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Abstract: Common fixed point theorems are proved in a G-metric space for four self-maps

through the notions of weak compatibility, common limit range property and an implicit
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theorem obtained in [5].
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1. Introduction

Let X be a nonempty set and G : X ×X ×X → R such that

(G1) G(x, y, z) ≥ 0 for all x, y, z ∈ X with G(x, y, z) = 0 if x = y = z,

(G2) G(x, x, y) > 0 for all x, y ∈ X with x 6= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, x, z) = G(z, x, y)
= G(y, z, x) = G(z, y, x) for all x, y, z ∈ X

(G5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z) for all x, y, z, w ∈ X
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Then G is called a G-metric on X and the pair (X,G) denotes a G-metric
space. Axiom (G5) is known as the rectangle inequality (of G). This notion
was introduced by Mustafa and Sims [1] as a generalization of metric space.
From this definition, it immediately follows that

G(x, y, y) = 0 ⇒ x = y for all x, y ∈ X (1.1)

and

G(x, y, y) ≤ 2G(x, x, y) for all x, y ∈ X. (1.2)

A G-metric space (X,G) is said to be symmetric, if G(x, y, y) = G(y, x, x) for
all x, y ∈ X.

Example 1.1. Let (X, d) be a metric space. Define

G(x, y, z) = d(x, y) + d(y, z) + d(z, x) for all x, y, z ∈ X (1.3)

Then (X,G) is a symmetric G-metric space.

Let x, y and z be the vertices of a triangle in a plane. Then d(x, y) denotes
the length of the side joining x and y and G(x, y, z) represents the perimeter of
the triangle.

The following terminology was developed by Mustafa et al in [1] and [2]:

Definition 1.1. A sequence 〈xn〉
∞

n=1 ⊂ X is said to be G-convergent with
limit p ∈ X, if limn,m→∞G(p, xn, xm) = 0, that is, if for any ǫ > 0 there is a
positive integer N such that G(xn, xm, p) < ǫ for all n,m ≥ N .

Lemma 1.1. The following statements are equivalent in a G-metric space

(X,G) :

(a) 〈xn〉
∞

n=1 ⊂ X is G-convergent with limit p ∈ X,

(b) limn→∞G(xn, xn, p) = 0,

(c) limn→∞G(xn, p, p) = 0.

First we give the following useful notation in a G-metric space (X,G) :

Definition 1.2. A point p ∈ X is a coincidence point of self-maps f and
r on X, if fp = rp = u, where u is a point of coincidence of f and r.

Definition 1.3. Self-maps f and r on X are weakly compatible, if they
commute at their coincidence point.
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Definition 1.4. Self-maps f and r on X satisfy the property (EA), if
there is a sequence 〈xn〉

∞

n=1 in X such that

lim
n→∞

fxn = lim
n→∞

rxn = u for some u ∈ X. (1.4)

Definition 1.5. Self-maps f and r on X satisfy the CLRr-property if
there is a sequence 〈xn〉

∞

n=1 in X such that

lim
n→∞

fxn = lim
n→∞

rxn = rp for some p ∈ X. (1.5)

With these ideas, the following was proved in [3]:

Theorem 1.1. Let f and r be self-maps on X such that

G(fx, fy, fz) ≤ kmax
{

G(rx, ry, rz), G(rx, fx, fx), G(rx, fy, fy),

G(rx, fz, fz), , G(ry, fy, fy)), G(ry, fx, fx),

G(ry, fz, fz), G(rz, fz, fz), G(rz, fx, fx),

G(rz, fy, fy)
}

for all x, y, z ∈ X, (1.6)

where 0 ≤ k < 1/4. If (f, r) satisfies the CLRr-property and r is weakly

compatible with f, then f and r will have a unique common fixed point.

