PAPER • OPEN ACCESS

Y - Uniquely colorable graphs

To cite this article: M Yamuna and A Elakkiya 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042115

Related content

Planar graph characterization of Uniquely colorable graphs M Yamuna and A Elakkiya

- The One Universal Graph - a free and open graph database Liang S. Ng and Corbin Champion

Excellent - stable graphs M Yamuna and K Karthika

View the article online for updates and enhancements.

γ - Uniquely colorable graphs

M Yamuna and A Elakkiya
Department of Mathematics, School of Advanced Sciences, VIT University, Vellore632014, India
E-mail: myamuna@vit.ac.in

Abstract

A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is uniquely colorable if the chromatic number $\chi(\mathrm{G})=\mathrm{n}$ and every n - coloring of G induces the same partition of V . In this paper, we introduce a new kind of graph called γ - uniquely colorable graphs. We obtain a necessary and sufficient condition for a graph to be γ - uniquely colorable graphs. We provide a constructive characterization of γ - uniquely colorable trees.

1. Introduction

In [1] Benedict Michael Raj et al., studied a few properties of two invariants, dcc(G) and dccs(G). In [2], John Arul Singh and Kala investigated graphs with $\mathrm{md} \chi(\mathrm{G})=0$ and also proved certain if and only if conditions such that md $\chi(\mathrm{G})=\chi(\mathrm{G})$. In [3] Benedict Michael Raj et al obtained some bounds for the chromatic transversal domatic number, $\mathrm{d}_{\mathrm{ct}}(\mathrm{G})$ and characterized graphs attaining the bounds. Also, characterized uniquely colorable graphs with $d_{c t}(G)=1$. Finally obtained Nordhaus-Gaddum inequalities for $d_{c t}(G)$ and characterized graphs for which $d_{c t}(G)+d_{c t}(\bar{G})=p$ and $p-1$. In [4] Michael Dorfling et al provided a simple constructive characterization for trees. In [5] David E. Brown et al characterized the class of 2-trees which are interval 3-graphs.

2. Terminology

We consider only simple connected undirected graphs $G=(V, E)$ with n vertices and m edges. H is a subgraph of G, if vertex set of H is contained in vertex set of G and (uv) $\in E(H)$ implies (uv) $\in E($ G). A subgraph H is said to be an induced subgraph of G if for every pair u, v of vertices, (uv) $\in E($ H) implies (uv $) \in E(G)$ and is denoted by $\langle H\rangle$. A path is a trail in which all vertices (except perhaps the first and last ones) are distinct, P_{n} denotes the path with n vertices. A cycle is a circuit in which no vertex except the first (which is also the last) appears more than once. C_{n} is a cycle with n vertices. K_{n} is a complete graph with n vertices. For properties related to graph theory, we refer to F . Harary [6]. Given a simple, connected graph G, partition all vertices of G into a smaller possible number of disjoint, independent sets. This is known as the chromatic partitioning of graphs.

Figure 1.
A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is uniquely colorable if the chromatic number $\chi(\mathrm{G})=\mathrm{n}$ and every $\mathrm{n}-$ coloring of G induces the same partition of V.

Figure 2.
A set of vertices D in G is a dominating set if every vertex of $\mathrm{V}-\mathrm{D}$ is adjacent to some vertex of D . If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set - abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by $\gamma(\mathrm{G})$.The private neighborhood of $\mathrm{v} \in \mathrm{D}$ is defined by $\mathrm{pn}[\mathrm{v}, \mathrm{D}]=$ $\mathrm{N}(\mathrm{v})-\mathrm{N}(\mathrm{D}-\{\mathrm{v}\})$. For properties related to domination, we refer to T. W. Haynes, S. T. Hedetniemi, and P. J. Slater [7].

