
Abstract
Background: The main objective of this paper is to review the literature about automatic test case generation. Test
Automation methods involves the following major factors for generating test case such as Unified Modelling Language
(UML) diagrams, Testing types like Black Box Testing, White Box Testing, Testing techniques like model based, search
based and symbolic execution, coverage criteria includes code based, fault based and function based, UML and Automation
Testing tools and algorithms. Suggestions and Conclusion: Test Case Generation (TCG) can improve the performance of
the automation in an effective way and some open research problems have been discussed for bio-inspired algorithms.
This paper presents a systematic survey about Test Automation by optimisation search techniques, by novel techniques
and various other approaches. The optimisation search technique provides the best solution of the problem definition.
Hence test automation using optimisation approach gives an efficient test suite for the given problem model. Test case
Generation are applied for various software systems, hardware systems, embedded systems, real time systems, nuclear
safety systems.

Generation of Test Case using Automation in
Software Systems – A Review

V. Maheshwari and M. Prasanna*

Department of School of Information Technology and Engineering, VIT University, Vellore - 632014, Tamil Nadu,
India; maheshwari.v2014@vit.ac.in, prasanna.m@vit.ac.in

Keywords: Automate Testing, Optimization Techniques, Software Testing, Test Case Generation, Unified Modelling Language

1.  Introduction
Software testing provides the information about the
quality of the product and the service under test. Testing
techniques include program or application execution
with the intent of finding defects1. The test case genera-
tion is one of the most relevant to improve the efficiency
of the system and also it designs a set of minimal number
of test cases such that it discloses several errors as early
as possible. It is a most cost effective work in software
development life cycle. Exhaustive testing is not possible
in automation testing. In recent days, Intelligent Security
and Automation System (ISAS) framework has been
applied to an application2.

According to IEEE Standards, the objective of software
testing is the evaluation of a system or component through
its execution, starting from initial conditions and observing
the results. Testing can be done in two ways, one is man-
ual and the other is automatic. Manual testing is a process
to test the application manually by providing all possible

inputs and generate the output based on that. It is most
difficult and tedious work. Automatic testing is based on
design models, which makes testers to free from unremark-
able tasks and make them to focus on more creative tasks.

The rest of this paper is represents as follows: Section
2 describes background and elaborates better on the con-
tributions of this survey on test case generation. Section
3 describes Mind map to start test automation, Section 4
provides test case generation related concepts. Section 5
describes about research challenges in TCG. Conclusions
are presented in Section 6.

2.  Background
The test case generation is widely discussed in both the
software and hardware systems. There are several surveys
on this area of knowledge have also been published, which
are going to be described in this section.

The study presented by author is about some ATCG
techniques3 and particularly focused on specification

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(35), DOI: 10.17485/ijst/2015/v8i35/72881, December 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Generation of Test Case using Automation in Software Systems – A Review

Indian Journal of Science and Technology2 Vol 8 (35) | December 2015 | www.indjst.org

based and model based test case generation. Path oriented
approaches and intelligent technique are quite complex to
generate test case when compared to model based test-
ing. In4 elaborated a survey on the test case generation
and test suites criteria.Test suites is a set of test sequence
that covers the given test objective.In addition,a few open
ended problems were also discussed related to test case
generation techniques like Scenario based, Model based
and Genetic based. In 5 presents the most notable test-
ing techniques which are frequently used by experts like:
Structural testing using Symbolic execution, model based
testing, combinatorial testing, Random testing, Adaptive
random testing, Search based testing.

Symbolic execution is a program analysis technique that
evaluates a program’s code in order to automatically create
test data for the program. Symbolic variable is assigned
with input arguments to execute the program rather than
using concrete values. This technique is widely used for
structural white box for Test case generation. Random test-
ing is among the most fundamental and a popular testing
technique. It is the only practically possible technique if
the specification is tending to be imperfect and the source
code is actually unavailable. Fault detection capability can
be theoretically analysed. Adaptive random testing is a
most effective and enhances the failure detection capabil-
ity of random testing. It can achieve higher program code
coverage on program structures and certain types of faults
are detected. Search-based testing is used to automate the
method of acquiring test information which maximises
the achievement of test goals, although reducing testing
costs. Mutation, crossover, Dynamic symbolic execution

approaches are comes under search based testing, helps
to achieve highest possible code coverage. Model-based
testing can identify the uncertainty of specification of test
suite and automate the test design as soon as possible, thus
shortening the development life cycle, reducing develop-
ment cost and improving software quality.

