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Abstract

In this article, we establish coincidence point and common fixed point theorems for

mappings satisfying a contractive inequality which involves two generalized altering

distance functions in ordered complete metric spaces. As application, we study the

existence of a common solution to a system of integral equations.
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Introduction and Preliminaries

There are a lot of generalizations of the Banach contraction-mapping principle in the

literature (see [1-31] and others).

A new category of contractive fixed point problems was addressed by Khan et al. [1].

In this study, they introduced the notion of an altering distance function which is a

control function that alters distance between two points in a metric space.

Definition 1.1. [1] A function �: [0, +∞) ® [0, +∞) is called an altering distance

function if the following conditions are satisfied.

(i) � is continuous.

(ii) � is non-decreasing.

(iii) � (t) = 0 ⇔ t = 0.

Khan et al. [1] proved the following result:

Theorem 1.2. [1]Let (X, d) be a complete metric space, �: [0, +∞) ® [0, +∞) be an

altering distance function, and T : X ® X be a self-mapping which satisfies the follow-

ing inequality:

ϕ(d(Tx, Ty)) ≤ cϕ(d(x, y)) (1:1)

for all x, y Î X and for some 0 <c < 1. Then, T has a unique fixed point.

Letting �(t) = t in Theorem 1.2, we retrieve immediately the Banach contraction

principle.
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In 1997, Alber and Guerre-Delabriere [2] introduced the concept of weak contrac-

tions in Hilbert spaces. This concept was extended to metric spaces in [3].

Definition 1.3. Let (X, d) be a metric space. A mapping T : X ® X is said to be

weakly contractive if

d(Tx, Ty) ≤ d(x, y) − ϕ(d(x, y)), ∀x, y ∈ X,

where �: [0, +∞) ® [0, +∞) is an altering distance function.

Theorem 1.4. [3]Let (X, d) be a complete metric space and T : X ® X be a weakly

contractive map. Then, T has a unique fixed point.

Weak inequalities of the above type have been used to establish fixed point results in

a number of subsequent studies, some of which are noted in [4-7]. In [5], Choudhury

introduced the concept of a generalized altering distance function.

Definition 1.5. [5] A function �: [0, +∞) × [0, +∞) × [0, +∞) ® [0, +∞) is said to be

a generalized altering distance function if the following conditions are satisfied:

(i) � is continuous.

(ii) � is non-decreasing in all the three variables.

(iii) � (x, y, z) = 0 ⇔ x = y = z = 0.

In [5], Choudhury proved the following common fixed point theorem:

Theorem 1.6. [5]Let (X, d) be a complete metric space and S, T : X ® X be two self-

mappings such that the following inequality is satisfied:

�1(d(Sx, Ty)) ≤ ψ1(d(x, y), d(x, Sx), d(y, Ty)) − ψ2(d(x, y), d(x, Sx), d(y, Ty)) (1:2)

for all x, y Î X, where ψ1 and ψ2 are generalised altering distance functions, and F1

(x) = ψ1(x, x, x). Then, S and T have a common fixed point.

Recently, there have been so many exciting developments in the field of existence of

fixed point in partially ordered sets (see [8-27] and the references cited therein). The

first result in this direction was given by Turinici [27], where he extended the Banach

contraction principle in partially ordered sets. Ran and Reurings [24] presented some

applications of Turinici’s theorem to matrix equations. The obtained result by Turinici

was further extended and refined in [20-23].

In this article, we obtain coincidence point and common fixed point theorems in

complete ordered metric spaces for mappings, satisfying a contractive condition which

involves two generalized altering distance functions. Presented theorems are the exten-

sions of Theorem 1.6 of Choudhury [5]. In addition, as an application, we study the

existence of a common solution for a system of integral equations.

Main Results

At first, we introduce some notations and definitions that will be used later. The fol-

lowing definition was introduced by Jungck [28].

Definition 2.1. [28] Let (X, d) be a metric space and f, g : X ® X. If w = fx = gx, for

some x Î X, then x is called a coincidence point of f and g, and w is called a point of

coincidence of f and g. The pair {f, g} is said to be compatible if and only if

lim
n→+∞

d(fgxn, gf xn) = 0, whenever {xn} is a sequence in X such that

lim
n→+∞

f xn = lim
n→+∞

gxn = t for some t Î X.
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Let X be a nonempty set and R : X ® X be a given mapping. For every x Î X, we

denote by R-1(x) the subset of X defined by

R−1(x) := {u ∈ X|Ru = x}.