3. Results and Discussions

Figure 3.
In Fig. $3 \mathrm{G}_{1}, \mathrm{G}_{2}$ and G_{3} are uniquely colorable graphs, with chromatic partition $\mathrm{P}_{1}=\{\{2\},\{3,4\},\{$ $1,5\}\}, \mathrm{P}_{2}=\{\{1,3\},\{2,4\}\}$ and $\mathrm{P}_{3}=\{\{1,3,5\},\{2,4,6\}\}$. We observe that in $\mathrm{P}_{1},\{2\}$ is a γ - set for G_{1}, while in P_{2} every set in the partition is a γ - set and in P_{3} the partition has no γ - set. So we understand that, there are uniquely colorable graphs where at least one set in the partition is a γ - set. We restrict onto uniquely colorable graphs whose chromatic partition contains atleast one γ - set. We call such graphs as γ - uniquely colorable graphs and the chromatic partition of such graphs as γ chromatic partition.

Theorem 1

Let G be a uniquely colorable graph. Let P be the chromatic partition for G . Let D be an independent γ - set for G . $\mathrm{D} \in \mathrm{P}$ if and only if there exist a partition P_{1} of $\mathrm{V}-\mathrm{D}$ such that

1. P_{1} is unique
2. every set in P_{1} is independent
3. $\left|\mathrm{P}_{1}\right|=\mathrm{k}-1$ where $|\mathrm{P}|=\mathrm{k}$.

Proof

Let G be a uniquely colorable graph. Let P be the chromatic partition for g. Let D be a $\gamma-$ set for G. Let $|P|=k$. Assume that $D \in P$. Let $P=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Let $D \in x_{i}$. Any vertex in $x_{j} \in V-D, j=1$ to $k, i \neq j$. Since P is the chromatic partition for $G, P_{1}=\left\{x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k}\right\}$ is a partition for V -D such that

1. P_{1} is unique
2. every set in P_{1} is independent
3. $\left|P_{1}\right|=k-1$ where $|\mathrm{P}|=\mathrm{k}$.

Conversely, assume that there exists a partition P_{1} for $\mathrm{V}-\mathrm{D}$ satisfying the conditions of the theorem.
Let $\mathrm{P}_{1}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}-1}\right\}$. Let $\mathrm{P}=\mathrm{P}_{1} \cup\{\mathrm{D}\}$.

1. $\bigcap_{i=1}^{k} x_{i}=\phi$
2. $\mathrm{P}_{1} \cap \mathrm{D}=\phi$
3. $\mathrm{P}_{1} \cup \mathrm{D}=\mathrm{V}(\mathrm{G})$
4. $\mathrm{x}_{\mathrm{i}}, \mathrm{D}, \mathrm{i}=1$ to $\mathrm{k}-1$ are independent.

Hence P is a chromatic partition for G.

Remark

G has a chromatic partition P not containing any $\gamma-$ set if and only if either

1. G has no independent $\gamma-$ set
2. If G has an independent γ - set then conditions of Theorem 1 fails.

Proof

Let P be the chromatic partition not containing any $\gamma-$ set of G., In this case, it is obvious that

1. G has no independent γ - set or
2. If G has an independent γ - set then there exists no partition P_{1} of $\mathrm{V}-\mathrm{D}$ satisfying the conditions of Theorem 1(else if a partition exists for $\mathrm{V}-\mathrm{D}$ then the assumption that P does not contain any γ - set fails).
Conversely, if the conditions of the remark satisfied, then P has no γ-set.

Theorem 2

If P is the chromatic partition for a uniquely colorable graph G , then every set in P is a dominating set.

Proof

Let $\mathrm{P}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$ be a chromatic partition for G . Assume that there exist some $\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1$ to k such that x_{i} is not a dominating set then \exists at least one vertex $u \in V(G), u \notin x_{i}$, эu not adjacent to any vertex in x_{i}. Assume that $\mathrm{u} \in \mathrm{x}_{\mathrm{j}}, \mathrm{j} \neq \mathrm{i}, \mathrm{P}_{1}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{i}-1}, \mathrm{x}_{\mathrm{i}} \cup\{\mathrm{u}\}, \mathrm{x}_{\mathrm{i}+1}, \ldots, \mathrm{x}_{\mathrm{j}-1}, \mathrm{x}_{\mathrm{j}} \cup\{\mathrm{u}\}, \mathrm{x}_{\mathrm{j}+1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$ is a chromatic partition for G , a contradiction for our assumption that G is uniquely colorable.