In elaborated a survey on the object oriented muta-
tion testing. Faults have been discussed separately in
object oriented features. Firstly, it was studied with focus
on mutation testing tools and proposed techniques such
as HAZOP (Hazard and Operability Study), Class muta-
tion. Second, it was discussed that the selected mutation
testing can reduce the computational cost and avoids sim-
ilar mutants in large experiments6. An additional interest
to be focused on inherent mutation testing and practical
solutions is required to resolve them. The future work is
to be carried out in evolutionary techniques. In7 provided
a survey on the UML state machine diagram that has been
considered for generating test cases. Their work includes
generating test data for concurrent state and events using
UML state machine. The future direction includes gen-
erating test case for complex state machine with the soft
computing techniques.

Various symbols are used in the Table1 to mention dif-
ferent meanings. For instance, a ü is used to represent
that the given factor is actually included in the survey,
while + or ++ are used to highlight that the particular con-
sideration is paid to a specific issue. On the other hand, a
less detailed discussion on a given factor is denoted by a -,
while û is used to represent factors certainly not included
in the surveys Table 1.

Table 1.  Comparsion of the test case generation works with the particular survey is presented here regarding

Survey Year
Topics

Focused
Coverage
Criteria

Testing
Techniques

Testing
Approaches

Tools Summary

M. Prasanna et al.3 2005 Specific based and
model based TCG - ü ü ü ü

R. Singh et al.4 2014 TCG, test suite criteria + ++ + + û

S. Anand et al.5 2013 Technique for ATCG ++ ++ ++ ++ ++

M. Bilal Bashir et al.6 2012 Mutation testing , OO
features ü ++ - ü ü

Manuj Aggarwal et al.7 2012
UML state machine,

concurrent states and
events

++ ++ ü ü ü

This Survey - Several TCG related
topics ü ü ü ü ü

V. Maheshwari and M. Prasanna

Indian Journal of Science and Technology 3Vol 8 (35) | December 2015 | www.indjst.org

3. � Mind Map to Start Test
Automation

A mind map is methodically built to classify the main
studies of test automation. The analysis factors used for
test automation are outlined in Figure 1. This section
presents the factors of ATCG which are designed for test
automation. It includes coverage criteria measure, UML
diagrams, testing techniques, algorithms, and testing
tools.

3.1  Basic Flowchart of Test Case Generation
Figure 2 explains about the test case generation process
in test automation. Where, at first, the inputs are given
for test execution. It performs test execution if the given
inputs are valid inputs. The test results thus generated

from the test execution is to be mapped with expected test
results. If the results are true, the test execution iteration
continues, else, the test execution is interrupted.

4. � Test Case Generation-Related
Concepts

In this section, fundamentals of test case generation is
been presented. This particular section complements
many of the ideas currently outlined in section 2, in order
to understand the baseline of concepts.

4.1  Testing Techniques
Several studies introduce these search techniques. The
search techniques act as an intermediate role between the
test case and the problem domain. Optimization tech-
niques are provided to obtain a best solution in a process.
There are various kinds of search techniques which are
carried out in most of the recent studies like Tabu search,
simulated annealing, particle swarm optimization, ant
colony optimization, genetic algorithm, cuckoo search,
firefly and so on. These search techniques are responsible
for finding out the test paths.

4.1.1  Optimisation Search Techniques
A new approach for pilot project ’Temperature Monitoring
and Controlling of Nuclear Reactor Systems’ (TMCNRS)
to automate the test case generation by genetic algorithm.
It is used to solve the complex problems like generation of
efficient test suites by automated test case generator tool.
To find the faults in the system, pseudo-exhaustive testing
is used; it has smaller test suite size for output domain
when compared to exhaustive testing of output domain.
Test suites are enriched with seeded test cases, related to
boundary value analysis of the input to obtain result.

In9 proposed a genetic algorithm which is applied on
tree crossover to represent possible test covers for object
diagrams.Mutation analysis technique is to provide effi-
ciency of the test case. The author derives test case using
genetic algorithm and injects the faults in banking system.
Through mutation score, the efficiency can be identified
in unit level and also in integration. The author com-
pared the faults of Aynur, Offutt approach and Genetic
algorithm. In future, it can be worked out to other UML
diagrams.