In [19], Nashine and Samet introduced the following concept:

Definition 2.2. [19] Let (X, ≤) be a partially ordered set, and T, S, R : X ® X are

given mappings, such that TX ⊆ RX and SX ⊆ RX. We say that S and T are weakly

increasing with respect to R if for all x Î X, we have

Tx � Sy, ∀y ∈ R−1(Tx)

and

Sx � Ty, ∀y ∈ R−1(Sx).

Remark 2.3. If R : X ® X is the identity mapping (Rx = x for all x Î X), then S and

T are weakly increasing with respect to R implies that S and T are weakly increasing

mappings. It is noted that the notion of weakly increasing mappings was introduced in

[9] (also see [16,29]).

Example 2.4. Let X = [0, +∞) endowed with the usual order ≤. Define the mappings

T, S, R : X ® X by

Tx =

{

x if 0 ≤ x < 1

0 if 1 ≤ x
, Sx =

{√
x if 0 ≤ x < 1

0 if 1 ≤ x

and

Rx =

{

x2 if 0 ≤ x < 1

0 if 1 ≤ x.

Then, we will show that the mappings S and T are weakly increasing with respect to

R.

Let x Î X. We distinguish the following two cases.

• First case: x = 0 or x ≥ 1.

(i) Let y Î R-1(Tx), that is, Ry = Tx. By the definition of T, we have Tx = 0 and then

Ry = 0. By the definition of R, we have y = 0 or y ≥ 1. By the definition of S, in both

cases, we have Sy = 0. Then, Tx = 0 = Sy.

(ii) Let y Î R-1(Sx), that is, Ry = Sx. By the definition of S, we have Sx = 0, and then

Ry = 0. By the definition of R, we have y = 0 or y ≥ 1. By the definition of T, in both

cases, we have Ty = 0. Then, Sx = 0 = Ty.

• Second case: 0 <x < 1.

(i) Let y Î R-1(Tx), that is, Ry = Tx. By the definition of T, we have Tx = x and then

Ry = x. By the definition of R, we have Ry = y2, and then y =
√

x. We have

Tx = x ≤ Sy = S
√

x = x1/4.
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(ii) Let y Î R-1(Sx), that is, Ry = Sx. By the definition of S, we have Sx =
√

x, and then

Ry =
√

x. By the definition of R, we have Ry = y2, and then y = x1/4. We have

Sx =
√

x ≤ Ty = Tx1/4 = x1/4.

Thus, we proved that S and T are weakly increasing with respect to R.

Example 2.5. Let X = {1, 2, 3} endowed with the partial order ≤ given by

�:= {(1, 1), (2, 2), (3, 3), (2, 3), (3, 1), (2, 1)}.

Define the mappings T, S, R : X ® X by

T1 = T3 = 1, T2 = 3;

S1 = S2 = S3 = 1;

R1 = 1, R2 = R3 = 2.

We will show that the mappings S and T are weakly increasing with respect to R.

Let x, y Î X such that y Î R-1(Tx). By the definition of S, we have Sy = 1. On the

other hand, Tx Î {1, 3} and (1, 1), (3, 1) Î≤. Thus, we have Tx ≤ Sy for all y Î R-1(Tx).

Let x, y Î X such that y Î R-1(Sx). By the definitions of S and R, we have R-1(Sx) =

R-1(1) = {1}. Then, we have y = 1. On the other hand, 1 = Sx ≤ Ty = T 1 = 1. Then, Sx

≤ Ty for all y Î R-1(Sx). Thus, we proved that S and T are weakly increasing with

respect to R.

Our first result is as follows.

Theorem 2.6. Let (X, ≤) be a partially ordered set, and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let T, S, R : X ® X be given

mappings, satisfying for every pair (x, y) Î X × X such that Rx and Ry are comparable:

�1(d(Sx, Ty))

≤ ψ1(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty)) − ψ2(d(Rx, Ry), d(Rx, Sx).d(Ry, Ty)),
(2:1)

where ψ1 and ψ2 are generalized altering distance functions, and F1(x) = ψ1(x, x, x).

We assume the following hypotheses:

(i) T, S, and R are continuous.

(ii) TX ⊆ RX, SX ⊆ RX.

(iii) T and S are weakly increasing with respect to R.

(iv) the pairs {T, R} and {S, R} are compatible.

