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Abstract Hand-based biometrics plays a significant role in establishing security for real-time envi-

ronments involving human interaction and is found to be more successful in terms of high speed

and accuracy. This paper investigates on an integrated approach for personal authentication using

Finger Back Knuckle Surface (FBKS) based on two methodologies viz., Angular Geometric Anal-

ysis based Feature Extraction Method (AGFEM) and Contourlet Transform based Feature Extrac-

tion Method (CTFEM). Based on these methods, this personal authentication system

simultaneously extracts shape oriented feature information and textural pattern information of

FBKS for authenticating an individual. Furthermore, the proposed geometric and textural analysis

methods extract feature information from both proximal phalanx and distal phalanx knuckle

regions (FBKS), while the existing works of the literature concentrate only on the features of prox-

imal phalanx knuckle region. The finger joint region found nearer to the tip of the finger is called

distal phalanx region of FBKS, which is a unique feature and has greater potentiality toward iden-

tification. Extensive experiments conducted using newly created database with 5400 FBKS images

and the obtained results infer that the integration of shape oriented features with texture feature

information yields excellent accuracy rate of 99.12% with lowest equal error rate of 1.04%.

� 2015 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Personal recognition based on hand biometric traits has been

widely used in most of the modern security applications due

to its low cost in acquiring data, its reliability in identifying

the individuals and its degree of acceptance by the user [1].

Most of the research works proposed in hand based biometric

authentication used different modalities viz., fingerprint, palm

print, hand geometry, hand vein patterns, finger knuckle print

and palm side finger knuckle print [2]. Among these biometric

traits, fingerprint is considered to be the very old trait and

known as the first modality used for personal identification.

Apart from the various beneficial aspects, fingerprint also pos-

sesses some limitations such as its vulnerability toward intru-

sion of acquired image and its features such as minutiae,

singular points, and delta points, are highly distracted by

means of wounds and injuries [3] created on the finger surfaces.

On the other hand, palm print recognition system captures

large area for identification, while it contains limited number

of features such as principal lines, wrinkles [4]. In case of finger
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geometry and hand geometry, the features extracted are not

distinctive enough to identify the individuals, when the number

of users grows exponentially [5]. In hand vein system, the vein

structures present in the dorsum area of the hand are captured

by means of high cost devices [6].

In this paper, we contribute a new approach for personal

recognition using Finger Back Knuckle Surface (FBKS) based

on geometric analysis and texture analysis by considering both

proximal phalanx and distal phalanx. Here, the proximal pha-

lanx refers to the major bend surface of a finger and is found in

the middle portion of the finger back region, whereas distal

phalanx refers to minor bend surface found nearer to the tip

of the finger back region. Even though, the distal phalanx is

smaller in size, it has unique dermal patterns which when

exploited along with proximal phalanx results in highly

improved performance in finger knuckle print recognition.

The rich set of patterns generated by each of these finger

knuckle surfaces with lines, contours and creases is highly

unique for distinctive identification of individuals, which could

be easily acquirable in contact less manner. This FBKS bio-

metric modality is highly accepted by the user, since it requires

less cooperation from the subject and produces high speed

authentication.

In the literature, the geometric based feature extraction

methods implemented on hand-based biometric trait including

finger knuckle print derive magnitude based feature informa-

tion which has limited power of discrimination [7]. In contrast,

this paper addresses this issue by recommending an Angular

Geometric Analysis based Feature Extraction Method

(AGFEM) capable of extracting angular based feature infor-

mation from the finger back knuckle surface, which efficiently

authenticates the individuals. For effective representation of

texture features of FBKS images, the multi-resolution analysis

is required since it could be able to handle distorted finger

knuckle regions resulted due to scaling, rotation and transfor-

mation variant properties [8]. A multi-resolution transform

known as Contourlet Transform which effectively represents

the curved singularities than the wavelets is highly suitable

for representing finger back knuckle surface texture feature

since the texture pattern of FBKS images is lines, curves and

contours [9]. Hence, we incorporate Contourlet Transform

based Feature Extraction Method (CTFEM) to represent the

texture features of the captured finger knuckle images. The

extracted shape oriented and texture feature information is

integrated to yield better accuracy results and makes it highly

suitable for large scale personal authentication system.

The rest of the paper is organized as follows. Section 2 gives

a brief survey on some of the feature extraction methodologies

for hand biometric traits available in the literature. Section 3

demonstrates the proposed personal authentication system

design using finger back knuckle surface. Section 4 presents

the methods used for preprocessing and extraction of ROI

from the acquired image. Section 5 introduces angular geomet-

ric based feature extraction methodology to extract angular

feature information from the proximal knuckle and distal

knuckle regions. Section 6 presents contourlet transform based

feature extraction method to extract texture feature informa-

tion from the proximal knuckle and distal knuckle regions.

The various fusion rules related to matching score level fusion

incorporated in this paper are illustrated in section 7. The thor-

ough experimental analyses of the proposed methodologies are

presented in Sections 8 and 9 concludes the paper.

2. Related work

In the literature, researchers have proposed various promising

methods for hand based biometrics. These methods can be

broadly classified into three categories viz., geometric based

methods, texture based methods and statistical methods [10].

Generally, in geometrical based feature extraction methods,

several edge detecting approaches were used for extracting fea-

tures such as edge points, lines, creases, wrinkles , from various

hand biometric traits [11]. The extracted edge information is

either utilized directly or converted into the form of geometri-

cal feature information to represent the feature vector for

matching [12]. In texture based feature extraction methods,

the Region of Interest (ROI) captured is categorized into

blocks. From the ROI, the features extracted from the blocks

or variations existing in different blocks are represented as fea-

ture information for matching [13].

