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Abstract: Dispersion causes optical pulses broadening and must be compensated for in long-distance high-speed 
optical data transmission systems. We investigate optical properties of micro structured fiber with 5-fold symmetric 
quasicrystal lattice of air-holes in a silica matrix for the first time. Dual-Concentric core Photonic Quasicrystal Fiber 
(DC-PQF) lattices with varying hole diameters were investigated and curves for the effective index, dispersion 
parameter and confinement losses were calculated by finite element method. For dispersion compensation purpose, 
we have proposed a novel 5-fold PQF with a high negative dispersion values ≈ 16,000 ps/(nm-km) could be reached 
for the wavelength around 1310 nm. 
 
Keywords: Dispersion Compensation Fiber (DCF), Finite Element Analysis (FEA), five-fold symmetry, Photonic 

Quasi-crystal Fiber (PQF) 
 

INTRODUCTION 
 

The control of Chromatic Dispersion (CD) is 
crucial for optical networks and nonlinear applications. 
Single-mode fibers, used in high-speed optical 
networks, are subject to chromatic dispersion that 
causes pulse broadening depending on wavelength and 
Polarization Mode Dispersion (PMD) depending on 
polarization states (Zografopoulos et al., 2011). The 
signal degrades and limits the distance a digital signal 
can travel before needing regeneration or 
compensation. An optical network, operated at 1550 nm 
using a standard ITU G.652 fiber having chromatic 
dispersion of 17 ps/(nm-km) curtails to a maximum 
transmission distance of 60 km. Penalties incurred by 
chromatic dispersion can be minimized using negative 
Dispersion Compensating Fibers (DCF). The 
commercial dispersion compensation fibers usually 
have chromatic dispersion of -100 to -300 ps/(nm-km) 
(Birks et al., 1999; Chin-Ping et al., 2008). To ensure 
higher negative dispersion, doped high-index core and 
small effective mode area are widespread in DCF 
designs, eventually culminating higher scattering loss 
and nonlinear effects. Photonic Crystal Fibers (PCF) 
can speculate very high negative dispersion due to high 
index difference between core and conformable 
cladding. PCF structures with high index inner core and 
a defected ring of reduced holes in the cladding 
comparable to dual core geometries have accomplished 
dispersion as high as -2200 ps/(nm-km) (Gerome et al., 
2004; Abdur Razzak et al., 2010). Doping of higher 
percentage of GeO2 leads to interference of higher order 
modes inducing modal noise. Quasi-periodic structures 

are self-similar lattice  generated  by  inflation-deflation 
procedure of matching rules with long-range order with 
no periodicity. It has been evident that quasi-periodic 
structures can give rise to unusual phenomena and 
desired properties like large cut off ratio for endlessly 
single  mode  operation,  ultra-flat  dispersion  (Jianfei 
et al., 2013), etc., not been observed in periodic 
structures (Zoorob et al., 2000; Kim et al., 2007; Kim 
and Kee, 2009; Fleming, 1984).  

To realize dispersion compensation, in this 
research paper, we propose a 5-fold Dual-Concentric-
core Photonic Quasi crystal Fiber (DC-PQF), designed 
to achieve high negative dispersion control over a wide 
range of telecom wavelength with symmetrical mode 
confinement and improved effective mode area.  
 

DESIGN METHODOLOGY 
 

We have illustrated the cross section of 5-fold DC-
PQF in Fig. 1. The PQF structure is formed by two 
types of rhombic tiles, thin tile with angles of 36 and 
144 and thick tile with angles of 72 and 108. The 
resulting connected space-filling packing of unit cells is 
called Penrose lattice. The inner core and the 
surrounding air holes are constructed on the base of 2-
dimenstional Penrose lattice. The inner core of PQF, 
with a diameter of 1.8 µm (dcore) is doped with very low 
concentration of Germanium contributing an index 
difference of 1.92%. The outer defected core is a pure 
fused silica core formed by eliminating the second ring 
of 15 air holes. In our analysis the refractive index of 
fused silica as a function  is calculated using sellmeier 
equation (Fleming, 1984): 



 
 

Res. J. App. Sci. Eng. Technol., 9(9): 786-791, 2015 
 

787 

 
 
Fig. 1: Cross section of proposed 5-fold symmetric DC-PQF 

with d1 = 2.2 µm, d2 = 1.8 µm, d3 = 0.7 µm and the 
inner core diameter dcore = 1.8 µm doped with 
germanium 
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where, λ is the wavelength of incident light and n is the 
refractive index of silica. The coefficient of Sellmeier 
“Ai” is the oscillator strengths of transitions and “Bi” is 
the squares of the respective transition energies (as 
photon wavelengths). We set A1 = 0.96166300, A2 = 
0.407942600, A3 = 0.897479400, B1 = 0.00467914826, 
B2 = 0.0135120631 and B3 = 97.9340025 for fused 
silica in our calculations, respectively. 