Then, T, S, and R have a coincidence point, that is, there exists u Î X such that Ru =

Tu = Su.

Proof. Let x0 Î X be an arbitrary point. Since TX ⊆ RX, there exists x1 Î X such that

Rx1 = Tx0. Since SX ⊆ RX, there exists x2 Î X such that Rx2 = Sx1.

Continuing this process, we can construct a sequence {Rxn} in X defined by

Rx2n+1 = Tx2n, Rx2n+2 = Sx2n+1, ∀n ∈ N. (2:2)

We claim that

Rxn � Rxn+1, ∀n ∈ N
∗. (2:3)
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To this aim, we will use the increasing property with respect to R for the mappings

T and S. From (2.2), we have

Rx1 = Tx0 � Sy, ∀y ∈ R−1(Tx0).

Since Rx1 = Tx0, x1 Î R-1 (Tx0), and we get

Rx1 = Tx0 � Sx1 = Rx2.

Again,

Rx2 = Sx1 � Ty, ∀y ∈ R−1(Sx1).

Since x2 Î R-1 (Sx1), we get

Rx2 = Sx1 � Tx2 = Rx3.

Hence, by induction, (2.3) holds.

Without loss of the generality, we can assume that

Rxn 	= Rxn+1, ∀n ∈ N
∗. (2:4)

Now, we will prove our result on three steps.

Step I. We will prove that

lim
n→+∞

d(Rxn+1, Rxn+2) = 0. (2:5)

Letting x = x2n+1 and y = x2n, from (2.3) and the considered contraction, we have

�1(d(Rx2n+2, Rx2n+1))

= �1(d(Sx2n+1, Tx2n))

≤ ψ1(d(Rx2n+1, Rx2n), d(Rx2n+1, Sx2n+1), d(Rx2n, Tx2n))

−ψ2(d(Rx2n+1, Rx2n), d(Rx2n+1 , Sx2n+1), d(Rx2n, Tx2n))

= ψ1(d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1))

−ψ2(d(Rx2n+1, Rx2n), d(Rx2n+1 , Rx2n+2), d(Rx2n, Rx2n+1)).

(2:6)

Suppose that

d(Rx2n+1, Rx2n+2) > d(Rx2n, Rx2n+1). (2:7)

Using the property of the generalized altering function, this implies that

ψ1(d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1))

≤ �1(d(Rx2n+2, Rx2n+1)).

Hence, we obtain

�1(d(Rx2n+2, Rx2n+1))

≤ �1(d(Rx2n+2, Rx2n+1))

−ψ2(d(Rx2n+1, Rx2n), d(Rx2n+1, Rx2n+2), d(Rx2n, Rx2n+1)).

This implies that

ψ2(d(Rx2n+1, Rx2n), d(Rx2n+1 , Rx2n+2), d(Rx2n, Rx2n+1)) = 0
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and

d(Rx2n+1, Rx2n) = 0.

Hence, we obtain a contradiction with (2.4). We deduce that

d(Rx2n, Rx2n+1) ≥ d(Rx2n+1, Rx2n+2), ∀n ∈ N
∗. (2:8)

Similarly, letting x = x2n+1 and y = x2n+2, from (2.3) and the considered contraction,

we have

�1(d(Rx2n+2, Rx2n+3))

≤ ψ1(d(Rx2n+1, Rx2n+2), d(Rx2n+1 , Rx2n+2), d(Rx2n+2, Rx2n+3))

−ψ2(d(Rx2n+1, Rx2n+2), d(Rx2n+1, Rx2n+2), d(Rx2n+2 , Rx2n+3)).

(2:9)

Suppose that

d(Rx2n+2, Rx2n+3) > d(Rx2n+1, Rx2n+2). (2:10)

Then, from (2.9) and (2.10), we obtain

�1(d(Rx2n+2, Rx2n+3))

≤ �1(d(Rx2n+2, Rx2n+3))

−ψ2(d(Rx2n+1, Rx2n+2), d(Rx2n+1, Rx2n+2), d(Rx2n+2 , Rx2n+3)).

This implies that

ψ2(d(Rx2n+1, Rx2n+2), d(Rx2n+1 , Rx2n+2), d(Rx2n+2 , Rx2n+3)) = 0

and

d(Rx2n+1, Rx2n+2) = 0.

