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Abstract: The influence of Hall effect on peristaltic transport of a couple stress fluid in a
vertical asymmetric channel is examined. The problem is solved under the assumptions of low
Reynolds number and long wavelength. The velocity, temperature and concentration are
obtained by using analytical solutions. Effect of Hall parameter, couple stress fluid
parameter, Froude number, Hartmann number and the phase difference on the pumping
characteristics, temperature and concentration are discussed graphically.

1. Introduction

The phenomenon of a peristaltic transport of fluid is appears in a number of physiological and
engineering applications like movement of chyme in the gastrointestinal tract, urine transport from
kidney to bladder, mixing and transporting the contents of the gastrointestinal passage, vasomotion of
small blood vessels such as arterioles, movement of ovum in the female fallopian tube etc. Latham [1]
and Shapiro et al. [2] were one of the first researchers on peristaltic flow movement. After that by
using analytical, numerical and experimental methods, analysis of peristaltic flows of viscous fluids
are studied. Later peristaltic flows effects on magneto hydrodynamic fluids are reviewed.

The effect of applied magnetic field and heat transfer in the peristaltic flows are also analyzed in
view of MHD character of blood, magneto hydrodynamic power generators, method of hemodialysis,
oxygenation and hyperthermia. A few of the researchers who further studied in this field are [3, 4, 8,
12]. Prabakaran et al. [5] Concentrated on the magneto hydrodynamic peristaltic transport of a Jeffrey
fluid in a permeable channel with the impact of compliant walls, heat and mass transfer under the
various assumptions of long wavelength and low Reynolds number. Saravana et al. [6] has made
discussions on the heat and mass exchange on the unstable visco-versatile second order Rivlin-
Erickson liquid past an infinite vertical plate in the presence of constant mass flux Vajravelu et al.
[7] The impact of velocity slip, temperature and concentration conditions on the MHD peristaltic flow
of a Carreau liquid in a non-uniform channel with warmth and mass exchange is explored. Hari
Prabakaran et al. [10] The Peristaltic stream of a fourth grade liquid between two permeable walls
with suction and infusion is examined. Saravana et al. [11] Concentrate the Peristaltic transport of
MHD Jeffrey liquid in a non-uniform permeable channel with the impact of slip, divider properties
and warmth exchange under the suspicions of long wavelength and low Reynolds number.

Stokes [14] presented the theory of couple stress fluids in which the size-dependent effect in the
presence of couple stresses; body couples and non-symmetric stress tensor are found. Cowin [15],
Beg et al. [16] and Alli et al. [17] stressed the importance of couple stress effects in studies related to
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physiological and some other fluids. The Hall effects in peristaltic movement of Maxwell fluid are
done by Hayat et al. [18]. Srinivas et al. [19] studied the problem of peristaltic flow of a Newtonian
fluid with heat transfer in a vertical asymmetric channel through porous medium. Nadeem et al. [20]
discussed about the influence of heat and mass transfer on the peristaltic flow of a Johnson Segalman
fluid with induced magnetic field. Kavitha et al. [21] reviewed the peristaltic flow of a micropolar
fluid in a vertical channel with long wavelength approximation. Vajravelu et al. [22] investigated the
peristaltic flow of a Jeffrey fluid in a vertical porous stratum with heat transfer. Rami Reddy et al.
[23] explored the peristaltic motion of a viscous conducting fluid through a porous medium in an
asymmetric vertical channel by using Lubrication approach. Gad [24] studied the peristaltic flow of a
particle-fluid in regards to Hall current. Abo-Eldahab et al [25] discussed the Hall current in
peristaltic flow of viscous fluid in a vertical asymmetric channel. Hayat et al. [26] discussed the
peristaltic flow of couple stress fluid in an inclined asymmetric channel. The effects of Hall current,
heat and mass transfer in the presence of inclined magnetic fluid are also reviewed.

In this existing paper, we discussed about the Hall effects on peristaltic flow of couple stress fluid
in a vertical asymmetric channel. The velocity, pressure gradient, temperature and concentration
profiles are obtained and the results are discussed graphically.

2 .Mathematical formulation

Let us assume that the two-dimensional peristaltic flow of couple stress fluid in a vertical asymmetric
channel. The right and left vertical walls of channel are separated by a distance d, +d,, the
temperature maintained at right and left vertical walls are T, and T, respectively. The concentration
field associated to right and left vertical walls are taken as C, andC, , respectively.
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Figure 1. Physical model
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The basic governing equations are:
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The geometry of the channel walls is given by

Y =h =d, + alsin{zf(f—cf)}

Y=h=-d +a25|n{2/1 (X Ct)+¢}

0T 62T

ax2 oY? ) ©)
(6)
©)