Writing z = y, we immediately get

Corollary 1.1. Let f and r be self-maps on X such that

G(fx, fy, fy) ≤ kmax
{

G(rx, ry, ry), G(rx, fx, fx), G(ry, fy, fy),

G(rx, fy, fy), G(ry, fx, fx)
}

for all x, y ∈ X, (1.7)

where 0 ≤ k < 1/4. If (f, r) satisfies the CLRr-property and r is weakly

compatible with f, then f and r will have a unique common fixed point.

Theorem 1.2 (Theorem 2.5, [4]). Let f and r be self-maps on X and for

all x, y ∈ X either

G(fx, fy, fy) ≤ qmax
{

G(ry, fy, fy),

G(rx, fy, fy), G(ry, fx, fx)
}

(1.8)

or

G(fx, fy, fy) ≤ qmax
{

G(ry, ry, fy),

G(rx, rx, fy), G(ry, ry, fx)
}

(1.9)

holds good, where 0 ≤ q < 1. If the range of f is contained in the range of r

and r(X) is a complete subspace of X, then f and r will have a unique common

fixed point, provided r is weakly compatible with f.



372 T. Phaneendra

Remark 1.1. When the range of values of q is restricted to [0, 1/4), the
right hand side of (1.8) is less than or equal to the right hand side of (1.7).
In other words, (1.7) will be weaker than (1.8), when q ∈ [0, 1/4). Also, given
x0 ∈ X, if f(X) ⊂ r(X), then we can define the sequence 〈xn〉

∞

n=1 in X with
the choice

fxn−1 = rxn for n = 1, 2, 3, .... (1.10)

It can be shown that 〈rxn〉
∞

n=1 is a Cauchy sequence in r(X) and hence con-
verges in it, provided r(X) is complete. Thus (f, r) satisfies the CLRr-property
whenever f(X) ⊂ r(X) and r(X) is complete. Hence Corollary 1.1 is a partial
generalization of Theorem 1.2 when q ∈ [0, 1/4).

In this paper, first we extend Corollary 1.1 to four self-maps using the notion
of an implicit relation (cf. Section 2), which is a generalization of the metrical
fixed point theorem proved in [5]. Then we derive a generalization of Theorem
1.2 under a certain condition by slightly altering the contraction conditions of
the first result.

2. Main Results and Discussion

The notion of implicit-type relations were first introduced by Popa [6] to cover
several contractive conditions and unify fixed point theorems in metric spaces
(See [7], [8], [9] and so on). Recently Popa and Patriciu [10] inserted a contin-
uous implicit relation φ : R4

+ → R to prove fixed point theorems in a G-metric
spaces. In this paper, we employ a lower semicontinuous implicit function
ψ : R6

+ → R, which is nondecreasing in each coordinate variable, such that

(Pa) ψ(l, 0, 0, l, l, 0) > 0 for all l > 0,

(Pb) ψ(l, 0, l, 0, 0, l) > 0 for all l > 0,

(Pc) ψ(l, l, 0, 0, l, l) > 0 for all l > 0.

Example 2.1. Let ψ(t1, t2, t3, t4, t5, t6) = t1 −max
{

t2,
t3+t4

2 , t5+t6
2

}

.

Example 2.2. Let ψ(t1, t2, t3, t4, t5, t6) = t1 −max
{

t2, βt3 + αt4,
t5+t6

2

}

,
where β ≥ 0 and 0 < α < 1.

Example 2.3. Let ψ(t1, t2, t3, t4, t5, t6) = t1 − max
{

t2, αt3, αt4,
t5+t6

2

}

,
where 0 < α < 1.

Example 2.4. Let ψ(t1, t2, t3, t4, t5, t6) = t1 −max
{

t2,
t3+t4

2 , t5+t6
2

}

.



GENERALIZED FIXED POINT THEOREMS IN... 373

Example 2.5. Let ψ(t1, t2, t3, t4, t5, t6) = t1− [at2+ bt3+ ct4+ e(t5+ t6)],
where a, b, c and e are nonnegative numbers with a+ b+ c+ 2e < 1.

