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Abstract: Cloud computing technology has transformed the information and 

communication technology industry by authorizing on-demand resource delivery to 

the cloud users. Datacenters are the major resource storage places from where the 

resources are disseminated to the requesters. When several requests are received by 

datacenters, the available resources are to be handled in an optimized way; 

otherwise the datacenters suffer from resource wastage. Virtualization is the 

technology that helps the cloud providers to handle several requests in an optimized 

way. In this regard, virtual machine placement, i.e., the process of mapping virtual 

machines to physical machines is considered to be the major research issue. In this 

paper, we propose to apply fuzzy hybrid bio-inspired meta-heuristic techniques for 

solving the virtual machine placement problem. The cuckoo search technique is 

hybridized with the fuzzy ant colony optimization and fuzzy firefly colony optimization 

technique. The experimental results obtained show competing performance of the 

proposed algorithms. 

Keywords: cloud computing, virtual machine placement, server consolidation, power 

consumption, resource wastage, cuckoo, ant colony system, firefly colony. 

1. Introduction 

Virtualization is the core technology that makes cloud computing possible. Cloud 
computing mainly focusses on delivering services over the internet in different layers 
like Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as 
a Service (PaaS) [1]. For a cloud user, the cloud provider provides the resources based 
on pay per use concept. Datacenters are the most power consuming storage areas. 
Even a fraction of power reduction in datacenters benefits the cloud providers to great 
extent.   

Virtualization is the core concept to achieve server consolidation which mainly 
aims to minimize the number of physical servers used for virtual machine placement. 
The process of mapping of a set of Virtual Machines to a set of Physical Machines 
(VM-PM mapping) is called virtual machine placement and the process of finding 
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optimal placement solution is considered here as virtual machine placement problem. 
In literature, G u p t a  et al. [2] introduced a two stage heuristic approach to solve 
server consolidation problem focusing on bin-item incompatibility constraints. Some 
of the heuristic techniques widely used for consolidation problem are the First Fit 
Decreasing (FFD) [3], Best Fit [4], Best Fit Decreasing [5] and other heuristics  
[6, 7]. To apply Heuristic techniques simple sorting mechanisms are given by 
M a r u y a m a, C h a n g  and T a n g [8] which can be used. 

Few researchers have taken efforts to convert the multidimensional sizes 
considered as vectors into sizes of scalar type.  P a n i g r a h y  et al. [9] proposed a 
novel method of geometric heuristics and have presented a report on their findings 
related to different combinations of vectors to generate the scalar (size). W o o d   
et al. [3] proposed a Sandpiper system that automates the task of monitoring and 
detecting hotspots so as to facilitate the initiation of VM migrations. M i s h r a  and 
S a h o o  [4] introduced a novel vector based approach to overcome the anomalies in 
the existing VM placement technologies. The other works of VM placement 
following bin packing heuristic are given by J u n g  et al. [10], L i  et al. [6], etc. 

Non-deterministic approaches like genetic algorithm, simulated annealing, ant 
colony optimization, particle swarm optimization, etc., are also widely used for VM 
placement. F a l k e n a u e r [11] proposed an enhanced approach of genetic algorithm 
called grouping genetic algorithm to handle the server consolidation problem. As 
another variant, B r u g g e r  et al. [12] proposed an ACO metaheuristic that had better 
performance than genetic algorithm for large problem instances. R o h l f s h a g e n  
and B u l l i n a r i a [13] proposed another variant of GGA called exon shuffling 
genetic algorithm. A group genetic algorithm is proposed by A g a r w a l, B o s e  and 
S u n d a r r a j a n [14] to solve server consolidation problem as a vector packing 
problem with conflicts. As a further improvement W i l c o x, M c  N a b b  and 
S e p p i [15] proposed two different solutions encoding schemes and also its fitness 
function were designed in such a way that it can solve Multi-Capacity Bin Packing 
Problems. F e l l e r, R i l l i n g  and M o r i n  [16] used another version of ACO to 
address VM consolidation and have shown better results than FFD. P e r u m a l  and 
M u r u g a i y a n [17] proposed fuzzy firefly algorithm for server consolidation and 
virtual machine placement problem. W u, T a n g  and F r a s e r [18] applied simulated 
annealing technique for VM placement. 