In10 proposed a dynamic test case generation for
object oriented programming classes using Grammatical

5

TESTSTEP=

TESTSTEP+1

 Yes No

 Figure 2. Represents test case generation process.

In9 proposed a genetic algorithm which is applied on tree crossover to represent possible test
covers for object diagrams.Mutation analysis technique is to provide efficiency of the test
case. The author derives test case using genetic algorithm and injects the faults in banking
system. Through mutation score, the efficiency can be identified in unit level and also in
integration. The author compared the faults of Aynur, Offutt approach and Genetic algorithm.
In future, it can be worked out to other UML diagrams.

In10 proposed a dynamic test case generation for object oriented programming classes using
Grammatical Evolution (GE); it is an evolutionary search that provides a result based on user-
specified grammar. The specified grammar is obtained by translating the test case into
Intermediate Test Script (ITS) format. It reduces the compiling time of source code, since it
can run directly by ITS interpreter. Experiments result shows that, this method can produce
high branch coverage outcome and reduces the search space of the problem when compared
to Acuri’s memetic method and Wappler’s EvoUnit.

In11 proposed a novel Adaptive Genetic Algorithm (ATG) to support test case generation of
combination design. Combination-Index-Table (CIT) is described to process test case
generation based on ATG and also to calculate the combination coverage based on t-wise
strategy. Genetic Automatic Test case Generation (GATG) tool has a good user interface and
performs a convenient test case design. The author compared GATG with similar tools, and

START

READ THE NUMBER OF STEPS (n)

READ ALL INPUTS

IF TEST STEP>0
and <=n

PERFORM TEST STEP

IF ACTUAL
RESULT=
EXPECTED
RESULT

STOP

SSTOP

Figure 2.  Represents test case generation process.

Figure 1.  Factors to consider for analysing TCG.

Generation of Test Case using Automation in Software Systems – A Review

Indian Journal of Science and Technology4 Vol 8 (35) | December 2015 | www.indjst.org

Evolution (GE); it is an evolutionary search that provides
a result based on user-specified grammar. The specified
grammar is obtained by translating the test case into
Intermediate Test Script (ITS) format. It reduces the
compiling time of source code, since it can run directly
by ITS interpreter. Experiments result shows that, this
method can produce high branch coverage outcome
and reduces the search space of the problem when
compared to Acuri’s memetic method and Wappler’s
EvoUnit.

In11 proposed a novel Adaptive Genetic Algorithm
(ATG) to support test case generation of combination
design. Combination-Index-Table (CIT) is described to
process test case generation based on ATG and also to cal-
culate the combination coverage based on t-wise strategy.
Genetic Automatic Test case Generation (GATG) tool has
a good user interface and performs a convenient test case
design. The author compared GATG with similar tools,
and shown that GATG provides average performance
based on t-wise strategy. Performance and sensitivity of
Adaptive Genetic Algorithm can be improved.

In12 proposed a method for classes in object system
to generate the test cases by genetic algorithm. To evalu-
ate a suitable test case, first test cases are represented as a
tree structure and encoded using objective function. The
objective function is used along with GA to achieve the
optimal results. The author describes the encoding and
decoding of test program into data structures.

 In13 proposed SSO (Simplified Swarm Optimization)
to generate optimized test suite with the use of Event
Interaction Graph (EIG) for GUI functional testing.
The author shows the effectiveness of SSO against other
algorithms such as Pairwise Independent Combinatorial
Testing (PICT), Test Vector Generator (TVG),
Classification Tree Editor-eXtended Logics (CTE-XL),
Intelligent Test Case Handler (ITCH) and In Parameter
Order Generator (IPOG). The proposed strategy is applied
in reliable artifact program to check out the correctness,
feasibility and applicability So that unnecessary events
will be removed that are presented in the test suite.

 In14 proposed a combinatorial test suite by using
combinatorial optimization. A new one-test-at-a-time
algorithm is to generate test case and translates into
pseudo Boolean optimization problem, provides a
maximum coverage for each test case. A self adaptive
mechanism also proposed to stop the optimization pro-
cess at a proper time. The proposed algorithm works
well with large constraints when compared to existing

approaches. Also, common constraints are translated into
normal constraints. Hence, possible improvements are
been focused on stopping mechanism, also in parameter,
parameter levels and covering strength.