Hence, we obtain a contradiction with (2.4). We deduce that

d(Rx2n+1, Rx2n+2) ≥ d(Rx2n+2, Rx2n+3), ∀n ∈ N. (2:11)

Combining (2.8) and (2.11), we obtain

d(Rxn+1, Rxn+2) ≥ d(Rxn+2, Rxn+3), ∀n ∈ N. (2:12)

Hence, {d(Rxn+1, Rxn+2)} is a decreasing sequence of positive real numbers. This

implies that there exists r ≥ 0 such that

lim
n→+∞

d(Rxn+1, Rxn+2) = r. (2:13)

Define the function F2: [0, +∞) ® [0, +∞) by

�2(x) = ψ2(x, x, x), ∀x ≥ 0.

From (2.6) and (2.12), we obtain

�1(d(Rx2n+2 , Rx2n+1)) ≤ �1(d(Rx2n+1, Rx2n)) − �2(d(Rx2n+2, Rx2n+1)),

which implies that

�2(d(Rx2n+2 , Rx2n+1)) ≤ �1(d(Rx2n+1, Rx2n)) − �1(d(Rx2n+2, Rx2n+1)). (2:14)
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Similarly, from (2.9) and (2.12), we obtain

�1(d(Rx2n+2, Rx2n+3)) ≤ �1(d(Rx2n+1, Rx2n+2)) − �2(d(Rx2n+2, Rx2n+3)),

which implies that

�2(d(Rx2n+2, Rx2n+3)) ≤ �1(d(Rx2n+1, Rx2n+2)) − �1(d(Rx2n+2, Rx2n+3)). (2:15)

Now, combining (2.14) and (2.15), we obtain

�2(d(Rxk+2, Rxk+1)) ≤ �1(d(Rxk+1, Rxk)) − �1(d(Rxk+2, Rxk+1)), ∀k ∈ N
∗.

This implies that for all n ∈ N
∗, we have

n
∑

k=1

�2(d(Rxk+2, Rxk+1)) ≤
n

∑

k=1

[�1(d(Rxk+1, Rxk)) − �1(d(Rxk+2, Rxk+1))]

= �1(d(Rx2, Rx1)) − �1(d(Rxn+2, Rxn+1))

≤ �1(d(Rx2, Rx1)).

This implies that

+∞
∑

n=1

�2(d(Rxk+2, Rxk+1)) < ∞.

Hence,

lim
n→+∞

�2(d(Rxn+2, Rxn+1)) = 0. (2:16)

Now, using (2.13), (2.16), and the continuity of F2, we obtain

ψ2(r, r, r) = �2(r) = 0,

which implies that r = 0. Hence, (2.5) is proved.

Step II. We claim that {Rxn} is a Cauchy sequence.

From (2.5), it will be sufficient to prove that {Rx2n} is a Cauchy sequence. We pro-

ceed by negation, and suppose that {Rx2n} is not a Cauchy sequence. Then, there exists

ε >0 for which we can find two sequences of positive integers {m(i)} and {n(i)} such

that for all positive integer i,

n(i) > m(i) > i, d(Rx2m(i), Rx2n(i)) ≥ ε, d(Rx2m(i), Rx2n(i)−2) < ε. (2:17)

From (2.17) and using the triangular inequality, we get

ε ≤ d(Rx2m(i), Rx2n(i))

≤ d(Rx2m(i), Rx2n(i)−2) + d(Rx2n(i)−2, Rx2n(i)−1)

+ d(Rx2n(i)−1, Rx2n(i))

< ε + d(Rx2n(i)−2, Rx2n(i)−1) + d(Rx2n(i)−1, Rx2n(i)).

Letting i ® +∞ in the above inequality, and using (2.5), we obtain

lim
i→+∞

d(Rx2m(i), Rx2n(i)) = ε. (2:18)

Again, the triangular inequality gives us

∣

∣d(Rx2n(i), Rx2m(i)−1) − d(Rx2n(i), Rx2m(i))
∣

∣ ≤ d(Rx2m(i)−1, Rx2m(i)).
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Letting i ® +∞ in the above inequality, and using (2.5) and (2.18), we get

lim
i→+∞

d(Rx2n(i), Rx2m(i)−1) = ε. (2:19)

On the other hand, we have

d(Rx2n(i), Rx2m(i)) ≤ d(Rx2n(i), Rx2n(i)+1) + d(Rx2n(i)+1, Rx2m(i))

= d(Rx2n(i), Rx2n(i)+1) + d(Tx2n(i), Sx2m(i)−1).