In addition, L u k e  [19] designed new mutation and cross over operations for 
steady state genetic algorithm for VM placement. Gao et al. [20] proposed Pareto-
dominance approach to determine best solution in multi objective context and results 
were compared with X u  and F o r t e s [21]. S u s e e l a  and J e y a k r i s h n a n [22] 
proposed a multi-objective hybrid ACO-PSO optimization algorithm for minimizing 
resource wastage, power consumption for load balancing in physical servers. Z h a o  
et al. [23] proposed an improved particle swarm optimization with simulated 
annealing for energy saving during placement and live migration. N g u y e n, L e and 
N g u y e n [24] proposed energy efficient resource allocation strategies for providing 
virtual services based on heterogeneous shared hosting platforms. S a n y a s i  and 
B h a g a t [25] emphasized on cloud optimization and security gaps. In this paper we 
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propose hybrid algorithms for solving server consolidation and virtual machine 
placement problem. 

The rest of the paper is organized as follows. In Section 2, we formulate the 
server consolidation problem. In Section 3, we give the preliminaries of ant colony 
system, firefly colony system and cuckoo search for server consolidation problem. In 
Section 4 we present the hybrid approaches and the computational experimental study 
conducted. In Section 5, we formulate the VM placement problem and propose the 
multi-objective hybrid techniques. In Section 6 we give the concluding remarks 
followed by references. 

2. Server consolidation problem 

The server consolidation problem is addressed in the following subsections. 

2.1. Problem formulation 

Server consolidation aims to minimize the number of servers required for placing 
Virtual Machines (VMs). Considering there are n VMs (iI) to be placed in m 
Physical Machines (PMs) (jJ), assume no virtual machine requires more capacity 

than that can be provided by a single server. Let cpu mem
i i

R R 
    be the CPU demand 

and memory demand vector for each VM. Let also TC TCcpu mem
j j 

  
 

be the 

processing unit capacity and memory capacity associated with each physical 

machine. A threshold of 90 % is set for TC TCcpu mem
j j 

    to avoid physical machine 

resource utilization reaching 100% as it may lead to severe performance degradation 
when it is fully utilized [20]. We use two decision variables allocation matrix and 
binary variable defined as follows:  allocation matrix alloci,j{0, 1} is set to 1 if vmi 
is allocated to the server j, otherwise it is set to zero. A binary variable yj{0, 1}  
indicates whether a server is in use or not. 

2.2. Resource wastage modelling 

The potential cost of wasted resource (Resource Wastage – RW) is computed by 
equation [20] 

(1)    

cpu mem

RW ,
cpu mem

L L
j j

j
U U

j j

 



 

where RWj represents the resource wastage of the j-th server; mem
jU  and cpu

jU denotes 

the normalized memory and CPU resource usage; mem
jL  and cpu

jL  denote the 

normalized remaining memory and CPU usage, respectively. A small positive 
constant value of 0.0001 is set for   to avoid resource wastage of a server returning 
as zero.  
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2.3. Objective function 

The objective is to minimize the number of servers used without any violation of 
capacity constraints. The minimization function is formulated as follows [27]: 

(2) Minimize ,
1

m
y

j
j



 

subject to constraints: 

(3)   alloc 1 ,
1

m
i I

ij
j

  


 

(4)   alloc TC ,cpu cpu
1

n ji
R y j J

ij j
i

  


 

(5)   alloc TC ,mem mem
1

n ji
R y j J

ij j
i

  


 

(6)   , alloc {0,1} , .y i I j J
j ij

     

Constraint (3) assigns a VM i to only one of the servers. The capacity constraint 
of the servers is specified in constraint (4) and (5). The domain of the binary decision 
variables used are given in (6).  