2.1. Geometrical analysis based feature extraction method

Woodard and Flynn [14] were the first to propose the Finger

Knuckle Print (FKP) as a biometric trait in 2005. In their

work, the FKP image was acquired by means of a 3D sensor

and the feature extraction process is done by means of geo-

metrical analysis by exploiting the curvature shape features

of FKP. The complexity toward 3D data processing which

is computationally expensive is the main drawback of this

scheme. Later in 2009, Kumar et al. have proposed number

of techniques for personal authentication using hand biomet-

ric traits. In the first work, Kumar et al. [15] proposed a new

personal authentication system using finger knuckle surface.

The feature extraction from the finger knuckle surface was

carried out by means of both texture and geometrical feature

analysis methods. Finger length, finger width etc., were some

of the geometrical features extracted from the finger knuckle

surface by means of Finger Geometric Feature Extraction

Method (FGFEM). The texture information of the finger

knuckle surface is obtained by means of principal component

analysis, independent component analysis and linear discrim-

inant analysis. Scores are generated by means of computing

Euclidean distance obtained from reference and input

vectors.

Kumar et al. in the second work [16], introduced a new

modality known as hand vein structure for personal authenti-

cation. In this biometric system, dorsum surface of the hand is

captured using infra-red imaging. The captured image is sub-

jected to histogram equalization for enhancement and the

structure of the vein is studied using Key Point Triangulation

Method (KPTM). This paper also focuses on incorporating the

simultaneously extracted knuckle shape information to achieve

better performance. Kumar et al. have further explored [17] the

analysis of finger knuckle surface by incorporating the quality

feature of the trait which highly depends on the capturing

device. In this work, the entire hand image is acquired and fea-

ture extraction is done by means of palm print textural analy-

sis, hand geometry analysis and finger knuckle print paternal

analysis. The geometric method incorporated in this work is

termed as Knuckle Geometric Feature Extraction Method

(KGFEM). All the above described methods were taken as

benchmark systems for comparing proposed AGFEM

approach.
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2.2. Texture analysis based feature extraction method

Feature extraction using texture based methods was first

explored by Kumar and Ravikanth [14]. In their work, the fin-

ger knuckle surface was captured by means of 2D sensor

device and then appearance based methods were used to

extract feature information. Zhang et al. proposed a method

personal authentication using finger knuckle print based on

texture analysis. In this work authors incorporated band lim-

ited phase only correlation method for finger knuckle print

matching [18]. Further, in 2012, Zhang and Li investigated a

novel method to encode local image patterns using Reisz trans-

form. Authors examine two coding mechanisms known as

Rcode1 and Rcode2 by subjecting the obtained finger knuckle

images to the first and second order Riesz transform. Ham-

ming distance that exists between the Rcodes of registered

and input images is estimated for matching finger knuckle

images [19].

Furthermore, Gao et al. [20] recommend a new approach

for processing scale, rotational and translational variant finger

knuckle images by incorporating the method of reconstruc-

tion. Authors incorporated discovery learning process from

which the reconstruction of rotated or distorted knuckle

images was done. Gao et al. [21] in their recent work, investi-

gated a new approach which combines multiple orientation

coding and texture features for finger knuckle print matching.

Additionally, Shariatmadar et al. [22] proposed a new fin-

ger knuckle print recognition scheme in which ROI of the cap-

tured finger knuckle print image is categorized into blocks and

each block is subjected to Gabor filters for generating binary

patterns in the form of histograms. Bio hashing method is

incorporated to perform matching process between the

obtained fixed length feature vectors of registered image and

the input image. Yu et al. [23] recommended an effective

approach for personal authentication using FKP. The ROI

of finger knuckle image is divided into sub-blocks and from

these sub-blocks local feature information was derived and

stored as local binary pattern for matching.

Some of the transform based texture based analysis meth-

ods which are taken as benchmark systems for comparing

the proposed CTFEM are detailed below. In [24], the fusion

of the palm print and knuckle print at matching score level

is done to achieve high performance in authentication. The

features of palm print and knuckle print are represented by

means of Phase Correlation Function using Discrete Fourier

Transform (PCFDFT). Linear phase shift in the frequency

domain of palm print images and finger knuckle print images

are derived by Discrete Fourier Transforms. The observations

based on Phase Correlation Functions (PCF) are calculated by

means of cross correlation and results were further analyzed by

locating similarity between the reference images and input

image.

Further, Saigaa et al. [25] proposed a new biometric system

based on information extracted from the texture of finger back

knuckle surfaces. The captured image is preprocessed by

means of smoothing algorithms and candy edge detector algo-

rithm for locating the region of interest. Extraction of knuckle

texture feature in the ROI image was carried out by means of

two dimensional block based discrete cosine transforms

(DCTFEM). The obtained DC coefficient gives the average

value of gray scale pixel whereas AC coefficient describes the

information about the lower frequencies and higher frequen-

cies of the block. Furthermore, in [26] Hedge et al. contributed

a real-time personal authentication using finger knuckle print.

The features of the finger knuckle surface were extracted using

three unique algorithms viz., (i) Random Transform, (ii)

Gabor Wavelet Transform and (iii) Combining both the fea-

ture information of matching (RTGWT).

2.3. Extracts of the literature

From the survey conducted, it has been inferred that the exist-

ing feature extraction methods have the following limitations.

(a) The existing geometric analysis based feature extraction

approach of hand traits extracts features information

from finger such as, finger length, finger width, palm

length, palm width, palm area and perimeter that pos-

sess lower degree of discrimination and leads to inaccu-

rate authentication within the large population.

(b) In sub-space based feature extraction methods such as

PCA, LDA and ICA the difference in appearance is

recorded to generate unique information. This may lead

to performance degradation when the image captured is

of poor quality.

(c) The existing transform based texture analysis methods

fail to handle multidimensional singularities, since they

have a major limitation in selecting the orientation and

scaling factors.

(d) The existing statistical based texture analysis method

extracts and analyses only local feature information

which is highly dependent on the number of non-

overlapping blocks of a captured image. This produces

a trade-off between accuracy and computational

complexity.

(e) Moreover, there are no known attempts to integrate

geometric/shape oriented features and texture features

of finger knuckle surface (both proximal and distal pha-

lanx patterns) in order to improve the performance in

terms of accuracy.