Then, from (2.5), (2.18), and the continuity of F1, and letting i ® +∞ in the above

inequality, we have

�1(ε) ≤ lim
i→+∞

�1(d(Sx2m(i)−1, Tx2n(i))). (2:20)

Now, using the considered contractive condition for x = x2m(i)-1 and y = x2n(i), we

have

�1(d(Sx2m(i)−1, Tx2n(i)))

≤ ψ1(d(Rx2m(i)−1, Rx2n(i)), d(Rx2m(i)−1, Rx2m(i)), d(Rx2n(i), Rx2n(i)+1))

−ψ2(d(Rx2m(i)−1, Rx2n(i)), d(Rx2m(i)−1, Rx2m(i)), d(Rx2n(i), Rx2n(i)+1)).

Then, from (2.5), (2.19), and the continuity of ψ1 and ψ2, and letting i ® +∞ in the

above inequality, we have

lim
i→+∞

�1(d(Sx2m(i)−1, Tx2n(i))) ≤ ψ1(ε, 0, 0) − ψ2(ε, 0, 0) ≤ �1(ε) − ψ2(ε, 0, 0).

Now, combining (2.20) with the above inequality, we get

�1(ε) ≤ �1(ε) − ψ2(ε, 0, 0),

which implies that ψ2(ε, 0, 0) = 0, that is a contradiction since ε >0. We deduce that

{Rxn} is a Cauchy sequence.

Step III. Existence of a coincidence point.

Since {Rxn} is a Cauchy sequence in the complete metric space (X, d), there exists u

Î X such that

lim
n→+∞

Rxn = u. (2:21)

From (2.21) and the continuity of R, we get

lim
n→+∞

R(Rxn) = Ru. (2:22)

By the triangular inequality, we have

d(Ru, Tu) ≤ d(Ru, R(Rx2n+1)) + d(R(Tx2n), T(Rx2n)) + d(T(Rx2n), Tu). (2:23)

On the other hand, we have

Rx2n → u, Tx2n → u as n → +∞.

Since R and T are compatible mappings, this implies that

lim
n→+∞

d(R(Tx2n), T(Rx2n)) = 0. (2:24)
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Now, from the continuity of T and (2.21), we have

lim
n→+∞

d(T(Rx2n), Tu) = 0. (2:25)

Combining (2.22), (2.24), and (2.25), and letting n ® +∞ in (2.23), we obtain

d(Ru, Tu) ≤ 0,

that is,

Ru = Tu. (2:26)

Again, by the triangular inequality, we have

d(Ru, Su) ≤ d(Ru, R(Rx2n+2)) + d(R(Sx2n+1), S(Rx2n+1)) + d(S(Rx2n+1), Su). (2:27)

On the other hand, we have

Rx2n+1 → u, Sx2n+1 → u as n → +∞.

Since R and S are compatible mappings, this implies that

lim
n→+∞

d(R(Sx2n+1), S(Rx2n+1)) = 0. (2:28)

Now, from the continuity of S and (2.21), we have

lim
n→+∞

d(S(Rx2n+1), Su) = 0. (2:29)

Combining (2.22), (2.28), and (2.29), and letting n ® + ∞ in (2.27), we obtain

d(Ru, Su) ≤ 0,

that is,

Ru = Su. (2:30)

Finally, from (2.26) and (2.30), we have

Tu = Ru = Su,

that is, u is a coincidence point of T, S, and R. This completes the proof.

In the next theorem, we omit the continuity hypotheses on T, S, and R.

Definition 2.7. Let (X,≤, d) be a partially ordered metric space. We say that X is reg-

ular if the following hypothesis holds: if {zn} is a non-decreasing sequence in X with

respect to ≤ such that zn ® z Î X as n ® +∞, then zn ≤ z for all n ∈ N.

Now, our second result is the following.

Theorem 2.8. Let (X,≤) be a partially ordered set, and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let T, S, R : X ® X be given

mappings satisfying for every pair (x, y) Î X × X such that Rx and Ry are comparable,

�1(d(Sx, Ty))

≤ ψ1(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty)) − ψ2(d(Rx, Ry), d(Rx, Sx), d(Ry, Ty)),

where ψ1 and ψ2 are generalized altering distance functions and F1(x) = ψ1(x, x, x).