Theorem 3

Let G be a uniquely colorable graph $|\mathrm{P}|=2$ if only if $\mathrm{N}(\mathrm{u}) \in \mathrm{V}-\mathrm{D} \forall \mathrm{u} \in \mathrm{D}, \mathrm{N}(\mathrm{w}) \in \mathrm{D} \forall \mathrm{w} \in \mathrm{V}$ - D.

Proof

Let G be uniquely colorable and $|p|=2=\left\{x_{1}, x_{2}\right\}$ (say). If for some $u \in D \exists$ a vertex $v \in V-D$ э $v \in D$ then $P=\left\{x_{1}, x_{2}\right\}$ is a partition for G such that u, v belongs to some $X_{i}, i=1,2$, a contradiction to our assumption on P .
Similarly, if for some $w \in V-D$ there exist some $w \in V-D$ there exist some $x \in V-D$ such that $x \in$ $\mathrm{N}(\mathrm{w})$ then $\mathrm{w}, \mathrm{x} \in \mathrm{V}-\mathrm{D}, \mathrm{w}$ adjacent to $\mathrm{v}, \mathrm{w}, \mathrm{v}$ belongs to some $\mathrm{x}_{\mathrm{i}}, \mathrm{i}=1$, 2, a contradiction to our assumption on P .
Conversely, assume that for every $u \in D, N(u) \in V-D$ for all $w \in D, N(w) \in V-D$. If possible, assume that $|P|=3=\left\{x_{1}, x_{2}, x_{3}\right\}$ (say). Let one of $x_{i}, i=1,2,3$ be a $\gamma-$ set for G. Let $x_{1}=D$, this
means that $x_{2}, x_{3} \in V-D$. By our assumption there exist no $x, y \in V-D, x \perp y$. So $x_{2} \cup x_{3}$ is an independent set, which implies $P_{1}=\left\{x_{1}, x_{2} \cup_{x 3}\right\}$ is a partition for G such that

1. $\mathrm{x}_{1}, \mathrm{x}_{2} \cup \mathrm{x}_{3}$ are independent
2. x_{1} is a γ - set for G
3. $x_{2} \cup x_{3} \in V-D$

That is, P_{1} is a chromatic partition for G such that $\left|P_{1}\right|<|P|$, a contradiction to our assumption that P is a chromatic partition for G.

Remark

1. For any tree, we know that $|P|=2$, so if P is chromatic partition for T such that $|P|=2=\{$ $\left.\mathrm{x}_{1}, \mathrm{x}_{2}\right\}$ at least one of xi is a γ - set for T then by the above theorem, we conclude that the following statement
T is a uniquely colorable tree if and only if for $u \in D, N(u) \in V-D, \forall w \in V-D, N(w)$ $\in \mathrm{D}$.
By the Theorem 3, we conclude that
R1: If T is a uniquely colorable tree then
2. every internal vertex is two dominated
3. if a pendant vertex $u \in D$, then for the support vertex v adjacent to u, u is the only leaf.

Theorem 4

If T is a uniquely colorable tree then $\gamma(\mathrm{T})+\gamma(\overline{\mathrm{T}})=\gamma(\mathrm{T})+2$

proof

Since T has atleast two pendant vertices $u_{1}, u_{2}($ say $)$. In \bar{T}, u_{1} dominates $V(\bar{T})-N\left(u_{1}\right) . N\left(u_{1}\right)$ is dominated by u_{2} implies $\gamma(\overline{\mathrm{T}})=2$.