3. Preliminaries of ant colony, firefly and cuckoo for placement 
problem 

3.1. Ant colony system 

Ant Colony Optimization (ACO) [28] is inspired by the ants’ searching behavior and 
their inherent ability to find the shortest path between their nest and the food source. 
Ants choose a particular path to follow by making a probabilistic decision biased by 
the amount of pheromone deposited. Other important information is heuristic 
information. It helps in guiding the ants to construct good solution. The heuristic 
information of assigning VM i to server j is  

(7)   
cpu mem

cpu mem
.

i i

ij

j j

R R

L L







 
 

The pheromone trail ij is  

(8)   
( )

if ( ) { } 0,
( )

1 otherwise.

k

ui

u j

k
ij

k

j i
j







     




 

The solution construction by an ant k  is based on a pseudo random proportional 
rule given in the next equation:  
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(9)  
 arg max { 1 }, ,( ) 0

explore otherwise,

q q
u j uj uj

ki

e

         


 

where q is a random variable uniformly distributed in [0, 1] and q0 is a fixed variable 
having values between 0 and 1. If q is less than or equal to q0, then the process is 
called exploitation otherwise exploration of new mappings is preferred. e is a random 
variable selected according to Roulette Wheel selection method using the random-
proportional rule probability distribution [29]:  

(10)  ,

( )

(1 )
, ( ) ,

( (1 ) )
k

ij ijk

i j k

ij iju j

P i j
   

   


     
   

 

(11) 
 

 1,..., | alloc 0 alloc TC
cpu cpu cpu

1 1

alloc TC .
mem mem mem

1

m n ju i
i n R R

iu uj
u u

j
k n ju i

R R
uj

u

                                   
                 

 

The local update of pheromone value is computed using  

(12)    0(1 ) ( 1) . ,ij l ij lt         

where {0,1}l   is the pheromone decay coefficient and 0 is the initial value of the 

pheromone. 
To evaluate the fitness of the solutions obtained, we adapt the cost function 

given by S a i t, B a l a  and E l-M a l e h [27] which is based on the fitness of a VM 
that got packed:   

(13)    
cpu mem

.

cpu memTC TCcpu mem
1, 1,

R R
i i

n n
i i

R R
kk

k k i k k i



   
      
         

   

The global pheromone update based on best solution is  

(14)    best( ) (1 ) ( 1) ,ij g ij ijt t           

where {0,1}g   is the evaporation rate, and  

gb
best SC ( ) if VM isplacedinserver ,

0 otherwise,
ij

ff S i j


  


 

where ffSC is the fitness of the solution found by computing the average fitness of 
placed VMs which is actually computed based on VM fitness equation given in (13). 

3.2. Firefly colony optimization algorithm 

The Firefly Colony Optimization (FCO) algorithm is a swarm intelligence based 
metaheuristic approach which is based on ACO technique. FCO is inspired by the 
flashing behaviour of fireflies. The solution is constructed is using firefly state 
transition rule [17]: 
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(15)    

RW
arg max * , ,( ) 0

explore otherwise.

m
uj

e q q
u j uji k

e




          


  

Equation (15) can be rewritten as given in [17]: 

(16)    
 arg max * , ,( ) 0

explore otherwise,

q q
u j uj uji k

e

    


 

where the heuristic information ij is determined using the term 
1

RWm

uj
,  is the 

absorption coefficient of the light and it is initialized to 1. In Equation (16), if q is 
less than q0 then a VM u with higher attractiveness is chosen from a set of eligible 
virtual machines. If q is greater than q0 then the cumulative sum of the attractiveness 
of all eligible VMs are obtained and then the VM having the higher attractiveness 
than a generated random number is chosen to be the next VM for placement. The 
cumulative sum of the attractiveness is obtained by: 

(17)      Attractivenessvector cumsum , ( ),k

ij ki j    

(18)    
* , ( ),

( )
0 otherwise,

ij ij kk

ij

i j
t

 



 


 

(19)    
( )

if ( ) { } 0,( )

1 otherwise.

k

ui

u j

ij k
k

j ij







    




 

The local update of attractiveness is  

(20)  0

1
( ) rand ( 1) ,

2
ij ijt t        

 
 

where  is the attractiveness decay parameter, the initial value for 0 is calculated 
using 0 = 1/[nRW(S0)], The global update of attractiveness is  

(21)  best1
( ) rand ( 1) ,

2
ij ij ijt t         

 
  

where 
gb

SC ( ), if VM isplacedinserver ,
( )

0 otherwise.
ij

ff S i j
t

  


 

3.3. Cuckoo search  

The Cuckoo Search Optimization (CSO) algorithm [26] is a metaheuristic approach 
inspired by the aggressive reproduction strategy of the cuckoos.  
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4. Proposed bioinspired hybrid optimization 

The following sections present the proposed hybrid methods.  

