is

VLSI Design 11

Table 8: Performance of 32-b MBE multiplier.

Word size Multiplier Delay (ns) Area (𝜇m2) Power (𝜇W)

32 Regular 2.39 14,966 5.06
Proposed 2.19 15,721 5.58

30

25

20

15

10

5

0

−5
16 32 64

Word size

HPM
Dadda
Wallace

Re
du

ct
io

n
(%

)

Figure 10: Power-delay-product comparison.

nearly half of the proposed 32-b Dadda based Baugh-Wooly
multiplier.

7. Conclusion

We have successfully achieved faster column compression
and fast final addition using hybrid final adder structure.
With increasing word size, the percentage reduction of the
delay increases; at the same time the percentage overhead of
the area and power decreases. Actually, there is area reduction
in case of the proposed 64-b D, H multipliers. The proposed
16-b, 32-b, and 64-b multipliers have PDP lower than the
original multipliers and are, therefore, energy efficient. We
have good reasons to believe that for bit sizes greater than
or equal to 128, significant speeds can be achieved without
any area or power overhead; that is, the 128-bit multiplier
would be not only fast but also area, power, and energy
efficient. The speed improvements are significant. Also, we
have proved that the proposed techniques improve the
performance of different column compression multipliers.
These design techniques can be implemented with any type
of parallel multipliers and even the MBE multipliers of bit
sizes greater than 32-b to achieve faster performance without
significant area and power overhead.

Disclosure

This work was carried out at the Integrated Circuit Design
Laboratories, VIT University, Vellore, India.

References

[1] K. C. Bickerstaff, Optimization of Column Compression Multi-
pliers [Ph.D. thesis], Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, Tex, USA,
2007.

[2] B. Parhami, Computer Arithmetic: Algorithms and Hardware
Designs, Oxford University Press, New York, NY, USA, 2nd
edition, 2010.

[3] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transac-
tions on Electronic Computers, vol. EC-13, pp. 14–17, 1964.

[4] L. Dadda, “Some schemes for parallel multipliers,” Alta Fre-
quenza, vol. 34, pp. 349–356, 1965.

[5] V. G. Oklobdzija, D. Villeger, and S. S. Liu, “A method for
speed optimized partial product reduction and generation of
fast parallel multipliers using an algorithmic approach,” IEEE
Transactions on Computers, vol. 45, no. 3, pp. 294–306, 1996.

[6] K. C. Bickerstaff, E. E. Swartzlander, andM. J. Schulte, “Analysis
of column compression multipliers,” in Proceedings of the 15th
IEEE Symposium on Computer Arithmetic, pp. 33–39, June 2001.

[7] W. J. Townsend, E. E. Swartzlander, and J. A. Abraham, “A com-
parison of Dadda and Wallace multiplier delays,” in Advanced
Signal Processing Algorithms, Architectures, and Implementa-
tions XIII, vol. 5205 of Proceedings of the SPIE, pp. 552–560,
August 2003.

[8] H. Eriksson, P. Larsson-Edefors, M. Sheeran, M. Själander, D.
Johansson, andM. Schölin, “Multiplier reduction tree with log-
arithmic logic depth and regular connectivity,” in Proceedings of
the IEEE International Symposium on Circuits and Systems, pp.
4–8, May 2006.

[9] M. Själander and P. Larsson-Edefors, “The case for HPM
based Baugh-Wooley multipliers,” Tech. Rep. 08-8, Chalmers
University of Technology, Goteborg, Sweden, 2008.

[10] C. R. Baugh and B. A. Wooley, “A two’s complement parallel
array multiplication algorithm,” IEEE Transactions on Comput-
ers, vol. 22, pp. 1045–1047, 1973.

[11] M. Själander and P. Larsson-Edefors, “High-speed and low-
powermultipliers using the Baugh-Wooley algorithm andHPM
reduction tree,” in Proceedings of the 15th IEEE International
Conference on Electronics, Circuits and Systems (ICECS ’08), pp.
33–36, September 2008.

[12] V. G. Oklobdzija and D. Villeger, “Improving multiplier design
by using improved column compression tree and optimized
final adder in CMOS technology,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 3, no. 2, pp. 292–301,
1995.

[13] P. F. Stelling and V. G. Oklobdzija, “Design strategies for
optimal hybrid final adders in a parallel multiplier,” Journal
of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 14, no. 3, pp. 321–331, 1996.

[14] B. Ramkumar, H. M. Kittur, and P. M. Kannan, “ASIC imple-
mentation of modified faster carry save adder,” European
Journal of Scientific Research, vol. 42, no. 1, pp. 53–58, 2010.

[15] B. Ramkumar and H. M. Kittur, “Low-power and area-efficient
carry select adder,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 2, pp. 371–375, 2012.

[16] B. Ramkumar and H. M. Kittur, “Optimal final carry prop-
agate adder design for parallel multipliers,” http://arxiv.org/
abs/1110.3584.

[17] Y. He, C. H. Chang, and J. Gu, “An area efficient 64-bit
square root carry-select adder for low power applications,” in

12 VLSI Design

Proceedings of the IEEE International Symposium onCircuits and
Systems (ISCAS ’05), vol. 4, pp. 4082–4085, May 2005.

[18] M. Själander and P. Larsson-Edefors, “High-speed and low-
powermultipliers using the Baugh-Wooley algorithm andHPM
reduction tree,” in Proceedings of the 15th IEEE International
Conference on Electronics, Circuits and Systems (ICECS ’08), pp.
33–36, September 2008.

[19] S. R. Kuang, J. P. Wang, and C. Y. Guo, “Modified booth mul-
tipliers with a regular partial product array,” IEEE Transactions
on Circuits and Systems II, vol. 56, no. 5, pp. 404–408, 2009.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