3.1. Trees

Theorem 5

Let T be a γ - uniquely colorable tree. Let $\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ be a γ - chromatic partition for T. H is generated from T by attaching a path P_{1} at u where $\mathrm{u} \in \mathrm{V}(\mathrm{G})$. Let $\gamma(\mathrm{H})=\gamma(\mathrm{T})$. H is γ - uniquely colorable if and only if $u \in V_{1}$.

Proof

Assume that H is γ - uniquely colorable tree. There exist a γ-chromatic partition P_{1} for H such that P 1 $=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$. Let D_{1} be a γ - set for H and D be a γ - uniquely colorable γ - set for T . By assumption, $\mid \mathrm{D}_{1}$
 then $D_{1}-\{\mathrm{v}\}$ is a $\gamma-$ set for T such that $|\mathrm{D}|>\left|\mathrm{D}_{1}-\{\mathrm{v}\}\right|$, a contradiction to our assumption that D is a γ - set for T, implies $u \in V_{1} . P_{2}=\left\{P_{1}-\{\mathrm{v}\}\right\}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}-\{\mathrm{v}\}\right\}$ is a γ - chromatic partition for $\mathrm{T} . \mathrm{P}_{2}=$ P since T is γ - uniquely colorable tree.
Conversely, assume that $u \in V$, we have to prove that H is γ - uniquely colorable tree. D is a γ - set for H and $\mathrm{P}_{3}=\{\mathrm{P} \cup\{\mathrm{v}\}\}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2} \cup\{\mathrm{v}\}\right\}$ is a chromatic partition for H such that

1. $V_{1} \in D$.
2. $\mathrm{V}_{2} \in \mathrm{~V}-\mathrm{D}$.
3. $N(u) \in V-D$, for all $u \in D$.
4. $\mathrm{N}(\mathrm{w}) \in \mathrm{D}$, for all $\mathrm{w} \in \mathrm{V}-\mathrm{D}$.
implies H is γ - uniquely colorable tree.

Note

Theorem 5 states that, H is γ - uniquely colorable tree if and only if $u \in V_{1}$. If u is any vertex in H which is a good vertex but $u \notin V_{1}$, then the resulting graph H need not be uniquely colorable. For example, consider the graph G in Figure 4

Figure 4.
G is uniquely colorable with a γ - chromatic partition $\mathrm{P}=\{\{1,3\},\{2,4,5\}\} .\{2,3\}$ is also a γ set for G. Attaching a path of length 1 at vertex 2 results to the graph seen in Fig. 5 which is not uniquely colorable.

Figure 5.

Theorem 6

Let T be a γ - uniquely colorable tree. Let $\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ be a γ - chromatic partition for T. H is generated from T by attaching a path P_{1} at u where $\mathrm{u} \in \mathrm{V}(\mathrm{G})$. Let $\gamma(\mathrm{H})=\gamma(\mathrm{T})+1 . \mathrm{H}$ is γ uniquely colorable if and only if $u \in$ bad.

Proof

Assume that H is γ - uniquely colorable tree. There exist a γ - chromatic partition P_{1} for H such that P_{1} $=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$. Let D_{1} be a γ - set for H and D be a γ - uniquely colorable γ - set for T . Let v be a new pendant vertex attach at u to generate. u is a bad vertex with the vertex to T else if u is good with respect to T, then D itself is a γ - set for H , a contradiction to our assumption that $\gamma(\mathrm{H})=\gamma(\mathrm{T})+1$.
Conversely, assume that u is bad with respect to T. Since $\gamma(H)=\gamma(T)+1$, let $D_{1}=D \cup\{v\}$ be a γ - set for H . Since T is γ - uniquely colorable, $\mathrm{P}_{1}=\mathrm{P} \cup\{\mathrm{v}\}=\left\{\mathrm{V}_{1} \cup\{\mathrm{v}\}, \mathrm{V}_{2}\right\}=\left\{\mathrm{V}_{3}, \mathrm{~V}_{2}\right\}$ is a chromatic polynomial for H such that