4.1. Fuzzy ACS-Cuckoo optimization  

The fuzzy rules generated to decide next VM i for the current server j are as follows: 
If ij is low and ij is low then the efficacy eij of choosing VM i is very very low. 
If ij is medium and ij is low then the efficacy eij of choosing VM i is very low. 
If ij is high and ij is low then the efficacy eij of choosing VM i is low. 
If ij is low and ij is medium then the efficacy eij of choosing VM i is low. 
If ij is medium and ij is medium then the efficacy eij of choosing VM i is 

medium. 
If ij is high and ij is medium then the efficacy eij of choosing VM i is high. 
If ij is low and ij is high then the efficacy eij of choosing VM i is high. 
If ij is medium and ij is high then the efficacy eij of choosing VM i is very high. 
If ij is high and ij is high then the efficacy eij of choosing VM i is very very 

high. 
This method uses the minimum operation for fuzzy implication and max-min 

operator for the composition. Finally we obtain k
e
ij

 as the maximum efficacy for each 

virtual machine i. We use the following mechanism given in (21) to decide VM i for 
server j: 

(22)  
Fuzzy strategy, (exploitation),0

Fuzzy probable strategy, (exploration).0

q q
I

q q

  
 

The output of each strategy is a crisp number specifying the next virtual machine 
to place in the server. 

Fuzzy Strategy 
The fuzzy strategy is introduced to implement the exploitation process: 

(23)     sup ,*
( )

e e
uj

u j u j
k

 
 

  
 

where i = u*. 
Fuzzy Probable Strategy (FPS) 
The fuzzy probable strategy is introduced to implement the exploration process 

of fireflies: 

(24)    .

( )

k
e
ijk

ij k
e
uj

u j
k

 




 

Algorithm 

The pseudocode of the fuzzy ACS-Cuckoo technique is given in Tables 1-3. The 
generation of instances is as given by G a o  et al. [20]. 
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Table 1. Fuzzy ACS-Cuckoo 
%%%%Initialization 
Initialize Number of Physical Machines (PMs), Number of Virtual Machines (VMs) 
Set  List of physical machines and their current usage 
Set  List of virtual machines and their requirements demand 
Set maxIterations 
Initialize the pheromone matrix ij, Number of Ants (NA) 
Generate server consolidation problem instances using procedure given in Table 2 

Repeat 

Step 1. For each ant k = 1: Number of Ants (NA) do 

Step 2.        S=constructSolution( ) 
Step 3.     Update pheromones for the local best solutions using local update rule given in  (12)  
Step 4.  End For 
Step 5. Determine the objective function values using (2) 
Step 6. Apply cuckoo search procedure given in Table 3 to obtain new optimal solutions 
Step 7. Update Pheromones using  global updating rule given in  (14) 
Step 8. Until the maximum number of iterations is reached 

Step 9. Output global best solution and its fitness value 

 

%%% constructSolution( ) 

Step 1. Repeat 
Step 2.  Release a new server from the set of physical servers 

Step 3.   Repeat 
Step 4.  For each remaining VM that qualify for  inclusion in the current server 
Step 5.  Calculate the heuristic information using (7) 
Step 6.  Calculate the probability using (10) 
Step 7.  End For 
Step 8. Choose a VM for placement using Fuzzy state transition rule using (23)-(24) 
Step 9. Until no remaining VM fits in the server anymore 

Step 10. Until all VMs are assigned 

 
Table 2. Cuckoo Search Algorithm [27] 