Example 2.6. Let ψ(t1, t2, t3, t4, t5, t6) = t31−[at21t2+bt1t3t4+ct
2
5t6+dt5t

2
6],

where a > 0 , b, c, e ≥ 0 such that a+ c+ e < 1 and a+ b < 1.

Example 2.7. Let ψ(l1, l2, l3, l4, l5, l6) = l21 − al22 −
bl5l6

l2
3
+l2

4
+1

, where a = 1/2

and b = 1/4.

Our first main result is

Theorem 2.1. Let f, g, h and r be self-maps on X such that for all

x, y ∈ X any two of the following inequalities hold good:

ψ(G(fx, gy, gy),G(rx, ry, ry), G(rx, fx, fx), G(ry, gy, gy),

G(rx, gy, gy), G(ry, fx, fx)) ≤ 0, (2.1)

ψ(G(gx, hy, hy),G(rx, ry, ry), G(rx, gx, gx), G(ry, hy, hy),

G(rx, hy, hy), G(ry, gx, gx)) ≤ 0, (2.2)

ψ(G(hx, fy, fy),G(rx, ry, ry), G(rx, hx, hx), G(ry, fy, fy),

G(rx, fy, fy), G(ry, hx, hx)) ≤ 0. (2.3)

Suppose that one of the pairs (f, r), (g, r) and (h, r) satisfies the CLRr-property.

If r is weakly compatible with any one of f, g and h, then all the four maps f,

g, h and r will have a common coincidence point u, which will be their unique

common fixed point.

Proof. Suppose f and r satisy the CLRr-property. Then we can find a
〈xn〉

∞

n=1 ⊂ X such that (1.5) holds good.

First we prove that

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

hxn = lim
n→∞

rxn = rp. (2.4)

Writing x = y = xn in (2.1), we get

ψ(G(fxn,gxn, gxn), G(rxn, rxn, rxn), G(rxn, fxn, fxn),

G(rxn, gxn, gxn), G(rxn, gxn, gxn), G(rxn, fxn, fxn)) ≤ 0.

Applying the limit as n→ ∞ and then using (1.5) and the lower semicontinuity
of ψ, this yields

ψ(G(rp, q, q), 0, 0, G(rp, q, q), G(rp, q, q), 0) ≤ 0, (2.5)
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where q = lim
n→∞

gxn. If G(rp, q, q) > 0, then (2.5) gives a contradiction to (Pa).

Thus G(rp, q, q) = 0 so that q = rp, in view of (1.1).

Again, taking x = y = xn in (2.2), we get

ψ(G(gxn, hxn, hxn),G(rxn, rxn, rxn), G(rxn, gxn, gxn), G(rxn, hxn, hxn),

G(rxn, hxn, hxn), G(rxn, gxn, gxn)) ≤ 0,

Applying the limit as n→ ∞ and the lower semicontinuity of ψ, this yields

ψ(G(rp, t, t), 0, 0, G(rp, t, t), G(rp, t, t), 0) ≤ 0,

where lim
n→∞

hxn = t. This would also give a contradiction to (Pa) if G(rp, t, t) >

0. Thus G(rp, t, t) = 0 so that t = rp, in view of (1.1). This proves (2.4).
Similarly (2.4) can be established whenever (g, r) or (h, r) satisfies the

CLRr-property under (2.1) and (2.2). The other cases that one of (f, r), (g, r)
and (h, r) satisfies the CLRr-property under [(2.2) and (2.3)] or [(2.1) and (2.3)]
will prove (2.4).
We shall prove that f, g, h and t have a common coincidence in the following
three cases:

Case (a): (f, r) is weakly compatible,
Case (b): (g, r) is weakly compatible,
Case (c): (h, r) is weakly compatible

Case (a) (f, r) is weakly compatible and any one of the pairs [(2.1), (2.2)],
[(2.1), (2.3)] and [(2.2), (2.3)] holds good:

fp = rp. (2.6)

If possible we assume that fp 6= rp so that l = G(rp, fp, fp) > 0 and k =
G(fp, fp, rp) > 0 by (G4), and l ≥ k/2, by (1.2).

