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Abstract 

Rapid development of Cloud Computing and its increasing popularity in recent years has driven many commercial cloud 
providers in the market. Cloud service providers have a lot of heterogeneity in the resources they use. They have their own 
servers, different cloud infrastructures and APIs and methods to access the cloud resources. Lack of standards has caused the 
collaboration and portability of cloud services a very complex task. In this paper we have identified the challenges involved in 
portability of cloud apps and analyzed the existing techniques for portability at platform level. In this paper, we propose an 
approach using Model Driven Engineering to develop SaaS applications like CRM in a cloud-agnostic way. We introduce 
DSkyL, an eclipse plugin for cloud application development using feature models and domain model analysis, which would 
support construction, customization, development and deployment of cloud application components across multiple clouds. It 
also reduces the application development time drastically. This paper aims to sketch the architecture of DSkyL and the major 
steps involved in the development and deployment process. 
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1. Introduction 

   Cloud computing is an emerging computing terminology which offers benefits for users to access their application 
anytime, anywhere. It also offers certain advantages such as high scalability, reduced IT costs, self-service on 
demand, and pay-as-you-use price models which has gained the attention of today’s IT world. A large number of 
small and medium businesses are now moving to cloud to reduce their infrastructure and operational cost and also to 
avail cloud services like elasticity and scalability. The increasing popularity has caused rapid growth in the cloud 
market and vendors in the cloud market have proliferated in the recent years, including tech giants like Amazon, 
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Google, Microsoft and SalesForce[1]. Each of them promotes its own cloud infrastructure, and hence 
incompatibility in standards and formats to access the cloud has become a big issue. Such incompatibilities prevent 
them from being widely accepted. Many organizations have found it difficult to adopt cloud-based solutions, 
particularly because of the vender lock-in problem [2][3] and the huge investment and effort required to transform 
non cloud applications to cloud. One of the main obstacles faced by organizations is the lack of a general process to 
help application developers in selecting the cloud provider and services best suited for their application [4], but also 
in carefully. However, different cloud application platform offerings are characterized by considerable 
heterogeneity. Because of incompatibilities, users who develop applications on a specific platform may encounter 
significant problems when trying to deploy their application in a different environment [5]. Hence, the need for 
multiple clouds to support same application and be able to work seamlessly i.e. cloud portability, is rising [6]. 
  
   This paper aims to propose an approach for cloud application portability.  DSkyL is a development platform 
(PaaS), a key benefit is that users can develop and deploy applications without the burden of setting up and 
maintaining the necessary programming environment and infrastructure that is supported by the different cloud 
configurations. DSkyL also helps the developers to decrease development effort and time. 
 
   The rest of the paper is organized as follows: In section 2 we describe the related work. Section 3 talks about the 
challenges in portability of cloud applications. In Section 4 we have presented our proposed method, architectural 
and implementation overview. Section 5 concludes the paper. 

2. Related Work 

NIST defines portability as the ability of customers to move their data or applications across multiple cloud 
environments at low cost and minimal disruption [8]. Cloud portability, or the ability to migrate a cloud-deployed 
asset to a different provider, is a direct benefit of overcoming vendor lock-in [9]. Given the different characteristics 
of each cloud service model, the concept of portability depends on the service model adopted. According to [10], 
IaaS portability is the migration of virtual machines. PaaS portability is the migration of code and data [11]. 
 
   Ensuring portability across cloud providers would eliminate the vendor lock-in problem [12] and would allow 
consumers to switch between vendors according to their needs. In turn, this would increase consumers’ trust towards 
cloud computing and public cloud services. 

2.1. Existing Approaches for Paas Portability 

Recently, several initiatives have emerged that define approaches to support application migration to the cloud. A 
comparative study of different approaches is summarized in this section. 
 
1) Open Cloud Computing Interface (OCCI): OCCI provides set of specifications for cloud tasks like deployment, 
dynamic scaling and monitoring across different cloud providers. It offers an API which is supported by Eucalyptus, 
OpenNebula and OpenStack. Hence, OCCI can be classified as a standardized approach for Open Cloud Computing 
Interface [13]. 
 