Step 1. Calculate the fitness of the solutions using fuzzy fitness procedure  
Step 2. Rank and Partition the solutions into top and bottom nests 
Step 3. For each bottom nests do 

Step 4. Rank and Partition the servers into top and bottom group 
Step 5. Delete x number of servers from the bottom group 
Step 6. Sort the deleted VMs in bottom group servers using one of the sorting methods  
Step 7. Reinsert the VMs into the nest using First Fit decreasing heuristic 
Step 8. Partition the resulting solutions into top and bottom groups 
Step 9. End For 
Step 10. For each top nests do 

Step 11.    Rank and Partition the servers in the nest into top and bottom group 

Step 12. Delete 25%  number of servers (bottom group) 
Step 13. Sort the deleted VMs in bottom group servers using one of the sorting methods  
Step 14. Reinsert the VMs into the nest using First Fit decreasing heuristic and store the nest as 
best solution 

Step 15. Compare the solution with any of the randomly chosen existing solution 

Step 16. If fitness function of new solution is better than existing solution, then remove existing 
solution and place new solution 

Step 17. End If 

Step 18. End For 
Step 19. Store the best nest seen so far 
Step 20. End Repeat 
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Table 3. First fit heuristic 
Step 1. Sort the VMs demand requirements in decreasing order using any of the multidimensional 
sorting methods given in Maruyuma [8]. 
Step 2. For VM=1: number of virtual machines do 
Step 3.   For j=1: number of servers do 
Step 4.     If  demand(VM)<=capacity(j) then 
Step 5.        place virtual machine VM to server j 
Step 6.        reduce the server capacity 
Step 7.       break 
Step 8.     End If 
Step 9.   End for 
Step 10.      If a virtual machine VM did not fit any of the available servers then choose a new 
server and place it 
Step 11.      End If 
End For 

4.2. Fuzzy Firefly-Cuckoo Optimization Algorithm 

Here we apply cuckoo search for the solutions obtained using firefly colony approach 
and the procedure for applying cuckoo search is same as described in Section 4.1, 
Table 2. The preliminaries of firefly colony for VM placement are given in  
Section 3.2. Firefly colony solution construction process is given in (16) is replaced 
with the same fuzzy concepts given in (22)-(24) for fuzzy firefly colony approach, 
local pheromone update in (20) and global pheromone update in (21). 

4.3. Computational experimental study 

The VM requirement instances are generated using the procedure given in [20]. To 
support the worst VM placement scenario, the number of servers is set to the number 
of VMs, in which only one VM is assigned per server. The experimental results 
shown are for 300 VMs. For the proposed ACO-Cuckoo search algorithm, the 
parameters are set as follows: 

q0=0.8, NA=10, M=100, =0.45, l = g = 0.35, pj = mj =90%, η=0.0001. 
We performed 20 runs and each run is repeated for 100 iterations and the final 

results reported are average of 20 runs. In the results table LB is the theoretical lower 
bound on the number of servers that can be used for placement which is  

(25)   LB max TC , TC .cpu cpu mem mem
1 1

n nj ji i
R R

i i

                                 

  

 

Table 4. Server consolidation results for VM requirements with reference values as 25% and 45% and 
probability values as –0.754 and –0.755 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

–0.754 –0.755 

No of servers (m) m/LB Time, s No of servers (m) m/LB Time, s 

Fuzzy Firefly Colony-Cuckoo 95 1.05 7.15 192 1.20 8.54 

Fuzzy ACS-Cuckoo 95 1.05 7.16 191 1.20 8.56 

Firefly Colony 96 1.06 5.28 193 1.20 6.35 

ACS 97 1.07 5.31 194 1.21 6.47 

MMAS 101 1.12 5.26 195 1.21 6.53 

FFD 125 1.38 8.34 218 1.36 24.61 
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Table 5. Server consolidation results for VM requirements with reference values as 25% and 45% and 
probability values as –0.348 and –0.374 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