Inner cladding is formed between the two cores 
with hole diameter of 2.2 µm (d1). We have maintained 
2.2 µm between core to first cladding ring and  there by 
the lattice constant or pitch () was computed to be 
2.609 µm, since lattice was constructed as 5 fold 
symmetry. In this design, we have designated outer 
cladding air holes with two different diameters 1.8 µm 
(d2) and 0.7 µm (d3). The air hole in the cladding 
depresses the average index of the cladding region and 
confines light within the central core (Aliramezani and 
Mohammad Nejad, 2010). The highest negative 
dispersion can be tailored with suitable design of these 
three parameters d1, d2 and d3 and with careful doping 
concentration of core diameter the phase matching peak 
wavelength can be shifted to a commodious value. The 
air filling ratio of the lattice with 0.84 (d1/), 0.69 
(d2/) and 0.27 (d3/) for inner and the outer core is 
maximized by the quasilattice distribution.  

We employed Finite Element Method (FEM) with 
anisotropic Perfectly Matched Layers (PML) to assess 
the effective index of the core mode in PCF. Many 
optical properties such as Dispersion parameter (D), 
group velocity dispersion (2), confinement loss and 
birefringence and so on can be numerically 
investigated. The field distribution is observed along 
with the real and imaginary part of neff. By including 
PML, the resultant fully vectorial wave equation is 
derived from the Maxwell’s equations as: 
 

    1 2
0 0

PML PML
E k E                         (2) 

 
where, k0 is the free space wave number and E is the 
electric field vector. The parameters [µ]PML and []PML 

are the permittivity and permeability tensors of the 
PML regions, respectively. 

 

 
 

Fig. 2: Variation of effective refractive index with wavelength for DC-PQF, a solid curve corresponds to a fiber with 
fundamental core and dashed cure represents outer mode. Inset figure shows the changeover of modes 
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Fig. 3: The effective area of the inner core mode and the outer 
core mode, showing drastic change during the phase 
matching conditions 

 
Figure 2 shows the variation of effective refractive 

index (neff) of fundamental inner core mode and second 
order mode of outer core with reference to wavelength. 
It is found that the effective refractive index of the inner 
core mode and outer core mode matches with each 
other at phase matching wavelength (p). Before the 
phase matching wavelength (<p), the field 
distribution of the inner core mode is confined within 
the central core and is a Gaussian shape. After the 
phase matching wavelength (>p), the fundamental 
mode field distribution is in the outer core region.  

The splicing loss is attributed to the mismatch 
between  the  two  modes  of  PCF-SMF  splices  
(Kliros et al., 2007). The splicing loss , caused by 
mode conversion could be calculated by the calculating 
the overlap integral: 
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where, EPCF and ESMF are the transverse electric-field 
distributions of the two modes in PCF and SMF, 
respectively. In order to take the effective mode area 
into consideration, it is evaluated, according to: 
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where, Et is transverse electric field intensity of core 
mode and the integrals are over the entire cross section 
of the dual-core PCF.  

We can observe in the Fig. 2 fundamental mode 
field distribution confined within the core and the 
second order mode trapped within the outer core twitch 

towards each other as the operating wavelength 
changes.  It  is  evident  that  at  a  point  of  inflexion  
(p = 1.31 µm) slope of effective refractive index 
changes due to coupling of mode energy from inner to 
outer and contrariwise. At phase matching condition the 
effective mode field area of 3.2 µm2 inflates to a very 
large value of 80.1 µm2. The confinement loss is 
deduced from the value of neff as: 
 

Confinement Loss = 8.686 Im [k0 neff]          (5) 
 
in dB/m, where Im stands for the imaginary part of 
effective refractive index. The confinement loss for the 
inner core mode at 1.28 µm is 2.0×10-6 dB/m increases 
to 1.27×10-3 dB/m at phase matching wavelength. The 
splicing loss with standard SMF28 is minimized to a 
large extent as the effective mode area is in agreement 
with single mode fiber (White et al., 2001). After the 
phase matching wavelength 1.31 µm the inner core 
fundamental mode totally relocates to outer core and 
vice versa. Even though the analysis is carried out for 
many phase matching wavelength, for discussion 
purpose 1.31 µm is taken into account.  

Figure 3 shows the effective area of the confined 
inner core mode as a function of wavelength. Its 
noteworthy to find inner core-mode has an effective 
area of 1.68 m2 at the wavelength of 1.28 m 
increases suddenly to 29.34 m2 after the phase 
matching wavelength of 1.31 m. Similarly for the 
outer core mode it decreases from 29.79 to 1.7 m2 
after the matching conditions (Sivabalan and Raina, 
2011).  