In15 proposed a Match technique approach for object
oriented programming to reuse the test case and also to
speed up the development of test case. Match algorithm
describes that, match the precondition of test case and
turn the outcome of match into corresponding test case.
Test cases can be described with distinct items. Test case =
{Test case id, Test case description, Pre-test case id, Test
context, Test input, Test expected result}. More test cases
can be reused for better coverage in future.

In16 presents an approach to find test sequence using
object oriented slicing technique, it breaks the cycles
into slicing classes for partial testing instead of removing
relationship for test stub construction. The cost of imple-
menting the test stub is decreased. Rather than testing
with test stubs, slicing classes can detect more faults and
reduce the timing in testing. The future scope includes,
separating mutually related composite classes such as
wrapper and content class. Sequence diagram is used to
determine test order by sending sequences and method
calls.

4.2  Automation Testing Tools
This section discusses a number of advanced automatic
testing tools which generates test cases. Numerous auto-
mation testing tools came into existence. So in order to
choose appropriate testing tool, the tester should first look
into available testing tools to analyze their advantages,
disadvantages, and constraints in terms of speed, time,
cost and productivity. Mainly, it should cover maximum
test case with minimum test paths.

Automation testing tools are used to reduce the
manual interaction in unskilled and repetitive tasks. To
build a software system, selection of appropriate tool
is very important and a developer can do it. Following
are the types of UML tools which are widely avail-
able17. Some list of open source UML modelling tools
are: Umbrello, Astade, Fujaba, Agro UML and coral.
There are several modelling tools which supports UML
diagrams are Metricview, MagicDraw, IBM Rational
Rose, AgileJ Structure Views, JUDE, BOUML gModeler,
ConceptDraw PRO, Dia, Rhapsody, Modelistic, visual
thought, LucidChart, Eclipse UML, Um-studio, Smart-
Draw, MetaEdit+, select component Architect, Visual
Paradigm for the Unified Modeling Language (VP-UML),

V. Maheshwari and M. Prasanna

Indian Journal of Science and Technology 5Vol 8 (35) | December 2015 | www.indjst.org

Sequence Sketcher, EctoSetModeller, ProxyDesigner,
Jvision, iUML,Embarcadero De-Scribe, WinA&D,
MacA&D, HAT (Hoora Analysis Tool), object domain,
Selenium, Watir, Visual UML and together, Enterprise
architect tool.

In18 proposed an automatic test suite generator
tool called FPCC Test Gen. First; this tool converts the
functional block diagrams to UPPAAL for FPCC transfor-
mations which are done automatically through PLCopen
XML. It covers the path complete conditions for func-
tional block diagram using white box testing. Here the
author shows the highest FPCC percentage with a near
optimal number of test cases in Safety injection systems.
Generic methodology is applied to test the coverage cri-
teria. It mainly focused on data flow graphs and other
coverage criteria. However, the calculation of FPCC is
very difficult in computer aided tools.

In19 proposed a GenRed tool for removing the redun-
dant test cases without executing. The author presents
approaches like input on demand creation, coverage-
based method selection technique and sequence-based
reduction technique. They worked on open source systems
and the experimental results were highlighted. Compared
to Randoop tool, GenRed increases high code coverage
with minimum set of test case, test inputs and method
call sequences. In future, they will work on mutant object
instances by random testing.

In20 proposed a new technique called Colored Petri
Net’s (CPN), which is the extended version of petri nets
which was used to generate test case. For Net explosion
problem, the author introduced a new algorithm to con-
vert UML Statechart to CPN; it is able to cover all instances
of objects from different classes in the same hierarchy to
generate test cases by CPN-tools. They formed the gener-
alization relationship between the classes. CPN-tools are
used to analyse the behaviour of banking system account
and it also generates the test case for the same. The CPN
tool will be further applied to generate cover association
and aggregation relationships.

In21 have compared performance evaluation of auto-
mation testing tools. Here, they compared watir testing
tool with selenium tool. Besides the combination of vari-
ous automation tools, Selenium tool is one of the best
known test suites which provide testers with different
framework for different test cases. It is an open source and
portable testing tool to test web applications. It provides
a standardised way of writing selenium test suites. It sup-
ports test automation on diverse sets of web applications

across domain. The framework permits users to perform
acceptance, compatibility and functional testing for more
web applications. Watir testing tool is an open source auto-
matic testing tool. It is a library for ruby language which
drives the browser. It requires programming skills. It is
not a record and playback tool like selenium. They have
evaluated and compared the performance of these testing
tools. From their presented comparative results, it is clear
that selenium test suite is better to that of water testing
tool, where the selenium web driver is better choice in
various conditions like use of domain specific language
and framework.