Hence, we are motivated to implement an integrated

approach based on angular geometric analysis and multi-

resolution transform based texture analysis methods for

extracting geometric and texture features respectively from

both proximal and distal finger knuckle regions. The integra-

tion methodology is implemented through score level fusion.

3. The proposed system design

This paper proposes a new method for personal authentication

using Finger Back Knuckle Surface (FBKS), as a biometric

identifier. The block diagram of the proposed system is shown

in Fig. 1. The image acquisition phase of the proposed biomet-

ric system captures FBKS using a low resolution digital cam-

era kept in a consistently illuminated environment. The

FBKS of a finger is captured by placing them individually in

a straight position on a white surface provided in front of

the digital camera in a contact less manner. This system cap-

tures FBKS images of four fingers except the thumb finger

from a hand for processing. In the second phase, the captured

FBKS images are preprocessed and ROI is extracted for fur-
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ther processing. In the third phase, knuckle feature points are

identified and feature information is obtained from those

points by means of angular geometrical analysis and also by

means of texture analysis. The extracted shape and texture fea-

ture information of the registered finger images are recorded in

the form of vectors separately. This recorded vector informa-

tion is passed to the matching module which performs match-

ing between the reference and input vector by computing

weighted Euclidean distance. Finally, the generation of match-

ing scores from different finger knuckles is fused based on

matching score level fusion in order to conclude the decision

on authentication.

The key contributions of the proposed work are discussed

below.

(a) This work attempts to extract dorsal knuckle surface

and finds the possibility of integrating with proximal fin-

ger knuckle regions using matching score level fusion in

order to achieve improved performance.

(b) This work contributes simultaneous extraction of ROI

of proximal and distal knuckle regions using construc-

tion of coordinate system method which results in rich

set of texture patterns used for identifying an individual.

(c) This work shows the usefulness of multi-direction and

multi-resolution analysis in processing finger knuckle

images in order to handle curved singularities for better

identification of individual.

(d) This work also attempts to integrate geometric and tex-

ture features of both proximal and distal finger regions

in order to achieve higher recognition accuracy.

(e) Finally, this work investigates the possibility of the

thumb finger knuckle regions toward reliable identifica-

tion of individual.

4. Preprocessing and ROI extraction

The captured FBKS of four fingers is shown in Fig. 2. The

physiological features of the finger back region shown in

Fig. 3 are described as follows. Each finger back region of

the hand has three phalangeal joints. The joint that connects

the finger with the hand surface is called as Metacarpopha-

langeal joint. The joint that is formed in the middle surface

of the finger is called as Proximal Inter Phalangeal (PIP) joint.

The presence of PIP joint in the finger back knuckle surface

forms the flexion shrinks on the inner surface of the skin which

creates unique dermal patterns. These dermal patterns are

denoted as proximal knuckle patterns. Similarly, the joint pre-

sent in the tip of the FBKS is called as distal inter phalangeal

joint. This joint also forms unique dermal pattern which is

denoted as distal knuckle patterns. In this paper, the inherent

skin patterns of both proximal and distal knuckle are consid-

ered for processing.

4.1. Preprocessing

The preprocessing and ROI extraction involve the process of

mining the proximal and distal knuckle regions from the

FBKS. Further, it does the process of aligning finger knuckle

images captured in various scenarios through the acquisition

process. As a first step in preprocessing, the acquired FBKS

is subjected to binarization in which each pixel of a finger

knuckle print image is converted into one bit information

ðBðx; yÞÞ obtained through (1)

Figure 1 System design of the proposed personal authentication system using FBKS.

Figure 2 Acquired FBKS image from four fingers.
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Bðx; yÞ ¼
0; if Fkðx; yÞ 6 Thðx; yÞ

1; if Fkðx; yÞ > Thðx; yÞ

�

ð1Þ

where FKðx; yÞ represents the intensity of the pixel at location

ðx; yÞ of finger knuckle image and Thðx; yÞ represents the

threshold which is calculated for each pixel using Sauvola’s

technique [26] through (2)

Thðx; yÞ ¼ Fkðx; yÞ 1þ k
dðx; yÞ

M
� 1

� �� �

ð2Þ

where

F kðx; yÞ – mean of pixel values,

dðx; yÞ – standard deviation of pixel values,

M – maximum value of standard deviation (here M = 128,

since obtained finger knuckle image is converted to gray

scale image) and

k – bias value (here k is considered as 0.3, since boundary of

the image is distinctly identified at this point).

Further, Fkðx; yÞ denotes mean value of pixels obtained

through integral sum method. This integral sum of an input

finger knuckle image FKðx; yÞ with size I1 � I2 defines the

intensities at pixel position sðx; yÞ is equal to the sum of the

intensities of the pixels present above and toward left of its

position in the original image. Using this integral sum

sðx; yÞ, the mean value of pixels can be calculated as given in

(3)

Fkðx; yÞ ¼
sðx; yÞ

I1 � I2
ð3Þ

From the obtained binarized image Bðx; yÞ, the boundary of

the image is extracted by means of contour tracing [27]. The

exact boundary of the image is obtained by tracing the largest

possible contour in the binarized finger knuckle image by elim-

inating the small contours. Fig. 4(a)–(e) shows the acquired

finger back knuckle surface, the binarized image of the finger

back knuckle surface and contour extracted images from the

binarized image respectively. The boundary image obtained

through contour tracing is called as a contour image of FBKS

(Icontour).

In the image Icontour, the stable baseline obtained from the

left side boundary of the finger knuckle region is set as the

X-axis of the coordinate system. From the same image, the

contour pixels identified on the either side of the boundary

according to the shape of the image are stored as contour set

points in a vector. These contours set points are analyzed for

estimating their inter distance values which can be as the dis-

tance between the corresponding contour set points identified

from the boundaries of the FBKS. The contour set points that

have maximum inter distance value are considered to be the

boundary points of proximal knuckle. Similarly, the contour

set points having the minimum inter distance value are the

boundary points of the distal knuckle. The boundary points

of the proximal and distal knuckle are joined independently

to obtain their respective Y-axis [28,29].