1. $v \in V_{3}$
2. $u \in V_{2}$
3. $\mathrm{N}(\mathrm{u}) \in \mathrm{V}-\mathrm{D}_{1}$, for all $\mathrm{u} \in \mathrm{D}_{1}$
4. $\mathrm{N}(\mathrm{w}) \in \mathrm{D}_{1}$, for all $\mathrm{w} \in \mathrm{V}-\mathrm{D}_{1}$
implies D_{1} is a γ - uniquely colorable γ - set for H and hence H is γ - uniquely colorable tree.

Theorem 7

Let T be a γ - uniquely colorable tree. Let $\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ be a γ - chromatic partition for T. H is generated from T by attaching a path P_{2} at u where $\mathrm{u} \in \mathrm{V}(\mathrm{G})$. Let $\gamma(\mathrm{H})=\gamma(\mathrm{T})+1$. H is $\gamma-$ uniquely colorable if and only if u is not selfish with respect to T.

Proof

Assume that H is γ - uniquely colorable tree. H is generated from T by attaching a path P_{2} to u. There exist a γ - chromatic partition P_{1} for H such that $\mathrm{P}_{1}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$. Let D_{1} be $\mathrm{a} \gamma$ - set for H and D be a γ uniquely colorable γ - set for T. Let the vertex adjacent to u be v and w be the vertex adjacent to v. If possible, assume that u is selfish with respect to T. Then $D_{1}=D-\{u\} \cup\{v\}$ is a $\gamma-$ set for H. Since H is uniquely colorable there exist a γ - uniquely colorable γ - set D_{2} for H and a γ-chromatic partition $P_{1}=\left\{V_{3}, V_{4}\right\}$ for H. Either $v \in V_{3}$ or $w \in V_{3}$ (since w is pendant). $D_{3}=D_{2}-\{v\}$ is a γ set for T such that $\left|D_{3}\right|<\left|D_{2}\right|$, a contradiction to our assumption that D_{2} is a γ - set for H. If $v \in V_{3}$, then $u \in V-D_{2}$ and u is $2-$ dominated with respect to D_{2}. If $w \in V_{3}$, then $v \in V-D_{2}$ and $u \in V_{3}$. D_{3} $=D_{2}-\{\mathrm{w}\}$ is a γ - set for T such that $\left|D_{3}\right|<\left|D_{2}\right|$, a contradiction to our assumption that D_{2} is a γ set for H .

Conversely, assume that u is not selfish with respect to T . We know that T is uniquely colorable and $\mathrm{P}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}\right\}$ is a γ - chromatic partition for $\mathrm{T} . \mathrm{D}_{4}=\mathrm{D} \cup\{\mathrm{w}\}$ is a γ - set for H (since $\gamma(\mathrm{H})=\gamma(\mathrm{T})$ +1). Also $\mathrm{P}_{2}=\{\mathrm{P} \cup\{\mathrm{w}\}\}=\left\{\mathrm{V}_{1} \cup\{\mathrm{w}\}, \mathrm{V}_{2}\right\}=\left\{\mathrm{V}_{5}, \mathrm{~V}_{2}\right\}$ is a chromatic partition for H such that

1. $N(u) \in V-D_{4}$, for all $u \in D_{4}$ and
2. $N(w) \in D$, for all $w \in V-D_{4}$
implies H is uniquely colorable.

3.2.Tree characterization

In this section, we present a constructive characterization of trees T that a γ - uniquely colorable tree.
Operation \mathbf{O}_{1} : Attach a tree path P_{1} to a vertex u of T to generate T_{1}, so that

1. $\gamma(\mathrm{T})=\gamma\left(\mathrm{T}^{\prime}\right)$
2. $u \in D$ where D is $a \gamma$ - uniquely colorable γ - set with respect to T.