4.3  Coverage Based
The main objective of Coverage criteria is to reduce the
size of test suites and helps to measure the adequacy of
test sets. Some commonly used coverage measurement
criteria are: Code coverage, structure based and fault
based.

In22 proposed test adequacy criteria for class and inter-
action diagram .A systematic testing technique for testing
executables forms of UML and test adequacy criteria
based on UML model elements. Category partitioning
technique detects the faults in test criteria where combi-
nation of test criteria has additional value in finding faults
in UML diagrams.

In23 have tested coverage criteria in web applications
interaction. Coverage criteria are used in automation
testing to measure how the program is exercised by a test
suite. Their paper formally defines intra page interactions
coverage; inter page interactions coverage criteria, page
server interactions coverage criteria and scenario based
page server interactions coverage criteria. Web applica-
tions are different from traditional software. Its features
shows its complexity, reliability and quality which remains
as a challenge to software testers.

4.4 � Generation of Test Case by using Novel
Technique

In24 proposed a novel technique to generate test cases and
mock classes using Pex. The author elaborates the survey
on 35 third-party open-source applications; they found
the branch that doesn’t cover the code of supertypes,
reflection and annotations. Hence the novel techniques
are implemented to cover all the code. A current test
case generation technique doesn’t cover the branch of
supertypes, reflection and annotations.

Generation of Test Case using Automation in Software Systems – A Review

Indian Journal of Science and Technology6 Vol 8 (35) | December 2015 | www.indjst.org

In25 proposed a novel approach for generating test cases
from UML design diagrams. The approach generates test
case by the following ways. 1. Select the appropriate use
case diagram and sequence diagram. 2. UML diagrams
are transformed into UDG (Use case Diagram Graph) and
SDG (Sequence Diagram Graph). 3. Integrating the UDG
and SDG to form STG (System Testing Graph), it stores
the information of test generation. 4. Finally generate test
case by traversing STG. Test suite generation algorithm
is used to automate traverse the STG and generates the
test case according to coverage criteria. Use case diagram
detects the test initialization and dependency faults where
sequence diagram detects the operational faults.

In26 proposed a novel method that automatically
generates an assertion by converting from program
dynamic invariants. This method includes three steps.
1. Convert invariants into assertions. 2. Test case genera-
tion algorithm based on assertions. 3. Efficiency analysis.
Assertion method is another form of Invariant method. It
is the specification of invariants. Conversion of invariant
into its corresponding assertion is done by looking at the
mapping table. The time of running assertion program is
less than running invariants in Daikon (an open source
tool). Testing the program invariants using Daikon tool
builds more unacceptable test cases than appropriate test
cases. Therefore using assertion program to determine
test case validity can greatly reduce the time overhead.
In comparison with invariant-directed and assertion-
directed method, the author performed experiments
on tested programs like maths programs and triangle,
to establish the better time overhead and program cov-
erage. Although the methods reduce the time overhead
but still lexical analyzer can automatically convert com-
mon invariants into assertions. In future, they will be
considering more factors in experiments.

In27 proposed an approach of Extensic-based for
ATCG from UML activity diagram. Extenics is a new
methodology which deals with the contradictory prob-
lem with formalization methods and transformations.
Euler circuit algorithm is constructed to generate test
sequences automatically, it satisfies test coverage criteria
and number of test case is decreased. The author experi-
ments their methods in ATM system that it automatically
reduces the number of test set and more faults were
revealed. UMLTOTC tool is used to transform activity
diagram into Euler circuit.This method covers only activ-
ity state coverage and transition coverage. Extenices will
be improved in future for further development.

4.5 � Generation of Test Case by Testing
Approaches

In28 introduced a method intended for automatic test case
generation in Model Driven Engineering (MDE), which
improves the generation of test systems directly from
functional requirements. It derives a systematic process
of test case by QVT transformations, Meta models. NDT,
a model driven web approach was integrated with MDE is
applied in all software projects. Where, NDT suite along
with new tools is to be considered in future.