Fig. 5(a)–(d) shows the construction of X-axis in the finger

knuckle region, contour set point representation in the contour

Figure 3 Physiological features of FBKS.

20 40 60 80 100

50

100

150

200

250

20 40 60 80

50

100

150

200

250

20 40 60 80

50

100

150

200

250

(a) (b) (c) (d) (e)

Figure 4 (a) Acquired FBKS image (b) binarized image of FBKS (c), (d) representation of contour extracted from binarized FBKS

Image. (e) Contour image of FBKS and referred as Icontour.
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image, construction of Y-axis for both proximal and distal

knuckle regions of finger knuckle regions and finger back

knuckle surface constructed with the complete coordinate sys-

tem respectively. The captured finger knuckle region is con-

structed with the coordinate system named as Icord.

4.2. ROI extraction

The ROI sub images of proximal and distal knuckle are

obtained from Icord knuckle image by extracting fixed size pixel

value of 110 � 220 and 90 � 180 respectively. The extracted

sub images of both proximal and distal knuckle regions pro-

duce rich set of patterns used for the identifying the individuals

and Idistal respectively [31].

This ROI extraction effectively aligns and normalizes the

different set of knuckle images to extract unique feature infor-

mation. The extracted sub images of proximal and distal

knuckle are named as Iproximal. Fig. 6(a)–(c) represents the gray

scale image of captured finger back knuckle surface, extracted

ROI of proximal knuckle surface and extracted ROI of distal

knuckle surface respectively.

4.3. Correctness of preprocessing and ROI extraction method

The proposed approach simultaneously extracts proximal and

distal knuckle regions from the captured finger knuckle regions

using coordinate axis method. The proposed method of pre-

processing and ROI extraction is found to be robust against

scaling, rotational and translational variations of finger

knuckle surface. The proposed method produces accurate

localization than the state of art methods since (i) they extract

ROI knuckle surface which is not of fixed size i.e., it varies

according to the length and width of the finger and (ii) also

they does not depend on any empirically estimated value for

locating distal and proximal knuckle regions; instead, they

depend on contour set points of finger knuckle.

5. Angular geometric based feature extraction method

(AGFEM)

The main objective of this study is to evaluate the improve-

ment in performance induced by the integration of geometric

and texture features of a finger knuckle biometric system.

The geometric measurements are extracted from the ROI

images of proximal and distal knuckle regions using angular

geometric based feature extraction method (AGFEM) as dis-

cussed in [34]. As detailed in [34], the angular geometric anal-

ysis method extracts six geometric features from proximal

knuckle and six from distal knuckle region. Hence totally, 12

geometric measurements were derived from a finger knuckle

surface which includes, two finger knuckle length, six finger

knuckle widths and four finger knuckle angular information

[30]. The distance between the input finger knuckle geometric

measures ðfksiÞ and the registered feature vector ðfksrÞ is com-

puted through Weighted Euclidean Distance ðWEDÞ [32] rule,
which is given by (4)

Figure 5 (a) X-axis construction in FBKS image, (b) contour set point representation in FBKS contour image, (c) construction of Y-axis

in FBKS image and (d) construction of complete coordinate system in FBKS image and referred as Icord.

Figure 6 (a) Gray scale image of FBKS, (b) ROI of proximal

knuckle surface (Iproximal) and (c) ROI of distal knuckle surface

(Idistal).
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Dðfksi; fksrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xk

i¼1
wi fksi � fksrð Þ2

r

ð4Þ

where
fksi – represents the geometric measurement vector of an

input finger knuckle surface image.

fksr – represents the geometric measurement of registered

finger knuckle surface image.

wi – corresponds to the weight which is assigned a lower

value for lower variance between input and registered value

and assigned higher value for higher variance between input

and registered value.

The key significance of the proposed angular geometric

analysis method is that it extracts angular-based feature infor-

mation which is highly potential enough to distinguish the

individuals.

6. Contourlet transform based feature extraction method

(CTFEM)

6.1. Contourlet transform

Contourlet transform is the directional multiresolutional

transform for image representation. Contourlet establishes a

multi-resolution frames oriented in various directions in multi-

ple scales with dynamic aspect ratios that could be able to rep-

resent images effectively which has smooth regions separated

by smooth contours [33]. The skin pattern of finger back

knuckle surface consists of curved lines and contours which

could be well represented by means of Contourlet transform.

Contour transform represents images by means of two filter

banks viz., (i) Laplacian Pyramid [LP] which effectively cap-

tures point discontinuities of an image and (ii) Directional Fil-

ter Bank (DFB) which characterizes linear structures of an

image by means of basic functions and link point discontinu-

ities [34]. Image representation by means of Contourlet trans-

form can be given as follows.

Let the captured FBKS image be a real valued function

which is represented as fbksðtÞ defined on the grid ½21; 21� with
integer values. The discrete contourlet transform with scale i,

direction j and level l of fbksðtÞ [35,36] is given through (5)

ki;j;lðtÞ ¼
X

3

k¼0

X

m2Z2

djðmÞw
ðkÞ
i;l ð5Þ

where
djðmÞ is the directional co-efficient.

w
ðkÞ
i;l ¼

P

m2Z2f kðmÞ/i;lþmðtÞ – represents the contourlet

waveform.

In this work, the implementation of contourlet transform is

carried out in three level Laplacian pyramidal decomposition

and one orthogonal filter directions are applied in four direc-

tions and hence captured FBKS image is decomposed into 7

contourlet sub-band images. Each sub-band image contains a

part of original FBKS which is called as ‘‘Knuckle Contours”.

The contourlet coefficient for each knuckle contourlet is

derived and represented in the forms of vectors. The value

attempted for scaling factor is i ¼ 0:8� 3, directional factor

is j ¼ 0:5� 4 and level l ¼ 0; 2; 3 and 4. The value of m

denotes the number of coefficients retrieved for contourlet

sub-band analysis. The significance of aforementioned param-

eters in contourlet transform is it enables to perform multidi-

rectional and multiresolutional analysis.