We assume the following hypotheses:

(i) X is regular.
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(ii) T and S are weakly increasing with respect to R.

(iii) RX is a closed subset of (X, d).

(iv) TX ⊆ RX, SX ⊆ R X.

Then, T, S, and R have a coincidence point.

Proof. From the proof of Theorem 2.6, we have that {Rxn} is a Cauchy sequence in

(RX, d) which is complete, since RX is a closed subspace of (X, d). Hence, there exists

u = Rv, v Î X such that

lim
n→+∞

Rxn = u = Rv. (2:31)

Since {Rxn} is a non-decreasing sequence and X is regular, it follows from (2.31) that

Rxn ≤ Rv for all n ∈ N
∗. Hence, we can apply the considered contractive condition.

Then, for x = v and y = x2n, we obtain

�1(d(Sv, Rx2n+1)) = �1(d(Sv, Tx2n))

≤ ψ1(d(Rv, Rx2n), d(Rv, Sv), d(Rx2n , Rx2n+1))

− ψ2(d(Rv, Rx2n), d(Rv, Sv), d(Rx2n , Rx2n+1)).

Letting n ® +∞ in the above inequality, and using (2.5), (2.31), and the properties of

ψ1 and ψ2, then we have

�1(d(Sv, Rv)) ≤ ψ1(0, d(Rv, Sv), 0) − ψ2(0, d(Rv, Sv), 0)

≤ �1(d(Sv, Rv)) − ψ2(0, d(Rv, Sv), 0).

This implies that ψ2(0, d(Rv, Sv), 0) = 0, which gives us that d(Rv, Sv) = 0, i.e.,

Rv = Sv. (2:32)

Similarly, for x = x2n+1 and y = v, we obtain

�1(d(Rx2n+2, Tv)) = �1(d(Sx2n+1, Tv))

≤ ψ1(d(Rx2n+2, Rv), d(Rx2n+1 , Rx2n+2), d(Rv, Tv))

− ψ2(d(Rx2n+2, Rv), d(Rx2n+1 , Rx2n+2), d(Rv, Tv)).

Letting n ® +∞ in the above inequality, we get

�1(d(Rv, Tv)) ≤ ψ1(0, 0, d(Rv, Tv)) − ψ2(0, 0, d(Rv, Tv))

≤ �1(d(Rv, Tv)) − ψ2(0, 0, d(Rv, Tv)).

This implies that ψ2(0, 0, d(Rv, Tv)) = 0 and then,

Rv = Tv. (2:33)

Now, combining (2.32) and (2.33), we obtain

Rv = Tv = Sv.

Hence, v is a coincidence point of T, S, and R. This completes the proof.

Now, we present an example to illustrate the obtained result given by the previous

theorem. Moreover, in this example, we will show that Theorem 1.6 of Choudhury

cannot be applied.

Example 2.9. Let X = {4, 5, 6} endowed with the usual metric d(x, y) = |x - y| for all

x, y Î X, and ≤:= {(4, 4), (5, 5), (6, 6), (6, 4)}. Clearly, ≤ is a partial order on X.
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Consider the mappings T, S, R : X ® X defined by

T = S =

(

4 5 6

4 6 4

)

and R =

(

4 5 6

4 5 6

)

.

We will show that T and S are weakly increasing with respect to R. In the case under

study, we have to check that Tx ≤ T(Tx) for all x Î X.

For x = 4, we have

T4 = 4 � T(T4) = T4 = 4.

For x = 5, we have

T5 = 6 � T(T5) = T6 = 4.

For x = 6, we have

T6 = 4 � T(T6) = T4 = 4.

Thus, we have proved that T and S are weakly increasing with respect to R.

Now, we will show that (X, ≤, d) is regular.

Let {zn} be a non-decreasing sequence in X with respect to ≤ such that zn ® z Î X

as n ® +∞. Then, we have zn ≤ zn+1, for all n ∈ N.

• If z0 = 4, then z0 = 4 ≤ z1. From the definition of ≤, we have z1 = 4. By induction,

we get zn = 4 for all n ∈ N and z = 4. Then, zn ≤ z for all n ∈ N.

• If z0 = 5, then z0 = 5 ≤ z1. From the definition of ≤, we have z1 = 5. By induction,

we get zn = 5 for all n ∈ N and z = 5. Then, zn ≤ z for all n ∈ N.