2) SimpleCloud: SimpleCloud is an API that allows to use storage services independent of cloud platforms. It offers 
two key services (i) File Storage Service and (ii) Document Storage Service. The File Storage Service allows file 
operations such as storing, reading, deleting, copying etc. It allows developers to access storage services from 
Amazon, Microsoft Azure, Rackspace and others, using the same application code. The Document Storage Service 
provides developer a single API that abstracts the interfaces of all major databases. SimpleCloud can be considered 
as an intermediary layer for decoupling applications from directly accessing the storage mechanisms of specific 
platforms [14]. 
 

3) mOSAIC: mOSAIC provides an Agnostic, vendor neutral, API at PaaS level and an Open Source Platform, 
with adapters to most notable Cloud Providers’ APIs. It also deals with Cloud Agency for multi Cloud Services 
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brokering, SLA monitoring and dynamic reconfiguration. mOSAIC also proposes a machine-readable Cloud 
Ontology. At design-time, using these API developers can create applications that consist of multiple cloud 
components. A cloud component for example, can be a Java application. At this point the application is not bound to 
any specific platform. mOSAIC platform decomposes the application into the various cloud components and 
deploys each one on the cloud platform that provides the best implementation for the cloud component’s 
functionality [15].  

 
4) OASIS TOSCA: TOSCA aims to enable interoperable infrastructure cloud services and description of 

application, the relationships between parts of the service, and the operational behavior of these services. TOSCA 
will also make it possible for higher-level operational behavior to be associated with cloud infrastructure 
management. The TOSCA specification uses TOSCA xml and xs namespace prefixes [16].  

 
5) MODA Clouds: Model Driven approach for Design and Implementing application on multiple cloud allows 

allow developers to design software systems in a cloud-agnostic way and to be supported by model transformation 
techniques into the process of instantiating the system into specific, possibly, multiple Clouds [17]. During design, 
implementation and deployment, the MODACLOUDS Integrated Development Environment (IDE) supports a 
Cloud-agnostic design of software systems, the semi-automatic translation of design artifacts into code, and the 
automatic deployment on the targeted Clouds.  

 
6) Openshift: OpenShift is a Platform as a Service offered by Red Hat. Openshift is a platform for developers to 

build, test, deploy and run cloud applications [18]. By using this developer can focus only in designing and coding, 
whereas all the infrastructure and middleware management is handled by Openshift. Openshift supports No-Lock-In 
at PaaS level by providing built-in support for Java, Python, PHP, Perl, Ruby and Node.js.  

 
7) ARTIST - ARTIST proposes an approach that starts with the characterization of application from two points of 

view; technical and business of the current legacy application and how the company expects those aspects to be in 
the future to provide a gap  analysis. It is then followed by a technical feasibility analysis and business feasibility 
analysis. Based on this gap analysis using a technical feasibility tool and a business feasibility tool, the migration 
tasks and their effort are recorded, and it also simulates the impact of the modernized application in the organization 
[20]. 

3. Cloud Application Portability Issues 

Portability in the cloud can refer to two different but interlinked aspects:  
 
i) Legacy software’s modernization aimed at exploiting current cloud-based technologies. 
ii) Portability of cloud-ready applications among different cloud platforms and providers. 
 
To proceed with; we have identified the specific points of conflict which arise while an application is ported from 

one cloud platforms to another. We have identified those aspects of an application which need to be addressed 
differently in cloud platforms. In this section we discuss the following few potential conflict points: programming 
languages and frameworks, platform-specific services and platform specific configuration files [19].  

 
a) Programming languages and/or frameworks - Each cloud platform has support for certain language, versions 

and frameworks. The specific programming languages and frameworks that an application has been built will be a 
major concern while porting it to another platform. For example, while Google App Engine (GAE) provides support 
for Python and Java, Amazon supports Java, .NET, PHP, Python and Ruby. 

 
b) Platform specific services –The time taken for application development can be drastically reduced by using 

API’s. Instead of programming every bit of functionality from the ground up, they can integrate it into their 
application by binding to the respective platform APIs.  
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Let us assume that a developer chooses a certain platform in order to develop and deploy the above mentioned 

application. A portability issue arises when the application needs to be ported to a different cloud platform [20].  
There are two cases: 
i) The target platform doesn’t provide the full set of services that the application uses.  In this case the 

developer would need to recreate the missing functionality from scratch on the new target platform. 
ii) The target platform supports the services that the application uses but provides different APIs in order to 

use them. In this case the developer would need to modify the application code and align it with the APIs of the new 
target platform. 