6.2. Principal component analysis

Principal Component Analysis (PCA) is a linear dimensional-

ity reduction technique based on mean square error. In this

work, the obtained contourlet coefficients from Knuckle Con-

tour images are subjected to PCA for the reduction in dimen-

sion since PCA has following advantages in representing image

variations [37]. They are (i) reconstructs the image representa-

tion by considering the principle components without redun-

dancy and (ii) minimizes squared reconstruction error since

maximum of projected input vectors is chosen and small vari-

ations are eliminated automatically.

The PCA applied on contourlet coefficients of Knuckle

Contours yields lower dimensions by identifying orthogonal

linear combinations with greater variances exist among the

coefficients. The following steps are involved to estimate the

covariance matrix for the given finger knuckle sub-band

images.

(1) Calculate the algorithmic means of all the feature infor-

mation vectors viz., F 1; F 2; . . . ; F 5 containing contourlet

coefficients through (6).

M ¼
1

n

X

n

j¼1

Fj ð6Þ

(2) The difference between each feature information vector

and the calculated mean is computed through (7).

dj ¼ Fj �M ð7Þ

(3) The covariance matrix is computed through (11).

w ¼
1

n

X

n

j¼1

djd
T
j ð8Þ

(4) The Eigen value viz., s1; s2;s3 . . . ; sn from the obtained

covariance matrix is derived through (9).

sj ¼
1

n

X

n

j¼1

vTj d
T
j

� 	2

ð9Þ

The obtained Eigen values represent the feature informa-

tion of finger knuckle images which can be stored in a feature

vector. The matching process between the registered and input

images is done by calculating weighted Euclidean distance

among the feature vectors of those images (as discussed in

Section 5).

7. Fusion process

The goal of this fusion process is to integrate the matching

scores obtained through geometric and texture analysis meth-

ods from different finger knuckle regions in order to investi-

gate the integrated performance of the proposed personal

authentication system. The real-time data set used for experi-
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mentation in this paper consists of four finger back knuckle

regions of a person. All the four finger knuckle regions exhibit

different dermal patterns which can be treated as different

modality; hence, it is meaningful to combine the score infor-

mation obtained from different finger knuckle regions using

fusion process [38]. Fusion process can be defined as the pro-

cess of combining matching scores obtained from each finger

back knuckle regions using different fusion rules in order to

obtain better performance in terms of accuracy. In this paper,

three basic rules of matching score level fusion such as sum of

matching scores (SOM) ðRÞ, product of matching scores

(POM) ðpÞ and weighted sum of matching scores (SWM)

ðRwÞ were incorporated to estimate the combined performance.

The final matching ðFMÞ score obtained by fusing the

obtained score using SOM rule is defined in (10)

FM ¼
X

n

i¼1

Fi ð10Þ

Similarly, the final matching ðFMÞ score obtained by fusing

the obtained score using POM rule is defined in (11)

FM ¼
Y

n

i¼1

Fi ð11Þ

In addition to this, the final matching ðFMÞ score obtained

by fusing the obtained score using SWM rule is defined in (12)

FM ¼
X

n

i¼1

Wi � Fi ð12Þ

In all the above equations, Fi defines the score obtained

from the ith classifier incorporated for finger knuckle print

matching. Moreover, the value of Wi is obtained through (13),

wi ¼

1
Pn

j¼1

1
EERj

h i

EERi

ð13Þ

This infers that, the classifier result showing higher values

of EER will be assigned lower weight values. In case of lower

values of EER in classifier results, the value assigned toWi will

be higher.

8. Experimental analysis and results discussion

The performance of the proposed framework personal authen-

tication system is evaluated using a real-time database of finger

back knuckle surface region. The FBKS region consisting of

distal and proximal finger knuckle patterns is captured by

means of an acquisition setup as described in Section 3. The

finger back knuckle surfaces were captured from 150 subjects

including 80 males and 70 females in three different sessions

with the time interval of 5–6 weeks. In each session three

images of four finger knuckle regions viz., index finger, middle

finger, ring finger and little finger are captured from either left

or right hand. Therefore, 12 images were collected from each

person in one session. Totally, 36 images were collected from

a person in three sessions. The data set of the FBKS contains

totally 5400 images which contains 600 different fingers back

knuckle surfaces.

In all the experiments, images collected in the first session

are considered for gallery set, while the set of images collected

during second and third session is taken as probe set in order

to determine number of genuine and imposter matching scores.

The genuine acceptance rate is computed for analyzing the

number of genuine matches corresponding to the total number

of matches done with the system. The equal error rate is the

point at which the false acceptance rate and false rejection rate

become equal. The decidability threshold ðDTÞ defines the dis-
tribution of genuine and imposter matching scores which is

calculated through (14)

DT ¼
jl1 � l2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 þ r

2=2
2

q ð14Þ

where
l1 and l2 – defines the mean of genuine and imposter

matching distances respectively.

r1 and r2 – defines the standard deviation of genuine and

imposter matching distances respectively.

The number of false acceptances and its corresponding gen-

uine acceptance rates are obtained for all possible decidability

threshold values and plotted as Receiver Operational Charac-

teristics (ROC) curve. The obtained ROC curve will reflect the

overall accuracy of the proposed personal authentication

framework. Hence, in this paper the performance analysis of

both AGFEM and CTFEM approaches is achieved by con-

structing ROC curves.

