
Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2012, Article ID 686801, 10 pages
doi:10.1155/2012/686801

Research Article

Generalization of Some Coupled Fixed Point
Results on Partial Metric Spaces

Wasfi Shatanawi,1 Hemant Kumar Nashine,2 and Nedal Tahat1

1 Department of Mathematics, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
2 Department of Mathematics, Disha Institute of Management and Technology, Satya Vihar,
Vidhansabha-Chandrakhuri Marg, Naradha, Mandir Hasaud, Chhattisgarh Raipur 492101, India

Correspondence should be addressed to Wasfi Shatanawi, swasfi@hu.edu.jo

Received 21 March 2012; Accepted 3 May 2012

Academic Editor: Heinz Gumm

Copyright q 2012 Wasfi Shatanawi et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Using the setting of partial metric spaces, we prove some coupled fixed point results. Our results
generalize several well-known comparable results of H. Aydi (2011). Also, we introduce an
example to support our results.

1. Introduction and Preliminaries

The notion of coupled fixed point of a mapping F : X × X → X was introduced by
Gnana Bhaskar and Lakshmikantham in [1]. Later on, many authors investigated many
coupled fixed point results in different spaces such as usual metric spaces, fuzzy metric
spaces, generalized metric spaces, partial metric spaces, and partially ordered metric spaces
(see [1–20]).

Definition 1.1 (see [1]). An element (x, y) ∈ X×X is called a coupled fixed point of a mapping
F : X ×X → X if

F
(
x, y

)
= x, F

(
y, x

)
= y. (1.1)

Matthews [21] in 1994 introduced the notion of partial metric spaces in such
a way that each object does not necessarily have to have a zero distance from itself.
Consistent with Matthews [21], the following definitions and results will be needed in the
sequel.
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Definition 1.2 (see [21]). A partial metric on a nonempty set X is a function p : X × X → R+

such that for all x, y, z ∈ X:

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y),

(p2) p(x, x) ≤ p(x, y),

(p3) p(x, y) = p(y, x),

(p4) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X.

Each partial metric p onX generates a T0 topology τp onX. The set {Bp(x, ε) : x ∈ X, ε >
0}, where Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x)+ε} for all x ∈ X and ε > 0, forms the base of τp.

If p is a partial metric on X, then the function ps : X ×X → R+ given by

ps
(
x, y

)
= 2p

(
x, y

)
− p(x, x) − p

(
y, y

)
(1.2)

is a metric on X.

Definition 1.3 (see [21]). Let (X, p) be a partial metric space. Then:

(1) a sequence (xn) in a partial metric space (X, p) converges, with respect to τp, to a
point x ∈ X if and only if p(x, x) = limn→∞ p(x, xn),

(2) a sequence (xn) in a partial metric space (X, p) is called a Cauchy sequence if there
exists (and is finite) limn,m→∞ p(xn, xm),

(3) A partial metric space (X, p) is said to be complete if every Cauchy sequence
(xn) in X converges, with respect to τp, to a point x ∈ X such that p(x, x) =

limn,m→∞p(xn, xm).

Lemma 1.4 (see [21]). Let (X, p) be a partial metric space.

(1) (xn) is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space
(X, ps).

(2) A partial metric space (X, p) is complete if and only if the metric space (X, ps) is complete.
Furthermore, limn→∞p

s(xn, x) = 0 if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm). (1.3)

Abdeljawad et al. [22–24], Altun et al. [25], Karapinar and Erhan [26–28], Oltra and
Valero [29] and Romaguera [30] studied fixed point theorems in partial metric spaces. For
more works in partial metric spaces, we refer the reader to [31–40].

Aydi [2] proved the following coupled fixed point theorems in partial metric spaces.

Theorem 1.5. Let (X, p) be a complete partial metric space. Suppose that the mapping F : X ×X →

X satisfies the following contractive condition for all x, y, u, v ∈ X:

p
(
F

(
x, y

)
, F(u, v)

)
≤ kp(x, u) + lp

(
y, v

)
, (1.4)

where k, l are nonnegative constants with k + l < 1. Then F has a unique coupled fixed point.
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Theorem 1.6. Let (X, p) be a complete partial metric space. Suppose that the mapping F : X ×X →

X satisfies the following contractive condition for all x, y, u, v ∈ X:

p
(
F

(
x, y

)
, F(u, v)

)
≤ kp

(
F

(
x, y

)
, x

)
+ lp(F(u, v), u), (1.5)

where k, l are nonnegative constants with k + l < 1. Then F has a unique coupled fixed point.