In both cases, the application cannot directly be ported across multiple platforms. The developer needs to modify 
the application in order to be deployable to different platforms. 

c) Platform specific configuration files – Cloud platforms require configuration files in order to instruct the 
hosting environment and execute application unlike traditional software applications.  For example Google App 
Engine uses the “appengine-web.xml” file [20]. The process of adapting the configuration files to each target cloud 
platform adds to the overall overhead of cross-platform deployment of a cloud application. 

4. Proposed Approach 

In this paper we propose an approach which is commonly summarized as “model once, generate anywhere [21]” 
which emphasis on application deployment as well as migration of the application from one cloud to another. Given 
this, several research groups are combining model-driven engineering with cloud computing, including ModaClouds 
and the Advanced Software-Based Service Provisioning and Migration of Legacy Software which is discussed in 
section 2.  

 
    Our solution DSkyL is an eclipse plug-in for modeling, validating and generating platform specific image file for 
a CRM application.  The idea is to provide a default template for the application which can be further refined to add 
or remove features of the application as well as cloud services according to the developer’s or user’s choice. Our 
focus is on reducing the effort and time taken by developers and users in understanding the terminologies used by 
different CRM and cloud vendors. We concentrate on delivering the applications and services in terms of “features” 
which do not require any technical training and can be easily understood by anyone. 

4.1. Why Feature Models and CRM 

     End users and developers have different perspectives about the software [22]. User focuses on the problem 
domain, where system's features are the primary concern. Developer focuses on the solution domain, where life-
cycle artifacts are of importance. Hence there arises a major difficulty in understanding the system because of 
different interest of the user and the developer. A feature is a bundle of system functionality that focuses on the 
system from the user’s perspective. Users generally request new functionality or report defects in existing 
functionality in terms of features. Developers are expected to translate such feature-oriented requests to life-cycle 
artifacts. 
 
    In DSkyL feature model is represented as a feature tree where nodes represent features and edges represent the 
“selection” relationships among features. From a feature model, a specific variation of a product can be derived by 
selecting the desired features based on customer’s requirements and feature relationships can be specified in the 
feature model. 
 
   The traditional approach for using CRM requires purchase of databases, server, necessary hardware and software 
at the customer organization itself. The Maintenance and support costs of these can be very huge every year. The 
customer organization has to dedicate people to handle all the upgrades as well as backup systems.  
 
   The hosted approach allows an organization to host their application in the space on a server owned or leased for 
use. The customer purchases the software licenses but is not responsible for maintaining the operating system, 
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database, or a disaster recovery plan. Those aspects would be taken care by the web hosting company. 
Customizations may or may not be performed by the hosting provider.  
 
  The SaaS approach does not require the purchase of server hardware or software. The software, along with 
maintenance and support and disaster recovery, are provided via a subscription and delivered over the Internet. 
Software upgrades can be continuous so customers are not forced to plan for and spend time on upgrade efforts. 
Customizations are performed by the provider at the customer’s direction.  
 
  Even though Cloud Computing has transformed the way systems are developed, vendor lock-in is a major issue 
which holds back organizations in using SaaS applications. In this paper we try to address two major concerns on 
SaaS applications. 
 
i) We offer a PaaS for the developer so that he can customize the   CRM application as he wants (customization). 
ii) The application that is created using a PaaS will be deployable across multiple cloud platforms (portability). 
 
  We present our initial results of our PaaS prototype, built to support feature models and support for multiple 
clouds. The prototype demonstrates that the developed language, despite being simple, can be used as input to a full 
code generation process targeting a cloud platform. 

4.3. Architecture and Implementation Overview 

Organizations and the development community is hesitant to create their systems using certain specific 
technologies and later being charged with unfair rates for its usage. They are even reluctant to choose a technology 
which may turn out to be inadequate or inefficient in near future. In order to take advantage of the flexible cloud 
architecture, the applications have to be specifically developed for the chosen cloud platform. For example, in order 
to offer great elasticity, Google App Engine – a PaaS provider – imposes a specific programming style and it has its 
own way to manage data, and thus an application developed specifically for GAE and the data associated with it 
may not be easily ported to a different PaaS provider. Even if a developer want to host an application in his/her 
cloud later, additional effort would be required to rebuild the application, redeploy it and migrate all the data. A re-
engineering process required to change the cloud provider can be costly and time consuming. 