In29 presented the quality of test by using OCL (Object
Constraint Language) expression with established cover-
age criteria, which are more appropriate to specific-based
test generation. In elevator control model, they applied a
new coverage criterion i.e. Multi-Dimensional Condition
Coverage (MDCC), Multi-Dimensional Decision
Coverage (MDDC), Multi-Dimensional Modified
Condition/Decision Coverage (MDMC/DC) and found
the efficiency via mutation testing. During evaluation,
ParTeG tool supports the control flow coverage criteria,
but it handles only boundary and condition coverage.
In future, they will work on possible combinations like
boundary-based and control-flow.

In30 presented static analysis feedback and unit test
case generation in a Knit, a framework built on Kiasan
symbolic execution engine. Unit leverage method sup-
ports mock object generation. Kiasan as contract checking
tools that improves the quality through information of
error trace. The author shown feasible branch coverage by
using heap configuration and improved the coverage size
and time to generate test suites in data structures.

In31 have proposed an i-NUnit for unit test frame-
work. A Test Data Container is been added into i-NUnit
framework to separate test code and test data. The method
MDA is been used to generate unit test case for i-NUnit
through two model layer transformations i.e. horizontal
and vertical transformation. The steps included for MDA-
based automatic test case generation is, 1. Build a platform
independent model for system under test. 2. Transform
platform- independent model into i-NUnit model, which
is been called as horizontal transformation. 3. Then
i-NUnit is been transformed into test text, called as verti-
cal transformation. The advantage of i-Nunit is to solve
the redundancy problem and enhancing the test codes.

In32,35 presented a critical analysis, possible improve-
ments in UML behaviour diagrams and identified,
analysed the issues of syntactic and semantic in use case,

V. Maheshwari and M. Prasanna

Indian Journal of Science and Technology 7Vol 8 (35) | December 2015 | www.indjst.org

activity and state diagrams. They proposed an approach
of capturing syntax and hidden semantics in diagrams. It
links the UML diagrams and finite automata to be use-
ful for correct and modeling of the systems. The author
describes some pros, cons, limitations of the diagrams and
their drawbacks in projects. The integration of approaches
like UML, Automata theory and Formal methods will be
useful for design and specification of software systems
and facilitate the software development process.

In33 describe test case prioritization, fault detection in
regression testing. The factors of test case prioritization
are explained in shortly such as traceability, complete-
ness, fault impact of requirements, developer observed
code implementation, changes in requirements and
Customer-allotted priority. The better rate of fault detec-
tion is determining by proposed prioritization algorithm
and also maximum priority test and minimum priority
test has identified by comparing the test cases.

In34 the challenge of an ambiguity test case will cer-
tainly minimize by proposed Adaptive Genetic Algorithm.
To defeat the issues of random testing such as lengthy test
case generation, identical test case for multiple times and
also possible illegal inputs. Coverage metrics has used to
detect the fault in test cases. The optimal inputs have gen-
erated by adaptive genetic algorithm to reduce the illegal
and equivalent inputs generated by test cases. Hence, the
uncertain test case is removed during random testing.

5.  Research Challenges
This section presents research challenges in test case
generation seen so far in terms of the testing techniques,
coverage criteria and tools.

5.1  Open Ended Problems
The researchers may focus on Bio-Inspired algorithms,
where still some algorithms such as Immune algorithms,
probabilistic algorithms are not yet discussed. And also
in physical algorithms like cultural algorithms, external
optimization is not been focussed. In stochastic algo-
rithms such as variable neighbourhood search, guided
local search and iterated local search are to be discussed
in future. Cloning testing methods has not been tested so
far related to test case generation.

Numerous software tools are available to automate the
testing. Mainly, automation tools are dependent on the
execution speed. Moreover, the number of functionalities

can be added to give better efficiency. Some tools are
concentrating only on performance, speed, efficiency, accu-
racy and so research to be focussed on these parameters to
develop a new tool. The generated test case from test mod-
els doesn’t achieve all coverage criteria; it was particularly
focused on some types like path coverage, boundary cover-
age and feature coverage. The more faults can be identified
by coverage based method rather than by test suites.