–0.348 –0.374 

No of servers 
(m) 

m/LB 
Time, 

s 
No of servers 

(m) 
m/LB 

Time, 
s 

Fuzzy Firefly Colony-
Cuckoo 

94 1.04 7.14 188 1.18 8.51 

Fuzzy ACS-Cuckoo 94 1.04 7.16 189 1.18 8.53 

Firefly Colony 95 1.05 5.28 190 1.18 6.32 

ACS 96 1.06 5.32 191 1.19 6.28 

MMAS 98 1.08 5.21 192 1.20 6.52 

FFD 121 1.34 8.33 207 1.29 24.69 

 
Table 6. Server consolidation results for VM requirements with reference values as 25% and 45% and 
probability values as –0.072 and –0.052 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

–0.072 –0.052 

No of servers 
(m) 

m/LB 
Time, 

s 
No of servers 

(m) 
m/LB 

Time, 
s 

Fuzzy Firefly Colony-
Cuckoo 

93 1.03 7.11 183 1.14 8.46 

Fuzzy ACS-Cuckoo 93 1.03 7.13 183 1.14 8.48 

Firefly Colony 94 1.04 5.34 184 1.15 6.25 

ACS 95 1.05 5.31 185 1.15 6.27 

MMAS 97 1.07 5.22 187 1.16 6.49 

FFD 117 1.30 8.24 199 1.24 24.61 

 

Table 7. Server consolidation results for VM requirements with reference values as 25% and 45% and 
probability values as 0.371 and 0.398 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

0.371 0.398 

No of servers 
(m) 

m/LB 
Time, 

s 
No of servers 

(m) 
m/LB 

Time, 
s 

Fuzzy Firefly Colony-
Cuckoo 

93 1.03 7.08 179 1.12 8.42 

Fuzzy ACS-Cuckoo 93 1.03 7.12 180 1.12 8.43 

Firefly Colony 93 1.03 5.31 183 1.14 6.31 

ACS 94 1.04 5.29 184 1.15 6.24 

MMAS 96 1.06 5.21 185 1.15 6.47 

FFD 112 1.24 8.21 195 1.21 24.54 

 
From the results shown in Fig. 1 we observe that our proposed ACO-Cuckoo 

and Firefly-Cuckoo algorithms have better server consolidation ratio compared to 
other approaches considered. 
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Table 8. Server consolidation results for VM requirements with reference values as 25% and 45% and 
probability values as 0.775 and 0.751 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

0.755 0.751 

No of servers 
(m) 

m/LB 
Time, 

s 
No of servers 

(m) 
m/LB 

Time, 
s 

Fuzzy Firefly Colony-
Cuckoo 

91 1.01 7.06 171 1.08 8.39 

Fuzzy ACS-Cuckoo 91 1.01 7.09 172 1.08 8.41 

Firefly Colony 92 1.02 5.27 175 1.09 6.21 

ACS 93 1.03 5.28 176 1.10 6.23 

MMAS 95 1.05 5.18 181 1.13 6.42 

FFD 105 1.16 8.19 190 1.18 24.23 

 

 
Fig 1. Number of servers utilized when Rcpu = Rmem = 25% and 45% 

5. Virtual machine placement problem 

The formulation of VM placement is presented in this section. Here it is considered 
as a multi-objective optimization problem. 

5.1. Problem formulation 

Here we formulate the optimization equations of the multi-objective virtual machine 
placement problem. 

5.1.1. Power consumption modelling  

The power consumed by the j-th server is [20] 

(26)    
busy idle idle, 0,

0 otherwise.

p C
P P U P U

j j j j jP
j

          


 

We have set busy
P

j
 = 215 W and idle

P
j

= 162 W. 
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5.1.2. Resource wastage modelling 

The resource wastage considered for multi-objective virtual machine placement 
problem is same as given in Section 2.2. 

5.1.3. Objective functions  

The minimization of power consumption and resource wastage are defined with next 
constraints: 

(27)     busy idle idle
cpu

1 1 1

Minimize alloc ,
m m n

i

j j j j ij j

j j i

P y P P R P
  

  
      

  
    

(28)     

   

cpu cpu mem mem
1 1

1
cpu mem

1 1

Minimize RW
1

alloc alloc

,

alloc alloc

n n
j i j i

ij ijm
i i

j n n
i ij

ij ij

i i

m

j
j

TC R TC R

y

R R

 



 




    
       

     
 

 
  

 


 

 

subject to the constraints same as given in (3)-(6). 