Then writing x = p and y = xn in (2.1), we get

ψ(G(fp,gxn, gxn), G(rp, rxn, rxn), G(rp, fp, fp),

G(rxn, gxn, gxn), G(rp, gxn, gxn), G(rxn, fp, fp)) ≤ 0.

Applying the limit as n → ∞ and using (2.4) and the lower semicontinuity of
ψ, this yields

ψ(k, 0, l, 0, 0, l) ≤ 0.
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Since ψ is nondecreasing in each coordinate variable, the above imlpies that

ψ
(

k
2 , 0,

k
2 , 0, 0,

k
2

)

≤ ψ(k, 0, l, 0, 0, l) ≤ 0.

which contradicts the choice (Pb). Therefore (2.6) must hold good.

Since f and r commute at the coincidence point p, it follows that frp = rfp or

fu = ru, where fp = rp = u. (2.7)

Again, (2.1) with x = y = u and (2.7) gives

ψ(G(fu,gu, gu), G(ru, ru, ru), G(ru, fu, fu),

G(ru, gu, gu), G(ru, gu, gu), G(ru, fu, fu)) ≤ 0,

or

ψ(G(fu, gu, gu), 0, 0, G(fu, gu, gu), G(fu, gu, gu), 0) ≤ 0,

which will contradict with (Pa) if G(fu, gu, gu) > 0.

Hence G(fu, gu, gu) = 0 so that (1.1) gives fu = gu = ru.

Suppose that (2.2) holds good. With x = u = y, this gives

ψ(G(gu, hu,hu), G(ru, ru, ru), G(ru, gu, gu),

G(ru, hu, hu), G(ru, hu, hu), G(ru, gu, gu)) ≤ 0

or that ψ(G(gu, hu, hu), 0, 0, G(gu, hu, hu), G(gu, hu, hu), 0) ≤ 0.

This again contradicts with (Pa) if G(gu, hu, hu) > 0 so that

G(gu, hu, hu) = 0 or gu = hu.

In other words, u is a common coincidence point of f, g, h and r, that is

fu = gu = hu = ru, where fp = rp = u. (2.8)

On the other hand, if (2.3) holds good, then writing x = y = u in this, followed
by (2.7) and fu = gu, and proceeding as above, we get gu = hu and hence
(2.8).

In this way, (2.8) follows in either case [(2.1), (2.2)] and [(2.1), (2.3)].

Now consider the inequalities (2.2) and (2.3).
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Writing x = xn and y = p in (2.3), we get

ψ(G(hxn,fp, fp), G(rxn, rp, rp), G(rxn, hxn, hxn),

G(rp, fp, fp), G(rxn, fp, fp), G(rp, hxn, hxn)) ≤ 0.

Applying the limit as n → ∞ and using (2.4) and the lower semicontinuity of
ψ, we get

ψ(G(rp, fp, fp), 0, 0, G(rp, fp, fp), G(rp, fp, fp), 0) ≤ 0.

This gives a contradiction to (Pa) if G(rp, fp, fp) > 0. Thus

G(rp, fp, fp) = 0 or rp = fp = u, by (1.1)

and hence (2.7) follows from the weak compatibility of (f, r).

Again from (2.3) with x = u = y and (2.7), we see that

ψ(G(hu, fu, fu), G(ru, ru, ru), G(ru, hu, hu),

G(ru, fu, fu), G(ru, fu, fu), G(ru, hu, hu)) ≤ 0

or ψ(G(hu, fu, fu), 0, G(fu, hu, hu), 0, 0, G(fu, hu, hu)) ≤ 0. This, in view of
(1.2) and the nondecreasing nature of ψ, gives

ψ
(

G(hu,fu,fu)
2 , 0, G(hu,fu,fu)

2 , 0, 0, G(hu,fu,fu)
2

)

≤ 0.