. In Egs. (1) - (7), where P represents the pressure, C - fluid concentration, T - fluid

temperature, x - thermal conductivity, & - specific heat at constant pressure, T - mean temperature

of the medium, D - coefficient of mass diffusivity, p - fluid density, K, - thermal-diffusion ratio, U

- longitudinal velocity component, V- transverse velocity component and wavelength respectively.
Here, 7n"- couple stress fluid parameter, c,- concentration susceptibility, a (i =12) - wave

amplitudes of the right and left vertical walls, t - time, By - applied magnetic field, o” - electrical

conductivity, U,V - velocity components in fixed frame, m(: o-*Bolen) - Hall parameter, n -

number density of electrons, e - electric charge . ¢ - phase difference varied between 0 < ¢ < 1.
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af +al+2aa,cos¢ < (d, +d,). (8)
Defining the transformations
x=X-cf, y=Y, a(xy)=U0(X)Y,f)-c
v(%, ) = V(XY ) p(%,7)=P(X,V ) (©)
The equations in wave frame become
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Egs. (10) — (14) take the forms
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where Re represents the Reynolds number, Fr - Froude number, Pr - Prandtl number. Br - Brinkman
number, Du - Dufour number, Sc - Schmidt number and Sr- Soret number.

The assumptions of long wave length (5 <<1)
Egs. (17) —(20) give

op &?u o*u M 2 Re

— — — u + = O, (21)
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Eq.s (21) —(23) satisfies the incompressibility condition and Eq.(20) shows that p = p(y).
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Boundary conditions and vertical wall properties h,(x) and h,(x) in the lacking dimension form are

2
u=-1 %:0, y=0, =0, aty=h =1+asin(22), (24)
o’u .
u=-1 77=0 7=l ¢=1 aty=h=-d ~bsin(27x + ¢), (25)

where a=a,/d, b=a,/d, and d =d,/d, satisfy the condition
a® +b? +2abcos¢ < (1+d ). (26)
The lacking dimension average flux F in the wave frame is

F= J' udy. @7)

The relation of average flux in the laboratory frame o is
o=F+1+d. (28)

The pressure rise per wavelength Ap, is as follows

1 dp
Ap, =|| — dx 29
P & )
2.1 Solutions of the problem
By solving Eq. (21), we get
u(y)=Ce™ +C,e™™ +C,e™ +C,e™ B (30)
z
2
where Kk = M 5 H=—E+%. (31)
1+m Fr dx

By using Egs. (27), (30) and (31), we can find :_p :
X

To find the solution of »(y), by putting Egs. (30), (31) and (23) into Eq. (22).
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By solving Eq. (23), we get the solution of ¢
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Using the boundary condition and the Egs. (30), (32) and (33), calculated constants C, (i :1—8)

3. Results and Discussion
3.1 Pumping characteristics

Here we discussed about the longitudinal pressure gradient dp/dx and pressure rise per wavelength
Ap, for different flow parameters concerned in the current problem. Here we calculated eq. (31)
numerically by using “Mathematica”. Figure 2 is plotted between dp/dx for various values of couple
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stress parameter n and X. “It is realized that pressure gradient increases in the narrow part of the
channel while it decreases near the wider part of the channel. It is interesting to note that resistance or
assistance from dp/dx for a non-Newtonian fluid (;7 = 0) is higher than that of a Newtonian fluid

(n —0)' . Figure 3 depicts the impact of Hall parameter m ondp/dx. It shows that dp/dx
decreases in the channel where it is narrow and it increases in the channel where it is wider. Figure 4
represents that Hartmann number M increase with increase of dp/dx in narrow part of the channel

while dp/dx decreases at the wider part of the channel. In Figure 5, we deduced that various values
of Fr, dp/dx decreases the entire channel. Figure 6 depicts that dp/dx is initially increases and
finally decreases with the increases of ¢ .

4 5
. ——1=0.001
- N =0.2
3k N n |
// \\ — =03
// N\
2k \
/ —
Y ~_ "\
1r / \
x / \
g
5
© \
/ / \ ~
_— / \ \
1F // 3
pd \\
2k 4
\
3 : r r : : r
-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15

Figure 2. Plot of pressure gradient dp/dx for various values of 1 witha=0.6, b=0.7, d=1.5, R =
0.5, ¢=r/4, m=0.03, Fr=1.2, & = z/3and M=4.