6.  Conclusion
In this survey, various factors for an automate test case
generation is carried out to obtain better efficiency in
testing. The hype of test case generation is pumping the
software industry towards a productivity and efficiency.
Researchers are primarily focused on single testing levels
to reduce test suites where automatic test case genera-
tion through UML diagram focus more on behavioural
and tend to ignore structural design of the system. The
number of techniques, algorithms, test adequacy criteria
proposed for test case generation is very large, herein this
paper the important concepts of automation testing have
been surveyed. These studies represent the existing test-
ing approaches and were used to additionally check the
critical-based testing.

7. Acknowledgment
A special note of thanks to Vellore Institute of Technology
University for providing necessary infrastructure facilities to
carry out the research work and all the ones who has directly
and indirectly helped us to complete this survey work.

8.  References
1.	 Desikan S, Ramesh G. Software Testing: Principles and

Practice. Canada: Pearson Education; 2006.
2.	 Pandey M, Rajasekhara Babu M, Manasa J, Avinash K.

Mobile based automation and security systems. Indian
Journal of Science and Technology. 2015 Jan; 8(S2):12–6.

3.	 Prasanna M, Sivanandam SN, Venkatesan R, Sundarrajan
R. A survey on automatic test case generation. Academics
Open Internet Journal. 2005; 15(6).

4.	 Singh R. Test case generation for object-oriented systems: A
review. IEEE 4th International Conference Communication
Systems and Network Technologies (CSNT); Bhopal. 2014
Apr 7–9. p. 981–9.

5.	 Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Kamp
GW, Harman M, Harrold MJ, McMinn P. An orchestrated

Generation of Test Case using Automation in Software Systems – A Review

Indian Journal of Science and Technology8 Vol 8 (35) | December 2015 | www.indjst.org

18.	 YC W, Fan CF. Automatic test case generation for structural
testing of function blocks diagrams. Information and
Software Technology. 2014 Oct; 56(10):1360–76.

19.	 Jaygarl H, Lu KS, Chang CK. GenRed: A tool for generat-
ing and reducing object-oriented test cases. 34th Annual
IEEE Computer Software and Applications Conference
(COMPSAC); Seoul. 2010 Jul 19–23. p. 127–36.

20.	 Mirzaeian E, Mojaveri SG, Motameni H, Farahi A. An
optimized approach to generate object oriented software
test case by Colored Petri Net. IEEE 2nd International
Conference on Software Technology and Engineering
(ICSTE); San Juan PR. 2010 Oct 3–5. p. 251–5.

21.	 Angmo R, Sharma M. Performance evaluation of web based
automation testing tools. IEEE 5th International Conference
on the Next Generation Information Technology Summit
(Confluence); Noida. 2014 Sept 25–26. p. 731–5.

22.	 Andrews A, France R, Ghosh S, Craig G. Test adequacy cri-
teria for UML design models. Software Testing, Verification
and Reliability. 2003; 13(2):95–127.

23.	 Song B, Chen S. Coverage criteria guided web application
interactions testing. IEEE 3rd World Congress Software
Engineering (WCSE). 2012 Nov 6–8. p. 46–50.

24.	 Islam M, Csallner C. Generating test cases for programs
that are coded against interfaces and annotations. ACM
Transactions on Software Engineering and Methodology
(TOSEM). 2014 May; 23(3):21.

25.	 Sarma M, Mall R. Automatic test case generation from UML
models. IEEE 10th International Conference on Information
Technology (ICIT); Orissa. 2007 Dec 17–20. p. 196–201.

26.	 Zeng F, Deng C, Yuan Y. Assertion-directed test case gen-
eration. IEEE 3rd World Congress on Software Engineering
(WCSE); Wuhan. 2012 Nov 6–8. p. 41–5.

27.	 Li L, Li X, He T, Xiong J. Extenics-based test case generation
for UML activity diagram. Procedia Computer Science.
2013; 17:1186–93.

28.	 Gutierrez JJ, Escalona MJ, Mejias M, Ramos I, Torres J. An
approach for model-driven test generation. 3rd International
Conference on Research Challenges in Information Science;
2009 Apr. p. 303–12.

29.	 Weissleder S, Schlingloff BH. Quality of automatically
generated test cases based on OCL expressions. IEEE
International Conference on Software Testing, Verification,
and Validation; 2008 Apr. p. 517–20.

30.	 Deng X, Hatcliff J, Kiasan K. Automatic test case generation
and analysis feedback for open object-oriented systems.
Testing: Academic and Industrial Conference Practice
and Research Techniques-MUTATION (TAICPART-
MUTATION); Windsor. 2007 Sept 10–14. p. 3–12.