This would be against (Pb) if G(fu, fu, hu) > 0. Therefore, G(fu, fu, hu) = 0
or fu = hu and hence fu = hu = ru.

But then, (2.2) with x = u = y and (2.7) imply that

ψ(G(gu, fu, fu), 0, G(fu, gu, gu), 0, 0, G(fu, gu, gu)) ≤ 0,

This also, in view of (1.2) and the nondecreasing nature of ψ, gives

ψ
(

G(gu,fu,fu)
2 , 0, G(gu,fu,fu)

2 , 0, 0, G(gu,fu,fu)
2

)

≤ 0,

which again contradicts (Pb) if G(fu, fu, gu) > 0. Thus G(fu, fu, gu) = 0 so
that fu = gu, from (1.1), and thus (2.8) follows.

Case (b): Let (g, r) be weakly compatible.

Subcase (i): Apply (2.1) with x = xn and y = p to get p as a coincidence
point of g and r and hence to get u = gp = rp as their coincidence point. Then
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we again use (2.1) with x = y = u to get u as a coincidence point of f and g.
Further we use (2.2) with x = y = u so that u will be a coincidence point of g
and h. Or else we use (2.3) with x = y = u to get u as a coincidence point of
f and h.

Subcase (ii): Apply (2.2) with x = p and y = xn to get p as a coincidence
point of g and r and hence to get v = gp = rp as their coincidence point. Then
we again use (2.2) with x = y = v to get v as a coincidence point of g and h.
Further we use (2.3) with x = y = v so that v will be a coincidence point of h
and f . Or else we use (2.1) with x = y = v to get v as a coincidence point of f
and g.

Case (c): Let (h, r) be weakly compatible.

Subcase (i): Apply (2.2) with x = xn and y = p to get p as a coincidence
point of h and r, and to get w = hp = rp also as their coincidence point. Then
we again use (2.2) with x = y = w to get w as a coincidence point of g and h.
Further we use (2.3) with x = y = w so that w will be a coincidence point of h
and f . Or else we use (2.1) with x = y = w to get w as a coincidence point of
f and g.

Subcase (ii): Apply (2.3) with x = p and y = xn to get p as a coincidence
point of h and r, and hence z = hp = rp also as their coincidence point. Then
we again use (2.3) with x = y = z to get z as a coincidence point of h and f .
Further we use (2.1) with x = y = z so that z is a coincidence point of f and g.

Thus we get (2.8) in all the cases.

Now we employ (2.1) with x = u and y = xn, which in the limit as n → ∞
gives u as a fixed point of f and hence a common fixed point of f, g, h and r.
In fact, (2.1) with x = u and y = xn gives

ψ(G(fu, gxn,gxn), G(ru, rxn, rxn), G(ru, fu, fu),

G(rxn, gxn, gxn), G(ru, gxn, gxn), G(rxn, fu, fu)) ≤ 0.

Proceeding the limit as n→ ∞, in this and using (2.8) and lower semicontinuity
of ψ, we obtain

ψ(G(fu, u, u), G(fu, u, u), 0, 0, G(fu, u, u), G(u, fu, fu)) ≤ 0

which from (1.2) gives

ψ
(

G(fu,u,u)
2 , G(fu,u,u)

2 , 0, 0, G(fu,u,u)
2 , G(fu,u,u)

2

)

≤ 0,
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since ψ is nondecreasing. This is a contradiction to (Pc) if G(fu, u, u) > 0,
proving that G(fu, u, u) = 0 or fu = u, in view of (1.1). This together with
(2.8) implies that u is a common fixed point of f, g, h and r.