In this paper, we prove some coupled fixed point results. Our results generalize
Theorems 1.5 and 1.6. Also, we introduce an example to support our results.

2. The Main Result

Theorem 2.1. Let (X, p) be a complete partial metric space. Suppose that the mapping F : X ×X →

X satisfies

p
(
F

(
x, y

)
, F(u, v)

)
≤ rmax

{
p(x, u), p

(
y, v

)
, p

(
F

(
x, y

)
, x

)
, p(F(u, v), u)

}
, (2.1)

for all x, y, u, v ∈ X. If r ∈ [0, 1), then F has a unique coupled fixed point.

Proof. Choose x0, y0 ∈ X. Let x1 = F(x0, y0) and y1 = F(y0, x0). Again let x2 = F(x1, y1) and
y2 = F(y1, x1). By continuing in the same way, we construct two sequences (xn) and (yn) in
X such that

xn+1 = F
(
xn, yn

)
, n = 0, 1, 2, 3, . . . ,

yn+1 = F
(
yn, xn

)
, n = 0, 1, 2, 3, . . . .

(2.2)

Then by (2.1), we have

p(xn+1, xn+2) = p
(
F

(
xn, yn

)
, F

(
xn+1, yn+1

))

≤ rmax
{
p(xn, xn+1), p

(
yn, yn+1

)
, p

(
F

(
xn, yn

)
, xn

)
,

p
(
F

(
xn+1, yn+1

)
, xn+1

)}

≤ rmax
{
p(xn, xn+1), p

(
yn, yn+1

)
, p(xn+1, xn), p(xn+2, xn+1)

}

≤ rmax
{
p(xn, xn+1), p

(
yn, yn+1

)}

p
(
yn+1, yn+2

)
= p

(
F

(
yn, xn

)
, F

(
yn+1, xn+1

))

≤ rmax
{
p

(
yn, yn+1

)
, p(xn, xn+1),

p
(
F

(
yn, xn

)
, yn

)
, p

(
F

(
yn+1, xn+1

)
, yn+1

)
}

≤ rmax
{
p

(
yn, yn+1

)
, p(xn, xn+1), p

(
yn+1, yn

)
, p

(
yn+2, yn+1

)}

≤ rmax
{
p

(
yn, yn+1

)
, p(xn, xn+1)

}
.

(2.3)
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Thus from (2.3), we have

max
{
p(xn, xn+1), p

(
yn, yn+1

)}
≤ rmax

{
p(xn−1, xn), p

(
yn−1, yn

)}
. (2.4)

By repeating (2.4) n-times, we get that

max
{
p(xn, xn+1), p

(
yn, yn+1

)}
≤ rmax

{
p(xn−1, xn), p

(
yn−1, yn

)}

≤ r2 max
{
p(xn−2, xn−1), p

(
yn−2, yn−1

)}

...

≤ rn max
{
p(x0, x1), p

(
y0, y1

)}
.

(2.5)

Letting n → +∞ in (2.5), we get that

lim
n→+∞

max
{
p(xn, xn+1), p

(
yn, yn+1

)}
= 0. (2.6)

Therefore, we have

lim
n→+∞

p(xn, xn+1) = 0,

lim
n→+∞

p
(
yn, yn+1

)
= 0.

(2.7)

For n,m ∈ N withm > n, we have

p(xn, xm) ≤ p(xn, xn+1) + p(xn+1, xm) − p(xn+1, xn+1)

≤ p(xn, xn+1) + p(xn+1, xn+2) + p(xn+2, xm)

− p(xn+1, xn+1) − p(xn+2, xn+2)

...

≤
m−1∑

i=n

p(xi, xi+1) −
m−2∑

i=n

p(xi+1, xi+1)

≤
m−1∑

i=n

p(xi, xi+1).

(2.8)
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By (2.5) and (2.8), we have

p(xn, xm) ≤
m−1∑

i=n

ri max
{
p(x0, x1), p

(
y0, y1

)}

≤
+∞∑

i=n

ri max
{
p(x0, x1), p

(
y0, y1

)}

=
rn

1 − r
max

{
p(x0, x1), p

(
y0, y1

)}
.

(2.9)

Letting n,m → +∞ in (2.9), we get that

lim
n,m→∞

p(xn, xm) = 0. (2.10)

Thus limn,m→∞ p(xn, xm) exists and is finite. Hence (xn) is a Cauchy sequence in (X, p).
Similarly, we may show that

lim
n,m→∞

p
(
yn, ym

)
= 0, (2.11)

and hence (yn) is a Cauchy sequence in (X, p). By Lemma 1.4 there exist x, y ∈ X such that
limn→∞ ps(xn, x) = 0 (resp., limn→∞ ps(yn, y) = 0) if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm) = 0,

(
resp., p

(
y, y

)
= lim

n→∞
p

(
yn, y

)
= lim

n,m→∞
p

(
yn, ym

)
= 0

)
.