• If z0 = 6, then z0 = 6 ≤ z1. From the definition of ≤, we have z1 Î {6, 4}. By induc-

tion, we get zn Î {6, 4} for all n ∈ N. Suppose that there exists p ≥ 1 such that zp = 4.

From the definition of ≤, we get zn = zp = 4 for all n ≥ p. Thus, we have z = 4 and zn

≤ z for all n ∈ N. Now, suppose that zn = 6 for all n ∈ N. In this case, we get z = 6, and

zn ≤ z for all n ∈ N. Thus, we proved that in all the cases considered, we have zn ≤ z

for all n ∈ N. Then, (X, ≤, d) is regular.

Now, define the functions ψ1, ψ2 : [0, +∞) × [0, +∞) × [0, +∞) ® [0, +∞) by

ψ1(t, u, v) =
1

4
(t + u + v), for all t, u, v ≥ 0

and

ψ2(t, u, v) =
1

16
(t + u + v), for all t, u, v ≥ 0.

Clearly, ψ1 and ψ2 are the generalized altering distance functions, and for every x, y

Î X such that Rx ≤ Ry, inequality (2.1) is satisfied.

Now, we can apply Theorem 2.8 to deduce that T, S, and R have a coincidence point

u = 4. Note that u is also a fixed point of T since S = T, and R is the identity mapping.
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On the other hand, taking x = 4 and y = 5, we get

ψ1(d(4, 5), d(4, S4), d(5, T5)) − ψ2(d(4, 5), d(4, S4), d(5, T5))

= ψ1(1, 0, 1) − ψ2(1, 0, 1)

=
1

2
−

1

8
=

3

8

< �1(d(S4, T5)) = �1(2) =
3

2
.

Thus, Inequality (1.2) is not satisfied for x = 4 and y = 5. Then, Theorem 1.6 of

Choudhury [5] cannot be applied in this case.

If R : X ® X is the identity mapping, we can deduce easily the following common

fixed point results.

The next result is an immediate consequence of Theorem 2.6.

Corollary 2.10. Let (X, ≤) be a partially ordered set, and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let T, S : X ® X be given

mappings satisfying for every pair (x, y) Î X × X such that x and y are comparable.

Then,

�1(d(Sx, Ty)) ≤ ψ1(d(x, y), d(x, Sx), d(y, Ty)) − ψ2(d(x, y), d(x, Sx), d(y, Ty)),

where ψ1 and ψ2 are generalized altering distance functions and F1(x) = ψ1(x, x, x).

We assume the following hypotheses:

(i) T and S are continuous.

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point, that is, there exists u Î X such that u =

Tu = Su.

The following result is an immediate consequence of Theorem 2.8.

Corollary 2.11. Let (X, ≤) be a partially ordered set and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let T, S : X ® X be given

mappings satisfying for every pair (x, y) Î X × X such that x and y are comparable.

Then,

�1(d(Sx, Ty)) ≤ ψ1(d(x, y), d(x, Sx), d(y, Ty)) − ψ2(d(x, y), d(x, Sx), d(y, Ty)),

where ψ1 and ψ2 are generalised altering distance functions and F1(x) = ψ1(x, x, x).

We assume the following hypotheses:

(i) X is regular.

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point.

A number of fixed point results may be obtained by assuming different forms for the

functions ψ1 and ψ2. In particular, fixed point results under various contractive condi-

tions may be derived from the above theorems. For example, if we consider

ψ1(x, y, z) = k1xs + k2ys + k3zs,

ψ2(x, y, z) = (1 − k)[k1xs + k2ys + k3zs],
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where s >0 and 0 < k = k1 + k2 + k3 <1, then we obtain the following results.

The next result is an immediate consequence of Corollary 2.10.

Corollary 2.12. Let (X, ≤) be a partially ordered set, and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let T, S : X ® X be given

mappings satisfying for every pair (x, y) Î X × X such that x and y are comparable.

Then,

[d(Sx, Ty)]s ≤ k1[d(x, y)]s + k2[d(x, Sx)]s + k3[d(y, Ty)]s,

where s >0 and 0 < k = k1 + k2 + k3 <1. We assume the following hypotheses:

(i) T and S are continuous.

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point, that is, there exists u Î X such that u =

Tu = Su.

The next result is an immediate consequence of Corollary 2.11.

Corollary 2.13. Let (X, ≤) be a partially ordered set, and suppose that there exists a

metric d on X such that (X, d) is a complete metric space. Let T, S : X ® X be given

mappings satisfying for every pair (x, y) Î X × X such that x and y are comparable.