To establish the uniqueness of the common fixed point, we assume that a
and b are two distinct common fixed points of f, g, h and r so that G(a, b, b) > 0
and

fa = ga = ha = ra = a and fb = gb = hb = rb = b. (2.9)

Then writing x = a and y = b in (2.1), we get

ψ(G(fa, gb,gb), G(ra, rb, rb), G(ra, fa, fa),

G(rb, gb, gb), G(ra, gb, gb), G(rb, fa, fa)) ≤ 0.

Using (2.9) in this, we obtain

ψ(G(a, b, b), G(a, b, b), 0, 0, G(a, b, b), G(b, a, a)) ≤ 0

or

ψ
(

G(a,b,b)
2 , G(a,b,b)

2 , 0, 0, G(a,b,b)
2 , G(a,b,b)

2

)

≤ 0,

which leads to a contradiction to (Pc). Therefore a = b.

In other words, the common fixed point of f, g, h and r is unique.

Taking g = h = f in Theorem 2.1, we get

Corollary 2.1. Let f and r be self-maps on X such that

ψ(G(fx,fy, fy), G(rx, ry, ry), G(rx, fx, fx), G(ry, fy, fy),

G(rx, fy, fy), G(ry, fx, fx)) ≤ 0 for all x, y ∈ X, (2.10)

Suppose that (f, r) satisfies the CLRr-property. If r is weakly compatible with f,

then f and r will have a coincidence point u, which will be their unique common

fixed point.

To obtain the result of [5] as an important consequence of Theorem 2.1, we
need the following notions in a metric space (X, d):

Definition 2.1. Given x0 ∈ X and f, g, h and r self-maps on X, if there
exist points x1, x2, x3, ... in X such that

fx3n−3 = rx3n−2, gx3n−2 = rx3n−1, hx3n−1 = rx3n, n = 1, 2, 3, ..., (2.11)
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then 〈rxn〉
∞

n=1 is an (f, g, h)-orbit at x0 relative to r.

The space X is (f, g, h)-orbitally complete at x0 relative to r if every Cauchy
sequence in an (f, g, h)-orbit at x0 relative to r converges in X, and X is
(f, g, h)-orbitally complete relative to r if it is (f, g, h)-orbitally complete at
each x0 ∈ X relative to r.

Definition 2.2. Self-maps f, g, h and r satisfy the property (EA) if there
exists a sequence 〈xn〉

∞

n=1 in X such that

lim
n→∞

fxn = lim
n→∞

gxn = lim
n→∞

hxn = lim
n→∞

rxn = u for some u ∈ X. (2.12)

The following was the main result proved in [5]]:

Corollary 2.2. Let f, g, h and r be self-maps on a metric space (X, d)
satisfying the property (EA). For all x, y ∈ X, suppose that any two of the

following inequalities hold good:

ψ(d(fx, gy),d(rx, ry), d(rx, fx),

d(ry, gy), d(rx, gy), d(ry, fx)) ≤ 0, (2.13)

ψ(d(gx, hy),d(rx, ry), d(rx, gx),

d(ry, hy), d(rx, hy), d(ry, gx)) ≤ 0, (2.14)

ψ(d(hx, fy),d(rx, ry), d(rx, hx),

d(ry, fy), d(rx, fy), d(ry, hx)) ≤ 0. (2.15)

Suppose that r(X) is (f, g, h)-orbitally complete relative to r and r is weakly

compatible with any one of f, g and h, then all the four maps f, g, h and r

will have a unique common coincidence point which will also be their unique

common fixed point.

Remark 2.1. Let (X, d) be a metric space. Define the G metric as in
Example 1.1. Then (X,G) is a symmetric G-metric space and

G(fx, gy, gy) = d(fx, gy), G(rx, ry, ry) = d(rx, ry),

G(rx, fx, fx) = d(rx, fx) etc. for all x, y ∈ X.

Hence (2.13)-(2.15) are particular cases of (2.1)-(2.3) respectively. Since the
property (EA) and the orbital completeness of r(X) imply the CLRr-property,
we see that the conclusion of Theorem 2.2 follows from that of Theorem 2.1.