~m=0

dp/dx

R r c c ¢ ¢ c
05 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15
X

Figure 3. Plot of pressure gradient dp/dxfor various values of m witha=0.6, b=0.7, d=1.5, R =
0.5, ¢=n/4, n=0.1, Fr=1.2, € =r/3and M=4,
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Figure 4. Plot of pressure gradient dp/dx for various values of M witha=0.6, b=0.7, d=1.5, R =
0.5, g=r/4, n=0.1 Fr=1.2, @ =x/3and m=0.03.
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Figure 5. Plot of pressure gradient dp/dx for various values of Fr with a=0.6, b=0.7, d=1.5, R =
0.5, ¢=rx/4, n=0.1, M=4, § = r/3and m=0.03.
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Figure 6. Plot of pressure gradient dp/dx for various values of ¢ witha=0.6, b=0.7, d=1.5, R = 0.5,
Fr=1.2, n=0.1, M=4, 8 = x/3and m=0.03.
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Figures 7-11 represents the different values of the pressure rise per wavelength Ap, against
average fluxo . In Figure7, noted that in peristaltic pumping region (Apl >0,0 > 0) the pressure
rise increases where as it decreases in the copumping region (Apz <0, o> O) with couple stress
parameterz increase. “Figure 8 represents the pressure rise Ap , when the flow is subcritical (Fr <1)
the pressure rise has greater effect than the critical flow (Fr=1) and supercritical flow (Fr >1)
which means that the flow becomes slow by increasing Froude number Fr and so pressure rise Ap,
decreases”. In Figure 9, the pressure rise Ap, increases in the peristaltic pimping region

(Ap, >0,0>0)and it decreases in the copumping region(Ap, <0,o >0)with the increase of
Hartman number M. Figure 10 shows that the pressure rise decreases in the retrograde
(Ap,>0,5 <0) region and it increases in the co pumping region (Ap,<0,o>0) with the

increases of Hall parameter m. Figure 11 reveals that Ap, decreases in the peristaltic pumping
region (Apl >0,0> 0) and increases in copumping region (Apl <0,0>0) while it decreases in

the retrograde (Ap ,>0,0> 0) region with an increase in phase difference ¢ .
15N ‘ ‘ ]

10:, \/('}'?=0.001,0.2,0.3 E

Figure 7. Plot of pressure rise Ap, for various values of 7 witha=0.7, b=1.2, d=2, R=0.5, Fr=1.2,
¢=rm/4,m=0.03, M=4 and 6 =1/3.

- 10 - 05 0.0

Figure 8. Plot of pressure rise Ap, for various values of Fr witha=0.7, b=1.2, d=2, R=0.5, 7=0.1,
¢=r/4 ,m=0.03, M=4and 6=r/3.
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Figure 9. Plot of pressure rise Ap, for various values of M witha =0.7, b=1.2, d=2, R=0.5, 7=0.1,
¢=rm/4 ,m=0.03 Fr=1.2and 9 =r/3.
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Figure 10. Plot of pressure rise Ap, for various values of m witha=0.7, b=1.2, d=2, R=0.5,
n=0.1, g=x/4 ,M=4,Fr=12and 6=r/3.

Figure 11. Plot of pressure rise Ap, for various values of ¢ witha=0.7,b=1.2, d=2, R=0.5,77=0.1
, 0 =r7/3,M=4, Fr=1.2 and m=0.03.

3.2 Velocity behavior
The impact of several physical parameters on the velocity profile u(y) is analyzed. Figure 12 depicts

that magnitude of the velocity profile u(y)decreases with the increases of couple stress parameters .
It is noted that form Figure 13, “for subcritical flow (Fr <1) the velocity profile u(y) has

11
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strengthened than that for critical (Fr=1) and supercritical (Fr >1) flow cases”. The velocity

profile u(y) is quite opposite to Froude number Fr. Figures 14 and 15 reveal that decreases u(y)
while increase of Hartmann number M and Hall parameter m.
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Figure 12. Plot of velocity field u(y)for various values of nwith a=0.6, b=0.7, d=1.5,
R=2,Fr=1.2, 0 =1, M=4,m=0.03,x=-0.5, ¢ = /4, O =r/3 and dp/dx=1.
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Figure 13. Plot of velocity field u(y)for various values of Fr with a=0.6, b=0.7, d=1.5, R=2,
n=0.1, =1, M=4,m=0.03,x=-0.5, ¢ = /4, O =r/3 and dp/dx=1.
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Figure 14. Plot of velocity field u(y)for various values of M with a=0.6, b=0.7, d=1.5, R=2,
n=0.1, o=1, Fr=1.2,m=0.03x=-0.5, ¢ =7/4, = /3 and dp/dx =1.
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Figure 15. Plot of velocity field u(y)for various values of m with a=0.6, b=0.7, d=1.5, R=2,
n=0.1, o=1 Fr=12,M=4x=-05, ¢=7r/4, O =r/3 and dp/dx =1.