5.2. Proposed fuzzy ACO-Cuckoo and fuzzy Firefly-Cuckoo for multiobjective VM 
placement  

The algorithms in Section 4 are reused with different objective functions for this 
section. 

5.2.1. Fuzzy ACO-Cuckoo for multiobjective VM placement 

The Fuzzy ant-colony for VM multiobjective placement has different heuristic 
function as given in the next three equations: 

(29)    
1

,
1

max/
1

ij j
P P
v v

v






 
   

(30)   

1
.

2

1

ij j
W

v
v






 


  

and the total desirability of each VM-PM mapping is  
(31)   .

1 2ij ij ij
     

The fuzzy solution construction process is same as given in Section 4.1. To 
evaluate the fitness of the obtained solutions, the fuzzy fitness function given by 
S a i t, B a l a  and E l-M a l e h [27] is used for multiobjective VM placement problem.  
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5.2.2. Fuzzy Firefly-Cuckoo for multi-objective VM placement  

The same procedures given in Tables 1-4 are used with different objective functions, 
heuristic equations and solution construction process. The local pheromone update as 
given in (20) and global pheromone update as given in (21). 
 

Table 9. Comparison of the multiobjective hybrid bioinspired techniques with other algorithms for 
average power consumption and resource wastage of VM requirements with reference values as 25% 
and 45 % and probability values as –0.754 and –0.755 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

–0.754 –0.755 

Power, 
W 

Resource 
wastage 

Fuzzy fitness 
(10-3) 

Time, 
s 

Power, 
W 

Resource 
wastage 

Fuzzy fitness, 
(10-3) 

Time, 
s 

Fuzzy Firefly 
Colony-Cuckoo 

20410 6.10 917 7.23 30671 11.08 913 8.62 

Fuzzy ACS-Cuckoo 20420 6.11 916 7.28 30680 11.09 912 8.61 

Firefly Colony 20645 7.32 889 5.41 30985 11.21 901 6.23 

ACS 20990 7.41 859 5.47 31315 11.42 832 6.41 

MMAS 21910 7.96 852 5.70 31348 11.98 836 6.56 

FFD 24818 24.26 716 8.54 34969 51.01 756 24.61 
 

Table 10. Comparison of the multiobjective hybrid bioinspired techniques with other algorithms for 
average power consumption and resource wastage of VM requirements with reference values as 25% 
and 45 % and probability values as  –0.348 and –0.374 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

–0.348 –0.374 

Power, 
W 

Resource 
wastage 

Fuzzy Fitness, 
(10-3) 

Time, 
s 

Power, 
W 

Resource 
wastage 

Fuzzy fitness, 
(10-3) 

Time, 
s 

Fuzzy Firefly Colony-
Cuckoo 

20289 5.27 920 7.21 30421 10.71 890 8.60 

Fuzzy ACS-Cuckoo 20295 5.28 919 7.25 30480 10.83 918 8.60 

Firefly Colony 20460 5.82 895 5.41 30786 10.92 906 6.19 

ACS 21586 6.23 867 5.49 31175 11.10 838 6.89 

MMAS 21643 6.15 859 5.73 31280 11.12 848 6.52 

FFD 24680 21.78 721 8.12 34712 47.23 769 23.24 

 

Table 11. Comparison of the multiobjective hybrid bioinspired techniques with other algorithms for 
average power consumption and resource wastage of VM requirements with reference values as 25% 
and 45 % and probability values as –0.072 and –0.052 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

–0.072 –0.052 

Power, 
W 

Resource 
wastage 

Fuzzy fitness, 
(10-3) 

Time, 
s 

Power, 
W 

Resource 
wastage 

Fuzzy fitness, 
(10-3) 