Next we see that Corollary 1.1 is a particular case of Corollary 2.1.
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Remark 2.2. We write

ψ(t1, t2, t3, t4, t5, t6) = t1 − kmax
{

t2, t3, t4, t5, t6
}

for all ti ≥ 0, i = 1, 2, ..., 6,

where 0 ≤ k < 1/4. Then (1.7) follows from (2.19) and hence Corollary 1.1 is
a particular case of Corollary 2.1. In view of the choice of k, it may be noted
from the proof of Corollary 1.1 given in [3], that the symmetry of X can be
dropped when the inequality (2.10) is condensed as (1.7) .

Slightly altering the inequalities (2.1)-(2.3), one can obtain the following result:

Theorem 2.2. Let f, g, h and r be self-maps on a symmetric G-metric

space (X,G) such that for all x, y ∈ X any two of the following inequalities

hold good:

ψ(G(fx, gy, gy),G(rx, rx, ry), G(rx, rx, fx), G(ry, ry, gy),

G(rx, rx, gy), G(ry, ry, fx)) ≤ 0, (2.16)

ψ(G(gx, hy, hy),G(rx, rx, ry), G(rx, rx, gx), G(ry, ry, hy),

G(rx, rx, hy), G(ry, ry, gx)) ≤ 0, (2.17)

ψ(G(hx, fy, fy),d(rx, rx, ry), G(rx, rx, hx), G(ry, ry, fy),

G(rx, rx, fy), G(ry, ry, hx)) ≤ 0. (2.18)

Suppose that one of the pairs (f, r), (g, r) and (h, r) satisfies the CLRr-property.

If r is weakly compatible with any one of f, g and h, then all the four maps f,

g, h and r will have a common coincidence point u, which will be their unique

common fixed point.

Again with g = h = f in Theorem 2.2, we get

Corollary 2.3. Let f and r be self-maps on X such that

ψ(G(fx, fy, fy), G(rx, rx, ry), G(rx, rx, fx), G(ry, ry, fy),

G(rx, rx, fy), G(ry, ry, fx)) ≤ 0 for all x, y ∈ X. (2.19)

If (f, r) satisfies the CLRr-property and r is weakly compatible with f, then f

and r will have a coincidence point u. Further if X is symmetric, then u will

become their unique common fixed point.

Remark 2.3. The symmetry of X is not used in Corollary 2.1 and Corol-
lary 2.3 to obtain the coincidence point of f and r, unlike in Theorem 2.2.

The following is a unification of Corollary 2.1 and Corollary 2.3, whose proof
is simple:
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Corollary 2.4. Let f and r be self-maps on X satisfying (2.10) or (2.19)
for all x, y ∈ X. If (f, r) satisfies the CLRr-property and r is weakly compatible

with f, then f and r will have a coincidence point u. Further u will become their

unique common fixed point if X is symmetric.

Remark 2.4. Again taking

ψ(t1, t2, t3, t4, t5, t6) = t1 − qmax
{

t4, t5, t6
}

for all ti ≥ 0, i = 1, 2, ..., 6,

where 0 ≤ q < 1, we see that ψ is continuous and hence lower semicontinuous.
Also (1.8) and (1.9) follow from (2.10) and (2.19) respectively.

Let x0 ∈ X be arbitrary. Then as in Remark 1.1, the sequence 〈rxn〉
∞

n=1 with
the choice (1.10) is a Cauchy sequence in r(X) and hence converges in it. That
is

lim
n→∞

fxn−1 = lim
n→∞

rxn = rp for some p ∈ X. (2.20)

It is not difficult to prove that lim
n→∞

fxn = rp. In other words, f and r satisfy

the CLRr-property. Therefore it follows that u = rp is a coindence point.
From the proof given in [4] it follows that u is a common fixed point of f and r,
wherein the symmetry of X is not needed. Thus Corollary 2.4 is a significant
generalization of Theorem 1.2.
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