8.1. Experiment 1 – performance analysis of proposed AGFEM

and CTFEM approaches

The main objective of this experiment is to analyze the perfor-

mance of the proposed personal authentication system by eval-

uating the performance of each type of finger back knuckle

surfaces separately. As discussed earlier, the real-time acquired

database consists of four different finger knuckle images such

as index finger, middle finger, ring finger and little finger, and

the performance of proposed AGFEM and CTFEM

approaches implemented on each FBKS images is evaluated

separately. The number of images in the gallery set is taken

as 150 different finger knuckle images captured in first session

and the number of images in probe set is taken as 900

(150 � 2 � 3) which are collected from 150 subjects in two ses-

sions with three images per session for each finger. The number

of genuine matches and imposter matches obtained during the

evaluation of AGFEM is given as 2168 and 1,608,678. How-

ever, the number of genuine matches and imposter matches

obtained during the evaluation of CTFEM is given as 2198

and 1,608,984.

The existing geometric analysis based recognition schemes

such as Finger Geometric Feature Extraction Method

(FGFEM), Finger Knuckle Feature Extraction Method

(FKFEM) and Key Point Triangulation Method (KPTM)

are taken as benchmark systems for analyzing the performance

of proposed AGFEM and hence these methods were evaluated

using the real-time FBKS database presented in this paper.

Similarly, existing transform based texture analysis methods

such as Random transform and Gabor Wavelet Transform

based Feature Extraction Method (RTGWT), DCT based fea-

ture extraction method (DCTFEM) and Phase Correlation

Function using Discrete Fourier Transform (PCFDFT) are

taken as benchmark systems for analyzing the performance

of CTFEM and these methods were also evaluated using the
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real-time FBKS data set for the sake of comparison. Figs. 7

and 8 show ROC curves obtained through evaluation of vari-

ous methods on finger knuckle regions. Fig. 7(a) and (b) shows

ROC plot for Index and middle finger knuckle regions

obtained through the implementation of proposed AGFEM

approach and various existing recognition approaches as men-

tioned earlier. Similarly, Fig. 7(c) and (d) shows the ROC plot

for ring and little finger knuckle regions for various recogni-

tion approaches respectively. In addition to this, Fig. 8(a)–

(d) illustrates ROC curves for index, middle, ring and little fin-

ger knuckle regions obtained through proposed CTFEM

approach and also through various existing texture analysis

based feature extraction methods.

The experimental results indicate that the proposed

AGFEM gives higher GAR value of 97.15%, 97.78% and

97.86% when it is implemented on index, middle and ring fin-

ger knuckle regions, which differs from 0.67% to 1.23% over

FGFEM, from 1.23% to 1.895% over FKFEM and from

2.56% to 4.34% over KPTM. However, the proposed

AGFEM approach yields only 91.12% of GAR value when

it is implemented with little finger knuckle region. This perfor-

mance degradation is due to unclear texture patterns exhibited

by the little finger which makes the derivation of shape orien-

tation features more complex, whereas, the proposed CTFEM

approach yields a considerably high GAR value of 94.35%

when it is implemented on little finger knuckle region. This

remarkable variation in the performance is obtained due to

the derivation of Contourlet coefficients from the little finger

knuckle surface and these coefficients are further subjected

to principal component analysis which derives most prominent

distinct knuckle feature information for reliable identification.

Similarly, the experimental results of proposed CTFEM

show higher GAR values of 98.45%, 98.12% and 98.79%

for index, middle and ringer finger knuckle regions which dif-

fers from 1.75% to 3.35% over DCTFEM, 2.23% to 3.67%

over RTGWT and 2.29% to 4.01% over PCFDFT (as shown

in Fig. 8(a)–(c)). The results shown for CTFEM by setting the

parameters are i ¼ 2:5; j ¼ 0:5; l ¼ 4 and the values of m are set

maximum. From the tabulated results of Tables 1 and 2, it is

clear that the proposed AGFEM and CTFEM yield the lowest

error rate of 1.45% and 1.22% respectively which indicates

that these methods increase the accuracy rate to an average

value of 47% and 59% respectively, when compared to the

exiting shape oriented and texture analysis based approaches.

8.2. Experiment 2 – performance analysis of score level fusion

process

The main objective of this experiment is to investigate the per-

formance of the personal authentication when we incorporate

fusion process (as describe in Section 8) of score information

obtained through AGFEM and CTFEM approaches from

two or more finger knuckle regions of an individual. As dis-

cussed in Section 8, the basic fusion rules such as SOM ðRÞ,
POM ðpÞ, and SWM ðRwÞ are incorporated through investiga-

tion of proposed recognition methods. In addition to that,

hybrid fusion rule is also incorporated which is defined as

the combination of two basic fusion strategies. For example,

matching score obtained from finger knuckle regions either

through AGFEM or CTFEM approach is combined using

weighted sum rule and further integration with all other finger
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Figure 7 ROC curves for (a) index finger back knuckle surface,

(b) middle finger back knuckle surface, (c) ring finger back knuckle

surface and (d) little finger back knuckle surface, using various

geometric analysis approaches.
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knuckle regions is done by means of POM fusion rule. Thus

the combinations of any two fusion strategies are defined as

hybrid rule. The following Table 3 illustrates experimental

results in terms of EER (%) values obtained by the implemen-

tation of all the three basic fusion rules and the hybrid fusion

rule in various combinations of matching scores corresponding

to the AGFEM and CTFEM approaches. The value of the ‘k’

specified in Table 3 can be taken as k = 1, 2, 3 and 4 which

corresponds to index finger back knuckle surface, middle fin-

ger back knuckle surface, ring finger back knuckle surface

and little finger back knuckle surface respectively.

The tabulated experimental results indicate that

combining matching scores yields better results when

compared to the individual performance of the system.

Moreover, among all combinations, the hybrid fusion rule

combination reported in 16th serial number of the table
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Figure 8 ROC curves for (a) index finger back knuckle surface,

(b) middle finger back knuckle surface, (c) ring finger back knuckle

surface and (d) little finger back knuckle surface, using texture

analysis approaches.

Table 1 EER (%) values for various geometric analysis based

feature extraction methods.