Then,

[d(Sx, Ty)]s ≤ k1[d(x, y)]s + k2[d(x, Sx)]s + k3[d(y, Ty)]s, (2:34)

where s >0 and 0 < k = k1 + k2 + k3 <1. We assume the following hypotheses:

(i) X is regular.

(ii) T and S are weakly increasing.

Then, T and S have a common fixed point.

Remark 2.14. Other fixed point results may also be obtained under specific choices

of ψ1 and ψ2.

Application

Consider the integral equations:

u(t) =

∫ T

0

K1(t, s, u(s)) ds + g(t), t ∈ [0, T],

u(t) =

∫ T

0

K2(t, s, u(s)) ds + g(t), t ∈ [0, T],

(3:1)

where T >0.

The purpose of this section is to give an existence theorem for common solution of

(3.1) using Corollary 2.13. This application is inspired in [9].

Previously, we have considered the space C(I)(I = [0, T]) of continuous functions

defined on I. Obviously, this space with the metric given by

d(x, y) = sup
t∈I

|x(t) − y(t)|, ∀ x, y ∈ C(I),
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is a complete metric space. C(I) can also be equipped with the partial order ≤ given

by

x, y ∈ C(I), x � y ⇔ x(t) ≤ y(t), ∀ t ∈ I.

Moreover, in [20], it is proved that (C(I), ≤) is regular.

Now, we will prove the following result.

Theorem 3.1. Suppose that the following hypotheses hold:

(i) K1, K2 : I × I × ℝ ® ℝ, and g : ℝ ® ℝ are continuous;

(ii) for all t, s Î I, we have

K1(t, s, u(t)) ≤ K2

(

t, s,

∫ T

0

K1(s, τ , u(τ )) dτ + g(s)

)

,

K2(t, s, u(t)) ≤ K1

(

t, s,

∫ T

0

K2(s, τ , u(τ )) dτ + g(s)

)

;

(iii) there exists a continuous function p : I × I ® ℝ+ such that

|K1(t, s, x) − K2(t, s, y)| ≤ p(t, s)(x − y)

for all t, s Î I and x, y Î ℝ such that x ≥ y;

(iv) sup
t∈I

∫ T
0 p(t, s) ds = α < 1.

Then, the integral equations (3.1) have a solution u* Î C(I).

Proof. Define T, S : C(I) ® C(I) by

Tx(t) =

∫ T

0

K1(t, s, x(s)) ds + g(t), t ∈ I,

and

Sx(t) =

∫ T

0

K2(t, s, x(s)) ds + g(t), t ∈ I.

Now, we will prove that T and S are weakly increasing. From (ii), for all t Î I, we

have

Tx(t) =

∫ T

0

K1(t, s, x(s)) ds + g(t)

≤
∫ T

0

K2

(

t, s,

∫ T

0

K1(s, τ , x(τ )) dτ + g(s)

)

ds + g(t)

=

∫ T

0

K2(t, s, Tx(s)) ds + g(t)

= STx(t)
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Similarly,

Sx(t) =

∫ T

0

K2(t, s, x(s)) ds + g(t)

≤
∫ T

0

K1

(

t, s,

∫ T

0

K2(s, τ , x(τ )) dτ + g(s)

)

ds + g(t)

=

∫ T

0

K1(t, s, Sx(s)) ds + g(t)

= TSx(t).

Then, we have Tx ≤ STx and Sx ≤ TSx for all x Î C(I). This implies that T and S are

weakly increasing.

Now, for all x, y Î C(I) such that x ≤ y, by (iii) and (iv), we have

|Sx(t) − Ty(t)| ≤
∫ T

0

|K2(t, s, x(s)) − K1(t, s, y(s))| ds

≤
∫ T

0

p(t, s)(y(s) − x(s)) ds

≤ d(x, y)

∫ T

0

p(t, s) ds

≤ αd(x, y).

This implies that for all x, y Î C(I) such that x ≤ y,

d(Sx, Ty) ≤ αd(x, y).

Hence, the contractive condition required by Corollary 2.13 is satisfied with s = 1, k1

= a, and k2 = k3 = 0.

Now, all the required hypotheses of Corollary 2.13 are satisfied. Then, there exists u*

Î C(I), a common fixed point of T and S, that is, u* is a solution to (3.1).
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