Operation \mathbf{O}_{2} : Attach a tree path P_{1} to a vertex u of T to generate T_{1}, so that

1. $\gamma\left(\mathrm{T}_{1}\right)=\gamma(\mathrm{T})+1$.
2. u is a bad vertex with respect to T.

Operation \mathbf{O}_{3} : Attach a tree path P_{1} to a vertex u of T to generate T_{1}, so that

1. $\gamma\left(\mathrm{T}_{1}\right)=\gamma(\mathrm{T})+1$.
2. u is not a selfish vertex with respect to T .

Let τ be the family defined by $\tau=\left\{T / T\right.$ is obtained from K_{1}, by a finite sequence of operations O_{1} or O_{2} or $\left.\mathrm{O}_{3}\right\}$.
From Theorem and we know that if $\mathrm{T} \in \tau$, then T is a γ - uniquely colorable tree.

Theorem 8

If T is a γ - uniquely colorable tree, then $\mathrm{T} \in \tau$.

Proof

We proceed by induction on the order $\mathrm{n} \geq 1$. If T is a star, then T can be generated from K_{1}, by repeated application of Operation O_{1}. Hence we may assume that diam (T$) \geq 3$. Assume that the Theorem is true for all tree T^{\prime} of order $\mathrm{n}^{\prime}<\mathrm{n}$. Let T be rooted at a leaf r , of longest path $\mathrm{r}-\mathrm{u}$ path P . Let v be the neighbor of u . Further, let w denote the parent of v . By_{x}, we denote the subtree induced by vertex x and its descendants in the rooted tree T .
Let $\mathrm{T}^{\prime}=\mathrm{T}-\mathrm{T}_{\mathrm{u}}$. Let $\mathrm{d}_{\mathrm{T}}(\mathrm{v}) \geq 4$, v is a support vertex with respect to T^{\prime} ' $\begin{aligned} \\ \gamma\end{aligned}$ vertices adjacent to v is at least 2 . Since T ' is uniquely colorable there exist a γ - uniquely colorable γ - set D_{1} for T ' containing v , that is D_{1} is $\mathrm{a} \gamma$ - uniquely colorable γ - set for T ' containing v . Also γ (T $)=\gamma\left(T^{\prime}\right)$ implies T can be obtained from T^{\prime} by operation O_{1}.
Let $\mathrm{d}_{\mathrm{T}}(\mathrm{v})=3$. Label the pendant vertex adjacent to v as x . Any tree has a γ - set containing all the pendant vertices. Let D_{1} be $\mathrm{a} \gamma$ - set for T ' containing v . D_{1} itself is a γ - set for T implies $\gamma(\mathrm{T})=\gamma($ $\left.\mathrm{T}^{\prime}\right)$. We know that T is γ - uniquely colorable tree. In $\mathrm{T}, \mathrm{d}(\mathrm{v})=2$, implies T has a γ - uniquely colorable γ-set D э $\mathrm{v} \in \mathrm{D}(\mathrm{R} 1)$. D itself is a γ - uniquely colorable γ - set for T 'i.e., D is a γ uniquely colorable γ-set for T^{\prime} containing v. Also $\gamma(\mathrm{T})=\gamma\left(\mathrm{T}^{\prime}\right)$ implies T can be generated from T^{\prime} by applying operation O_{2}.
If $u \in D$, then $D_{1}=D-\{u\}$ is a dominating set for T^{\prime}. If T^{\prime} has a $\gamma-$ set D_{2} such that $\left|D_{2}\right|<\left|D_{1}\right|$, then
$D_{3}=\left\{\begin{array}{cc}D_{2} \cup\{u\} & \text { if } v \notin D_{2} \\ D_{2} & \text { if } v \in D_{2}\end{array}\right.$ or
is a γ - set for $\mathrm{T}_{\ni}\left|\mathrm{D}_{3}\right|<|\mathrm{D}|$.W have assumed that D is a γ - uniquely colorable γ - set for T . So a γ set with smaller cardinality is not possible, implies D_{1} is a γ - set for T '.