(2.12)

Now, we prove that x = F(x, y). By (2.1), we have

p
(
F

(
x, y

)
, x

)
≤ p

(
F

(
x, y

)
, xn+1

)
+ p(xn+1, x) − p(xn+1, xn+1)

≤ p
(
F

(
x, y

)
, xn+1

)
+ p(xn+1, x)

≤ p
(
F

(
x, y

)
, F

(
xn, yn

))
+ p(xn+1, x)

≤ rmax
{
p(x, xn), p

(
y, yn

)
, p

(
F

(
x, y

)
, x

)
, p

(
F

(
xn, yn

)
, xn

)}
+ p(xn+1, x)

= rmax
{
p(x, xn), p

(
y, yn

)
, p

(
F

(
x, y

)
, x

)
, p(xn+1, xn)

}
+ p(xn+1, x).

(2.13)

Letting n → ∞ in the above inequality and using (2.12), we get that

p
(
F

(
x, y

)
, x

)
≤ rp

(
F

(
x, y

)
, x

)
. (2.14)
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Since r ∈ [0, 1), we conclude that p(F(x, y), x) = 0. By (p1) and (p2), we have F(x, y) =
x. Similarly, we may show that F(y, x) = y. Thus (x, y) is a coupled fixed point of F. To prove
the uniqueness of the fixed point, we let (u, v) be a coupled fixed point of F. We will show
that x = u and y = v. By (2.1), we have

p(x, u) = p
(
F

(
x, y

)
, F(u, v)

)

≤ rmax
{
p(x, u), p

(
F

(
x, y

)
, x

)
, p

(
y, v

)
, p(F(u, v), u)

}

= rmax
{
p(x, u), p

(
y, v

)
, p(x, x), p(u, u)

}
.

(2.15)

Since p(x, x) ≤ p(x, u) and p(u, u) ≤ p(x, u), we have

p(x, u) ≤ rmax
{
p(x, u), p

(
y, v

)}
. (2.16)

Also, from (2.1), we have

p
(
y, v

)
= p

(
F

(
y, x

)
, F(v, u)

)

≤ rmax
{
p

(
y, v

)
, p

(
F

(
y, x

)
, y

)
, p(x, u), p(F(v, u), v)

}

= rmax
{
p(x, u), p

(
y, v

)
, p

(
y, y

)
, p(v, v)

}
.

(2.17)

Since p(y, y) ≤ p(y, v) and p(v, v) ≤ p(y, v), we have

p
(
y, v

)
≤ rmax

{
p(x, u), p

(
y, v

)}
. (2.18)

From (2.16) and (2.18), we have

max
{
p(x, u), p

(
y, v

)}
≤ rmax

{
p(x, u), p

(
y, v

)}
. (2.19)

Since r < 1, we have max{p(x, u), p(y, v)} = 0. Hence p(x, u) = 0 and p(y, v) = 0. By (p1) and
(p2), we have x = u and y = v.

Corollary 2.2. Let (X, p) be a complete partial metric space. Suppose that there are a, b, c, d ∈ [0, 1)
with a + b + c + d < 1 such that the mapping F : X ×X → X satisfies

p
(
F

(
x, y

)
, F(u, v)

)
≤ ap(x, u) + bp

(
y, v

)
+ cp

(
F

(
x, y

)
, x

)
+ dp(F(u, v), u) (2.20)

for all x, y, u, v ∈ X. Then F has a unique coupled fixed point.
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Proof. The proof follows from Theorem 2.1 by noting that:

ap(x, u) + bp
(
y, v

)
+ cp

(
F

(
x, y

)
, x

)
+ dp(F(u, v), u)

≤ (a + b + c + d)max
{
p(x, u), p

(
y, v

)
, p

(
F

(
x, y

)
, x

)
, p(F(u, v), u)

}
.

(2.21)

Remarks.

(1) Theorem 1.5 [2, Theorem 2.1] is a special case of Corollary 2.2.

(2) [2, Corollary 2.2] is a special case of Corollary 2.2.

(3) Theorem 1.6 [2, Theorem 2.4] is a special case of Corollary 2.2.

(4) [2, Corollary 2.6] is a special case of Corollary 2.2.

Now, we introduce an example satisfying the hypotheses of Theorem 2.1 but not the hypo-
theses of Theorems 2.1 and 2.4 of [2].