Finger knuckle

type

FGFEM FKFEM KPTM AGFEM

(the

proposed

method)

Index finger back

knuckle region

(IFBKS)

3.42 3.89 2.98 0.96

Middle finger

back knuckle

region (MFBKS)

3.98 3.26 3.01 1.01

Ring finger back

knuckle region

(RFBKS)

4.10 3.72 3.21 0.87

Little finger back

knuckle region

(LFBKS)

5.61 6.72 5.98 1.45

Table 2 EER (%) values for various texture analysis based

feature extraction methods.

Finger knuckle

type

DCTFEM RTGWT PCFDFT CTFEM

(the

proposed

method)

Index finger

back knuckle

region (IFBKS)

2.96 2.72 2.98 0.725

Middle finger

back knuckle

region

(MFBKS)

2.17 2.12 2.38 0.67

Ring finger

back knuckle

region

(RFBKS)

1.98 2.01 2.14 0.73

Little finger

back knuckle

region

(LFBKS)

3.72 3.98 3.67 1.22
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Q P

wðAGFEMkÞ;
P

w CTFEMkð Þ

 �
 �

shows the lowest value

of EER of 0.45%, this is because, the weighted sum rule

derives more information from the gallery data set than that

of the other basic fusion rules and also the matching scores

obtained through the AGFEM and CTFEM from all the fin-

ger knuckle regions are fused using product rule.

8.3. Experiment 3 – performance analysis of proposed integrated

approach

In the third experiment all the types of finger knuckle surfaces

were involved. The main objective of this experiment is to ana-

lyze the performance of the system when the matching scores

obtained through AGFEM and CTFEM are combined using

hybrid rule. The obtained results through integrated perfor-

mance are compared with various existing geometric and tex-

ture analysis based approaches in the literature such as

FGFEM, FKFEM, KPTM, RTGWT, DCTFEM and

PCFDFT (as stated in experiment 1). The gallery set for the

experiments is taken as 600 (150 � 4), whereas the number of

images in the probe set is taken as 1800 images (600 � 3).

The total number of genuine and imposter matched obtained

in this experiment is 9000 and 6,947,672 respectively. Fig. 9

shows the ROC curves plotted for various feature recognition

methods. The experimental results illustrate that the proposed

AGFEM and CTFEM perform well when they are imple-

mented individually and also yield high GAR value of

99.56% when the matching scores obtained from these meth-

ods are integrated using hybrid fusion rule.

The experimental results in terms of EER (%) for various

recognition methods are tabulated in Table 4. The integrated

performance of proposed AGFEM and CTFEM yields lowest

error rate of 0.44%, and this is due to the following reasons: (i)

the proposed AGFEM derives angle oriented feature informa-

tion which has potentiality in discriminating the individuals

and (ii) the proposed CTFEM derives multi-resolution and

multiple orientation texture information from the finger

knuckle surface which could definitely yield high accuracy rate

than that of the existing methods which posses only any one of

the property.

8.4. Experiment 4 – performance analysis of proximal and distal

knuckle surface

This experiment is conducted to analyze the significance of dis-

tal finger knuckle region toward personal authentication. For

this experiment, the database of 150 middle finger back

knuckle surface images obtained during the first session of

image acquisition was utilized as gallery set. The probe set

for this experiment consists of 900 (150 � 6) middle finger back

knuckle surface images obtained during the second and third

session of image acquisition. This experiment is conducted in

two folds: (i) performance evaluation AGFEM approach

implemented on distal and proximal finger knuckle regions

separately and analyzing their combined performance using

basic fusion rules and (ii) performance evaluation of CTFEM

approach implemented on distal and proximal finger knuckle

regions separately and analyzing their combined performance

using basic fusion rules (SOM, POM, and SWM). Fig. 10

(a) and (b) illustrates the ROC plot derived from genuine

and imposter matching scores obtained through the implemen-

tation of AGFEM and CTFEM approaches on both distal and

proximal knuckle regions of middle finger. Fig. 11(a) shows

the ROC plots obtained by fusing the matching scores derived

Table 3 EER (%) values obtained for various combinations

of matching scores.

Sl. no Combinations ERR (%) DT

1
P

ðAGFEMkÞ 1.98 4.9823

2
Q

ðAGFEMkÞ 1.72 4.8141

3
P

wAGFEMk 1.67 4.7231

4
P

ðCTFEMkÞ 1.62 4.7014

5
Q

ðCTFEMkÞ 1.58 4.7008

6
P

wCTFEMk 1.49 4.6198

7
P

ðAGFEMk;CTFEMkÞ 1.32 4.5121

8
Q

ðAGFEMk;CTFEMkÞ 1.21 4.5216

9
P

wðAGFEMk;CTFEMkÞ 1.14 4.3121

10
P Q

ðAGFEMkÞ;
Q

ðCTFEMkÞð Þ 0.98 4.4123

11
P P

wðAGFEMkÞ;
P

wðCTFEMkÞ

 �

0.86 4.3261

12
P

w

P

ðAGFEMkÞ;
P

ðCTFEMkÞð Þ 0.82 4.4721

13
P

w

Q

ðAGFEMkÞ;
Q

ðCTFEMkÞð Þ 0.75 4.3762

14
Q P

ðAGFEMkÞ;
P

ðCTFEMkÞð Þ 0.62 4.3141

15
Q P

wðAGFEMkÞ;
P

wðCTFEMkÞ

 �

0.44 4.3258
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Figure 9 ROC curves from seven different feature recognition

methods in experiment 3.

Table 4 EER (%) values obtained for various feature

recognition methods.

Recognition

methods

EER

(%)

DT FRR (%) (when

FAR= 1 � 10�3)

FGFEM 4.53 4.5684 8.5964

FKFEM 5.28 4.8694 7.6522

KPTM 4.23 4.6512 8.5673

AGFEM 1.67 4.7231 3.8974

PCFDFT 3.56 4.5685 5.4567

DCTFEM 3.12 4.2354 5.4568

RTGWT 2.45 4.2135 5.6478

CTFEM 1.49 4.6198 3.4256

AGFEM

+CTFEM

0.44 4.3258 0.9587
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through AGFEM approach from distal and proximal knuckle

regions using three basic fusion rules and similarly matching

scores derived using CTFEM approach are shown in Fig. 11

(c).