Time, 
s 

FuzzyFirefly Colony-
Cuckoo 

18084 4.06 922 7.20 28154 6.06 926 8.96 

Fuzzy ACS-Cuckoo 18098 4.10 923 7.21 28175 6.08 925 8.57 
Firefly Colony 18264 4.12 904 5.41 28436 6.12 918 6.17 
ACS 18453 4.19 876 5.43 28854 6.34 844 6.42 
MMAS 19501 5.96 865 5.71 29428 7.86 851 6.51 
FFD 24476 20.89 739 8.12 34511 44.31 771 23.15 

 



 65 

Table 12.  Comparison of the multiobjective hybrid bioinspired techniques with other algorithms for 
average power consumption and resource wastage of VM requirements with reference values as 25% 
and 45 % and probability values as 0.371 and 0.398 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

0.371 0.398 

Power, 

W 

Resource 

wastage 

Fuzzy Fitness, 

(10-3) 

Time, 

s 

Power, 

W 

Resource 

wastage 

Fuzzy fitness, 

(10-3) 

Time, 

s 

Fuzzy Firefly 

Colony-Cuckoo 
17847 3.39 934 7.19 27856 4.77 938 8.95 

Fuzzy ACS-

Cuckoo 
17862 3.42 936 7.19 27912 4.81 936 8.56 

Firefly Colony 18200 3.58 908 5.35 28200 5.75 921 6.21 

ACS 18215 3.61 884 5.34 28365 5.86 849 6.34 

MMAS 19016 3.94 872 5.68 29316 5.89 856 6.42 

FFD 21871 18.23 742 7.86 33654 30.18 776 21.12 

 
Table 13. Comparison of the multiobjective hybrid bioinspired techniques with other algorithms for 
average power consumption and resource wastage of VM requirements with reference values as 25% 
and 45 % and probability values as 0.755 and 0.751 

Algorithm 

____ ____

25%
p m

R R   
____ ____

45%
p m

R R   

0.755 0.751 

Power, 

W 

Resource 

wastage 

Fuzzy fitness, 

(10-3) 

Time, 

s 

Power, 

W 

Resource 

wastage 

Fuzzy fitness, 

(10-3) 

Time, 

s 

Fuzzy Firefly 

Colony-Cuckoo 
17304 2.11 954 7.17 26872 3.35 954 8.86 

Fuzzy ACS-

Cuckoo 
17319 2.12 942 7.14 26891 3.39 942 8.51 

Firefly Colony 17860 2.42 912 5.35 27250 3.43 926 6.21 

ACS 17880 2.71 897 5.34 27342 3.56 857 6.34 

MMAS 19048 2.86 886 5.51 28344 4.01 869 6.24 

FFD 21280 17.51 754 7.73 33410 25.52 786 21.16 

5.3. Computational experimental study 

We present the experimental results on the employment of the hybrid multiobjective 
firefly colony algorithm to solve the VM placement problem.  

The experimental platform and parameters used are similar to that presented in 
Section 4.3. The results obtained are recorded in Tables 9-13. The measures used for 
comparison are: the average power consumption (Power), average Resource Wastage 
(RW), average Fuzzy Fitness (FF) and CPU execution times. From the results shown 
in Fig. 2 we could observe that the hybrid approaches perform better than other single 
optimization algorithms considered. 
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Fig 2. Power consumption and resource wastage of multiobjective techniques when  

cpu memR R = 25% and 45% 

6. Conclusion 

In this paper we have addressed server consolidation and virtual machine placement 
problem. In server consolidation problem, we aim to pack as many VMs as possible in 
the server such that we achieve more resource utilization simultaneously minimizing 
the number of servers. For the multiobjective virtual machine placement problem, we 
try to find the optimal placement strategy simultaneously minimizing the power 
consumption and resource wastage. As a novel approach, we propose two fuzzy 
bioinspired hybrid optimization algorithms for the above mentioned problems based 
on the principles of cuckoo search, ant colony and firefly. In our approach, we propose 
to use cuckoo search to optimize the solutions obtained using Fuzzy ACO and firefly 
colony. The obtained results of hybrid algorithms are found to be better and more 
encouraging compared to ACO, Firefly colony, MMAS and FFD. As future research 
work, we would explore other possible optimization techniques for proposing new 
hybrid approaches to obtain better optimal solutions. 
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