Let $\mathrm{d}_{\mathrm{T}}(\mathrm{v})=2$. Since T is γ - uniquely colorable there exist a γ - uniquely colorable $\gamma-$ set for D for T. Either $u \in D$ or $v \in D$. If $v \in D$, then since $\gamma(T)=\gamma(T '), T$ can be generated from T^{\prime} by applying operation O_{1}. If v is a good vertex with respect to T^{\prime}, then there exist a $\gamma-$ set D_{4} for T^{\prime}
containing v. D is a γ - uniquely colorable γ - set for T . So, a γ - set for T with smaller cardinality is not possible implies D_{4} cannot be a γ - set for T , implies v is a bad vertex with respect to T^{\prime}. Also γ (T $)=\gamma\left(\mathrm{T}^{\prime}\right)+1$, implies T can be generated from T^{\prime} by applying operation O_{2}.
Let $\mathrm{T}^{\prime}=\mathrm{T}-\mathrm{T}_{\mathrm{v}}$. Since T is γ - uniquely colorable and v is a support vertex, any γ - uniquely colorable γ - set D for T contains either u or v . When $\mathrm{u} \in \mathrm{D}$, w also belongs to D . When $\mathrm{v} \in \mathrm{D}$, w is two dominated, then $\mathrm{D}_{1}=\mathrm{D}-\{\mathrm{u}\}$ or $\mathrm{D}_{1}=\mathrm{D}-\{\mathrm{u}\}$ is a dominating set for T^{\prime}. If T^{\prime} has a $\gamma-$ set D_{2} such that $\left|D_{2}\right|<\left|D_{1}\right|$, then $D_{3}=D_{2} \cup\{\mathrm{v}\}$ is a $\gamma-$ set for T such that $\left|D_{3}\right|<|\mathrm{D}|$. We have assumed that D is a γ - uniquely colorable γ - set for T . So, a γ - set with smaller cardinality is not possible implies D_{1} is a γ-set for T^{\prime} that is, $\gamma\left(\mathrm{T}^{\prime}\right)=\gamma(\mathrm{T})-1$. If w is selfish with respect to T^{\prime}, then $\mathrm{D}_{4}=$ $\mathrm{D}_{1}-\{\mathrm{w}\} \cup\{\mathrm{v}\}$ is a $\gamma-$ set for $\mathrm{T}_{\ni}\left|\mathrm{D}_{4}\right|<\left|\mathrm{D}_{1}\right|$, a contradiction to the assumption that $\gamma\left(\mathrm{T}^{\prime}\right)=\gamma(\mathrm{T}$) - 1 implies w is not selfish with respect to T^{\prime}. Also $\gamma(\mathrm{T})=\gamma\left(\mathrm{T}^{\prime}\right)+1$, implies T can be generated from T' by applying operation O_{3}.
As a immediate consequence of Theorems 5, 6 and 7, we have following characterization of γ uniquely colorable γ-set.

Theorem 9

A tree T is γ-uniquely colorable tree if and only if $\mathrm{T} \in \tau$.

4. Conclusion

This paper contributes the necessary and sufficient condition, tree characterization of a γ - uniquely colorable graphs.

References

[1] Benedict Michael Raj L and Ayyaswamy S K 2014 Journal of Mathematics 33 13-23
[2] John Arul SinghJ and Kala R 2010 Int. J. Contemp. Math. Sciences 5 2019-27
[3] Benedict Michael Raj L, AyyaswamyS Kand Sahul Hamid I 2010 Int. Mathematical Forum 5 639-648
[4] https://people.cs.clemson.edu/~goddard/papers/equalDomination.pdf.
[5] David E. Brown, Breeann M. Flesch 2014, Journal of Discrete Mathematics
[6] Harary F 2011Graph TheoryAddison Wesely, Narosa Publishing House
[7] Haynes T W et al. 1998 Fundamentals of Domination in GraphsMarcel Dekker, New York