 
Consider the scenario where you are a developer at an ISV (Independent Software Vendor) that offers CRM 

application on one of the most popular SaaS platforms available. Now if you want to sell your application to those 
customers using alternative platforms and if some of those potential customers want to have the application hosted 
in a different environment; the application have to be re-written to run on those environments and build a new cloud 
hosting relationship. As an ISV, this would be very expensive. Such a scenario limits the “openness” at the platform 
level. Platforms which use a proprietary programming language, explicitly tied to a single vendor’s implementation 
will force the customers to use a specific platform thereafter. 

 
Our solution DSkyL targets developers and CRM vendors by providing them a solution that supports the 

development of Cloud-based CRM software applications which are portable across multiple cloud platforms. We 
use feature models to drive the development and migration planning process. These feature models are platform-
independent that captures the essence of the application to produce a domain specific code (DSL). The deployable 
file is generated from the cloud configuration file and the source codes corresponding to the added features. This 
deployable file is a platform independent image and it is specific to each cloud service provider. Porting an 
application from one cloud platform to another requires transformations with same set of models, which represent 
the functionalities and different cloud configuration files generated from the SLAs.  

 
DSkyL is an eclipse plug-in for modeling, validating and generating platform specific image file for a CRM 

application. The idea is to provide a default template for the application which can be further refined to add or 
remove features according to the vendor’s or developer’s choice. Whenever the user creates a new project, a 
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package is created which contains a template feature model with basic functionalities for the selected application 
type (CRM), source files corresponding to the default feature model, a Model.xml file for representing the features 
supported a Model.conf file which shows the feature hierarchy and its dependencies. If the user wishes to modify the 
default features, user has to create new feature in the Model explorer window. Once the feature model is updated, 
the Model Validator will evaluate the feature dependencies; verify the constraints and impose rules on it. After 
verifying the feature model; the Model validator will check for the added features and its dependencies. If the 
designed feature model fails the validation the Model validator will produce an error message. If the feature model 
passes the validation, the designed model is ready for execution to generate the source files corresponding to every 
feature. After model validation when the user runs the project, .jak files are generated for all the features in the 
feature diagram. DSkyL uses AHEAD composer for converting .jak files to corresponding .java files. When user 
clicks on the run button, DSkyL calls a batch file which executes commands to convert the .jak files to .java files. 
The generation of .jak files for all the selected features and calling the batch file for running jak2java command 
occurs simultaneously once the user clicks on the run button. And finally the source code is generated for every 
feature. The sales order then passes in to the back end system for further processes. So constraints like sales order is 
generated only once the quotation is won also verified by our tool. 
 
    The following snapshots illustrate the steps involved in developing feature based application using the prototype 
DSkyL tool and the deployment of a selected feature in IBM Bluemix Cloud. 
 

 

Fig.1 : The default feature model created in eclipse workspace after creation of the project. 
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Fig. 2: Developers can select the required features and confirm them. Corresponding codes will be generated for selected features 

 

Fig. 3: Deployment of selected feature in IBM Bluemix cloud 

    The final image file created by DSkyL will be a combination of the model and this configuration file. This is 
specific for every cloud provider. Each PaaS provider offers a special flavor in its design. DSkyL framework offers 
a solution for the development of portable and Cloud provider independent applications. It enables the developer to 
build Cloud applications in a very flexible way, being completely independent from the Cloud providers that offer 
the resources. DSkyL uses the concept of wrappers to allow users to access multiple Cloud resources. Each Cloud 
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service provider has his own architecture for storage or communication and hence wrappers are created so that it 
becomes portable across multiple platforms. A contract will grant user’s requirements and the Resource Manager 
will assign physical resources on the basis of the contract.   

5. Conclusions 

    In recent days the vendor lock-in problem has evolved as a major hindrance for cloud computing being widely 
adopted. It is because users/organizations may opt for different cloud providers over a period of time for various 
reasons like optimal choice on expenses and resources, contract termination or some legal issues. In order to solve 
this problem, this paper presents a model-driven approach for cloud portability. The cloud technologies and MDE, 
together, can benefit the users by providing better productivity, improved maintenance and reuse.  
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