The dispersion of the PQF can be expressed as the 
sum of material dispersion and waveguide dispersion 
approximately. The material dispersion is also taken 
into consideration, since the core radius is doped with 
germanium. As the effective refractive index (neff) is 
estimated as a function of wavelength, then dispersion 
parameter can be computed from the Eq. (6), as: 
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The dispersion value becomes maximum if the 

wavelength matches the phase matching wavelength 
(Subbaraman et al., 2007; Zhihua et al., 2008): 
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We can infer from the above equations the peak 
dispersion totally depends on the coupling coefficient  
and the index slope between the inner core mode and 
the cladding mode at phase matching wavelength (p) 
(Zhao-yuan et al., 2009). From the Eq. (7) and (8) it’s 
evident that, if the inner-core mode and the outer-core 
mode are easy to couple, a big coupling constant ߢ is 
obtained, leading to a low peak dispersion value and a 
broad FWHM. Instead, if there is a hard coupling 
between the two modes, ߢ is small, leading to a high 
peak  dispersion  value  and  a  narrow FWHM (Habib 
et al., 2014; Subbaraman et al., 2007). The dispersion 
value near the phase matching condition p = 1.31 µm 
is observed to be -15,935 ps/(nm.km).  
 

RESULTS 
 

One can examine that the phase-matching 
wavelength shifts as a function of doping percentage, 
further the radius of first cladding ring is varied 
showing a very high deviation in the dispersion 
parameter.  From  the  Fig. 4  it  is  evident  that  when  
d1 = 2.0 µm, d2 = 2.0 µm and d3 = 0.7 µm, the phase 
matching wavelength is at 1.44 µm for an index 
difference of 1.92%. When index difference is 
increased, the phase matching value relocates towards 
higher wavelength of 1.451 and 1.479 µm, respectively 
for 1.95 and 1.98%. The dispersion value for the above 
index variation falls at -7,514, -7,617 and -6,835 
ps/(nm-km), respectively. Eventually, when d1 = 2.2 µm 
d2 = 2.0 µm and d3 = 0.7 µm the dispersion parameter 
takes high values of -15,881, -17,241 and -16,291 
ps/(nm-km), respectively but the phase matching 

wavelength decreasing to 1.309, 1.319 and 1.33 µm, 
respectively (Ni et al., 2004).  

An interesting behavior is that the dispersion 
parameters get shifted even when the diameter of d2 and 
d3 is altered (Han et al., 2014). In Fig. 5 maintaining the 
values of d1 = 2.2 µm, d2 = 2.0 µm and d3 was increased 
from 0.7 µm to 0.8 µm, the phase-matching wavelength 
was increased from 1.31 µm to be centred around 1.345 
µm with dispersion rising to -18,164 ps/(nm-km). 
Likewise,  when  d2  was  decreased  to  1.8 µm  with  
d1 = 2.2 µm and d3 = 0.7 µm, the phase matching 
wavelength decreased to 1.28 µm with an increase in 
chromatic dispersion around -20,985 ps/(nm-km). We 
investigated various combination of diameter for the d2 
and d3 fixing d1 at 2.2 µm and doping with an index 
difference of 1.92%. In the present proposed PQF 
design, the number of holes with diameter d3, d2 and d1 
were 70, 50 and 5, respectively. The dispersion 
properties and phase matching wavelength of the PQF 
varies as a function of air filling fraction, contributed by 
different composition of air holes diameter. The 
dispersion was found to be maximum at 1.325 µm with 
-22,137 ps/(nm-km), for d2 = 1.9 µm and d3 = 0.8 µm. 
It was noteworthy to find that, the bandwidth is narrow 
when dispersion parameter was at its highest value and 
increased as the dispersion decreased (Mejbaul Haque 
et al., 2014). There is generally a trade-off between the 
highest dispersion with bandwidth, which can be 
optimized  by careful selection of holes diameter (Tee 
et al., 2013). 

The proposed structure of the DCF is challenging 
and fabrication using stack and draw method is not 
feasible. Complex structured PCFs with random 
varying holes can be fabricated by preform molded with 
sol-gel   method  (De  Hazan et al., 2002)  and  preform
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Fig. 4: Doping analysis with index difference of 1.92, 1.95 and 1.98%, respectively (a) with d1= 2.0 µm, d2 = 2.0 µm, d3 = 0.7 
µm, (b) with d1 = 2.2 µm, d2 = 2.0 µm, d3 = 0.7 µm 

 

 
 

Fig. 5: Dispersion curves for a DC-PQF with fixed d1 = 2.2 µm and d2 and d3 are variant over range of diameters with different p 
 
drilled with pattern (El-Amraoui et al., 2010) with large 
cross-section is drawn to optimal size is a feasible 
technique in fabricating the complex PCF and PQF 
structures. 
 

CONCLUSION 
 

We have investigated dispersion characteristics of 
a novel 5-fold symmetric dual-core photonic quasi-
crystal fiber. By varying the sizes of air holes, we 
obtained a maximum negative dispersion of -22,137 
ps/(nm-km) for our proposed PQF. We also 
demonstrate   the   wide     range     of     phase-matched  

wavelength (O-Band) with appropriate doping levels 
the range can be extended to other bands. We conclude, 
with optimized structural parameters and with low 
confinement loss, our proposed fiber is envisaged as a 
dispersion compensating fiber.  
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