31.	 Wang B, Zhu C, Sheng J. MDA-based automated generation
method of test cases and supporting framework. IEEE 2nd
International Conference on Computer Engineering and
Technology (ICCET); Chengdu. 2010 Apr 16–18. p. 106–9.

survey of methodologies for automated software test case
generation. Journal of Systems and Software. 2013 Aug;
86(8):1978–2001.

  6.	 Bashir MB, Nadeem A. Object oriented mutation testing: A
survey. International Conference on Emerging Technologies
(ICET); Islamabad. 2012 Oct 8–9. p. 1–6.

  7.	 Aggarwal M, Sabharwal S. Test case generation from UML
state machine diagram: A survey. IEEE 3rd International
Conference on Computer and Communication Technology
(ICCCT); Allahabad. 2012 Nov 23–25. p. 133–40.

  8.	 Vudatha CP, Jammalamadaka SK, Nalliboena S, Duvvuri
BKK, Reddy LSS. Automated generation of test cases from
output domain of an embedded system using genetic algo-
rithms. IEEE 3rd International Conference Electronics
Computer Technology (ICECT); Kanyakumari. 2011 Apr
8–10. p. 216–20.

  9.	 Prasanna M, Chandran KR. Automatic test case genera-
tion for UML object diagrams using genetic algorithm. Int
J Advance Soft Comput Appl. 2009; 1(1):19–32.

10.	 Chaiareerat J, Sophatsathit P, Lursinsap C. Test case gen-
eration for classes in objects-oriented programming
using grammatical evolution. Computer Science and
Convergence. Netherlands: Springer; 2012. p. 251–7.

11.	 Lin P, Bao X, Shu Z, Wang X, Liu J. Test case generation based
on adaptive genetic algorithm. IEEE International Conference
on Quality, Reliability, Risk, Maintenance and Safety Engi
neering (ICQR2MSE); Chengdu. 2012 June 15–18. p. 863–6.

12.	 Gupta NK, Rohil MK. Using genetic algorithm for unit
testing of object oriented software. IEEE 1st International
Conference on Emerging Trends in Engineering and
Technology (ICETET’08); Nagpur, Maharashtra. 2008 July
16–18. p. 308–13.

13.	 Ahmed BS, Sahib MA, Potrus MY. Generating combi-
natorial test cases using Simplified Swarm Optimization
(SSO) algorithm for automated GUI functional testing.
Engineering Science and Technology: An International
Journal. 2014 Dec; 17(4):218–26.

14.	 Zhang Z, Yan J, Zhao Y, Zhang J. Generating combinato-
rial test suite using combinatorial optimization. Journal of
Systems and Software. 2014 Dec; 98:191–207.

15.	 Liu Z, Gu N, Yang G. An automated test case generation
approach: Using match technique. The 5th International
Conference on Computer and Information Technology;
2005 Sep 21–23. p. 922–6.

16.	 Jaroenpiboonkit J, Suwannasart T. Finding a test orders
using object-oriented slicing technique. 14th Asia-Pacific
Software Engineering Conference (APSEC); Aichi. 2007
Dec 4–7. p. 49–56.

17.	 Nagpurkar MS, Gurav MY. A survey on test case generation
from UML based requirement analysis model. International
Journal of Advancements in Research and Technology. 2013
May; 2(5):282–4.

V. Maheshwari and M. Prasanna

Indian Journal of Science and Technology 9Vol 8 (35) | December 2015 | www.indjst.org

34.	 Koteswara RK, Raju GSVP. Developing optimal directed
random testing technique to reduce interactive faults-
systematic literature and design methodology. Indian
Journal of Science and Technology. 2015; 8(8):715–9.

35.	 Jiang B, Chan WK. Input-based adaptive randomized test
case prioritization: A local beam search approach. Journal
of Systems and Software. 2015 Jul; 105:91–106.

32.	 Alhumaidan F, Zafar NA. Possible improvements in UML
behaviour diagrams. IEEE International Conference on
Computational Science and Computational Intelligence
(CSCI); Las Vegas, NV. 2014 Mar 10–13. p. 173–8.

33.	 Chandu PMSS, Sasikala T. Implementation of regression
testing of test case prioritization. Indian Journal of Science
and Technology. 2015 Apr; 18(S8):290–3.