Example 2.3. Define p : [0, 1] × [0, 1] → [0, 1] by p(x, y) = max{x, y}. Then ([0, 1], p) is a
complete partial metric space. Let F : [0, 1] × [0, 1] → [0, 1] be the mapping defined by

F
(
x, y

)
=

∣∣x − y
∣∣

2
. (2.22)

Then,

(a) p(F(x, y), F(u, v)) ≤ (1/2)max{p(x, u), p(y, v), p(F(x, y), x), p(F(u, v), u)} for all
x, y, u, v ∈ [0, 1],

(b) there are no a, b ∈ [0, 1) with a + b < 1 such that p(F(x, y), F(u, v)) ≤ ap(x, u) +
bp(y, v) for all x, y, u, v ∈ [0, 1].

(c) there are no a, b ∈ [0, 1)with a+b < 1 such that p(F(x, y), F(u, v)) ≤ ap(F(x, y), x)+
bp(F(u, v), u) for all x, y, u, v ∈ [0, 1].

Proof. To prove part (a), given x, y, v, u ∈ [0, 1]. Then:

p
(
F

(
x, y

)
, F(u, v)

)
= max

{∣∣x − y
∣∣

2
,
|u − v|

2

}

=
1

2
max

{∣∣x − y
∣∣, |u − v|

}

=
1

2
max

{
x − y, y − x, u − v, v − u

}

≤
1

2
max

{
x, y, u, v

}

=
1

2
max

{
p(x, u), p

(
y, v

)}

≤
1

2
max

{
p(x, u), p

(
y, v

)
, p

(
F

(
x, y

)
, x

)
, p(F(u, v), u)

}
.

(2.23)
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To prove part (b), suppose that there are a, b ∈ [0, 1) with a + b < 1 such that p(F(x, y),
F(u, v)) ≤ ap(x, u) + bp(y, v) for all x, y, u, v ∈ [0, 1].

Since

p(F(1, 0), F(0, 0)) = p

(
1

2
, 0

)
=

1

2
≤ ap(1, 0) + bp(0, 0) = a,

p(F(0, 1), F(0, 0)) = p

(
1

2
, 0

)
=

1

2
≤ ap(0, 0) + bp(1, 0) = b,

(2.24)

we have a + b ≥ 1, which is a contradiction.
To prove part (c), suppose that there are a, b ∈ [0, 1) with a + b < 1 such that

p(F(x, y), F(u, v)) ≤ ap(F(x, y), x) + bp(F(u, v), u) for all x, y, u, v ∈ [0, 1].
Since

p(F(1, 0), F(0, 0)) = p

(
1

2
, 0

)
=

1

2

≤ ap(F(1, 0), 1) + bp(F(0, 0), 0)

= ap

(
1

2
, 1

)
+ bp(0, 0)

= a

p(F(0, 0), F(1, 0)) = p

(
0,

1

2

)
=

1

2

≤ ap(F(0, 0), 0) + bp(F(1, 0), 1)

= ap(0, 0) + bp

(
1

2
, 1

)

= b,

(2.25)

we have a + b ≥ 1, which is a contradiction.

Thus by Theorem 2.1, F has a unique coupled fixed point. Here, (0, 0) is the unique
fixed point of F.
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di Matematica dell’Università di Trieste, vol. 36, no. 1-2, pp. 17–26, 2004.

[30] S. Romaguera, “A Kirk type characterization of completeness for partial metric spaces,” Fixed Point
Theory and Applications, vol. 2010, Article ID 493298, 6 pages, 2010.

[31] I. Altun and A. Erduran, “Fixed point theorems for monotone mappings on partial metric spaces,”
Fixed Point Theory and Applications, Article ID 508730, 10 pages, 2011.

[32] I. Altun and H. Simsek, “Some fixed point theorems on dualistic partial metric spaces,” Journal of
Advanced Mathematical Studies, vol. 1, no. 1-2, pp. 1–8, 2008.

[33] H. Aydi, “Some fixed point results in ordered partial metric spaces,” The Journal of Nonlinear Science
and Applications, vol. 4, no. 2, pp. 1–12, 2011.

[34] H. Aydi, “Fixed point results for weakly contractive mappings in ordered partial metric spaces,” Jour-
nal of Advanced Mathematical Studies, vol. 4, no. 2, pp. 1–12, 2011.

[35] H. Aydi, “Fixed point theorems for generalizedweakly contractive condition in ordered partial metric
spaces,” Journal of Nonlinear Analysis and Optimization, vol. 2, no. 2, pp. 33–48, 2011.
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