From the experimental results it is observed that, integrat-

ing distal finger knuckle region with proximal finger knuckle

region significantly improves the performance of the personal

authentication system. The individual performance of distal

and proximal finger knuckle obtained through CTFEM

(Fig. 10(b)) shows higher GAR values than the values obtained

through AGFEM approach. This considerable variation in

performance is due to CTFEM approach potentially discrimi-

nates intra class and inter class knuckle sub-image values.

8.5. Experiment 5 – performance analysis of thumb finger

knuckle surface

This experiment is conducted using thumb finger knuckle bio-

metric samples. The thumb finger images are newly captured

using the acquisition setup in Section 3. The following

Fig. 12 shows sample image of the thumb finger and the

extracted knuckle region from thumb finger using the ROI seg-

mentation algorithm discussed in Section 3. The methods used

extract the features from thumb finger knuckle regions are

same as described in Section 4. The database of 100 subjects

was taken in which one-third of the images were taken as gal-

lery set and remaining images were taken as probe set. The

matching scores were generated as discussed in Sections 5

and 6. The ROC plots for the probe set data are depicted in

Fig. 13.

The results show that, genuine acceptance rate of 95.53%

was obtained from testing samples using AGFEM method

and 96.35% was obtained using CTFEM approach. The

GAR value resulted using hybrid fusion methodology is

98.73%, which is considerable high accuracy rate even though

the thumb finger has only the proximal knuckle pattern. The

experiment results of the thumb finger analysis show signifi-

cant performance improvement when it is integrated with

other finger knuckle regions. However, capturing the thumb

finger knuckle region is performed only by inducing pegs,

which reduces the level of user acceptability.

8.6. Experiment 6 – computational complexity analysis of

proposed personal recognition system

The computational complexity of the system is evaluated by

estimating the time taken in millisecond (msecs) to execute

each step of personal recognition process as shown below in

Table 5.

The proposed system is implemented in VC++ with the

system configuration of Intel core i3 CPU with 5 GHz proces-

(b)
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Figure 10 ROC obtained from (a) proximal and distal knuckle

regions of Middle finger using AGFEM and (b) proximal and

distal knuckle regions of Middle finger using CTFEM.
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Figure 11 ROC obtained from (a) fusing match score obtained

through AGFEM from distal and proximal phalanx using three

basic fusion rules. (b) Fusing match score obtained through

CTFEM from distal and proximal phalanx using three basic

fusion rules.
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sor, 4 GB RAM and compiled using GNU compiler with the

support of open CV library. Table 5 shows the time taken

for each processing step of the proposed personal authentica-

tion system. The total time taken for the entire authentication

process to complete is 4.67 s. This analysis shows that the pre-

processing and ROI extraction are a crucial processing step of

the proposed personal authentication since it is computation-

ally costlier when compared to other processing steps. Simi-

larly, texture analysis method is found to be more complex

when compared with geometrical analysis method. On the

whole, the overall complexity is found to be appreciable and

it can be deployed in real-time security applications.

8.7. Discussions

The performance of the proposed approaches such as

AGFEM and CTFEM is found to be superior to the existing

methods. The discussions on the arrived results through

AGFEM, CTFEM and their integration are given below.

(i) AGFEM achieves better performance than the existing

geometric analysis methods by efficiently representing

shape oriented features in terms of angular information.

The angle oriented features are more discriminant than

the magnitude oriented features extracted by state-of-

art geometrical methods.

(ii) Experimental results obtained using CTFEM show sig-

nificant GAR values than the existing transform based

texture analysis methods and also found to be superior

when compared with proposed AGFEM approach. This

significant improvement in performance is due to the

unique characteristics of contourlet transform which

could able to represent the captured finger knuckle

images in multi-scale, multi-directional and multi-

resolution analysis that allows sparse representation of

texture feature information.

(iii) In addition, fusion of AGFEM and CTFEM

approaches using weighted SUM rule significantly

improves the performance of the entire system by

0.86–1.92% in terms of accuracy due to its flexibility

in assigning score weights according to the result of sin-

gle method. Also the performance of the system in terms

of speed is also appreciable and it can be deployed in

real-time environment.

9. Conclusions

This paper introduces a new intra-model personal authentica-

tion system by integrating the shape and texture features of fin-

ger back knuckle surface which includes the dermal patterns of

both proximal and distal phalanx. The proposed method of

distal and proximal phalanx region segmentation has found

to be very effective in achieving higher performance. The

experimental results of experiment 1 proved the significance

of the shape oriented features (knuckle length, width, mid-

point angle and knuckle area) obtained through AGFEM

approach is efficiently used to improve the performance of

the finger knuckle recognition. Similarly, the proposed texture

feature extraction from finger knuckle surface using Con-

tourlet Transform (CTFEM) also yields promising results (as

discussed in experiment 2). Further, the results of experiment

3 suggested that the integration of knuckle shape features with

its textural pattern information is found to be very effective

and aids in yielding well promising results. Furthermore, the

importance of distal phalanx finger knuckle patterns which

can be effectively integrated with proximal phalanx (matching

Figure 12 (a) Thumb finger knuckle image and (b) ROI

extracted from Thumb finger knuckle region.
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Figure 13 ROC curves from Thumb finger knuckle region.

Table 5 Computational complexity analysis of proposed

personal recognition system.

Key process Time

(msecs)

Image loading 135

Image processing and ROI extraction 220

Geometric analysis based shape oriented feature

extraction

1.78

Texture analysis based feature extraction 155

Score generation 45
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score level fusion) aids in achieving the high accuracy rate of

99.12% with lowest value of equal error rate as 0.44%. More-

over, the obtained results from all the four experiments indi-

cate that the integration of knuckle shape orientation and

texture feature information for personal recognition by consid-

ering both distal and proximal phalanx is the considerable

addition to the current state-of-art of personal recognition

using hand traits.
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