3.3 Temperature profile.

Figures 16-19 shows that the differences of the temperature profile y(y) for various values of
parameters of interest. In Figure 16, we observed that y(y)decreases as couple stress parameter 7
increases. As per Figure 17, the temperature profile y(y) and Hartmann number M are in inversely
proportional. Figure 18 represents that the 7(y) increases with the increases of Hall parameter m.
Figure 19 illustrates, “the temperature profile y(y) has greater effects for supercritical flow (Fr >1)

and critical flow (Fr =1) than subcritical flow(Fr <1)”. Thus y(y) is directly proportional to
Froude number Fr.
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Figure 16. Plot of temperature profile y(y) for various values of nwitha=0.6, b=0.7, d=1.5,
R=0.5, M=4, Fr=1.2, m=0.03, x=-0.5, Du=0.1, Sc=0.5,Br=Pr=2, Sr=0.6 o =1,¢= /4,0 = /3 and
dp/dx=1.
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Figure 17. Plot of temperature profile y(y) for various values of M witha=0.6, b=0.7, d=1.5,
R=0.5,7=0.1,Fr=1.2, m=0.03, x=-0.5, Du=0.1, Sc=0.5,Br=Pr=2, Sr=0.6 o =1,¢=7/4,0=7r/3
and dp/dx =1
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Figure 18. Plot of temperature profile y(y) for various values of m witha=0.6, b=0.7, d=1.5,
R=0.5,7=0.1,Fr=1.2, = 7/3, x=-0.5, Du=0.1, Sc=0.5,Br=Pr=2, Sr=0.6 o =1,¢ = /4 ,M=4 and
dp/dx=1.
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Figure 19. Plot of temperature profile y(y) for various values of Fr witha=0.6, b=0.7, d=1.5,

R=0.5,7=0.1,m=0.03, 6 = /3, x=-0.5, Du=0.1, Sc=0.5,Br=Pr=2, Sr=0.6 o =1,¢ = /4 ,M=4 and

dp/dx =1.

3.4 Concentration profile.

Here we plot the figures between the concentration profile go(y)and several values of physical
parameters and determines the performance of concentration profile p(y). As per Figure 20, ¢(y)is
directly proportional tor;. In couple stress fluid (77 * O) the concentration profile (p(y) is
strengthened when compared to couple stress fluids (77 —>O). Figure21 reveals that go(y) increases
with the increase of Hartmann number M due to decrease of the velocity. Figure 22 depicts, “for
subcritical flow (Fr <1) the concentration profile (o(y) higher when compared to the critical (Fr=1)
and supercritical (Fr>1) flows which says that the Froude number Fr is opposite phenomenon of the
concentration profileq)(y)”.Figure 23 show that the (p(y)decreases with the increases of Hall
parameter m.
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Figure 20. Plot of temperature profile go(y) for various values of nwitha=0.6, b=0.7, d=1.5,
R=0.2, M=2, Fr=1.2, m=0.03, x=-0.5, Du=0.1, Sc=1, Br=2, Pr=4, Sr=0.6 o =1,¢=7/4,0=17/3
and dp/dx=2.
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Figure 21. Plot of temperature profile go(y) for various values of M witha=0.6, b=0.7, d=1.5,
R=0.2, 7=0.1, Fr=1.2, m=0.03, x=-0.5, Du=0.1, Sc=1, Br=2, Pr=4, Sr=0.6 o=1,¢=7r/4,
0 =/3 and dp/dx=2.
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Figure 22. Plot of temperature profile (o(y) for various values of Fr witha=0.6, b=0.7, d=1.5,
R=0.2, M=2, 7=0.1, m=0.03, x=-0.5, Du=0.1, Sc=1, Br=2, Pr=4, Sr=0.6 0 =1,¢=7/4,0=1/3
and dp/dx=2.
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Figure 23. Plot of temperature profile go(y) for various values of m witha=0.6, b=0.7, d=1.5,
R=0.2, M=2, n=0.1, Fr=1.2, x=-0.5, Du=0.1, Sc=1, Br=2, Pr=4, Sr=0.6 c=1,¢=7/4,0=1/3
and dp/dx=2.
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4. Conclusions
The impact of Hall effect on peristaltic flow of couple stress fluid in a vertical asymmetric channel
with heat and mass transfer is studied. The outcomes are discussed by plotting diagrams and are given
below.

»  The couple stress parameterz increases where as pressure gradient increases in the narrow

part and decreases in wider part of the channel.
»  The behavior of Hall parameter m is inversely proportional couple stress parameterz; on

dp/dx.
> With the increase of Hall parameter m, the pressure rise Ap, increase in the copumping

region and decrease in the retrograde region.
> Pressure rise Ap, decreases in all pumping regions with the Froude number Fr increases.

»  The velocity profile u(y) increases with the increase of Froude number Fr and Hall parameter
m, and it is decreases with the increases of couple stress parameter 7 and Hartmann number

M.
»  The temperature profile ;/(y) is directly proportional to sevaral values of Hall parameter m

and Froude number Fr and it is inversely proportional to couple stress parameterr and
Hartmann number M.

»  Concentration Profile go(y)is inversely proportional to function of Fr and m and go(y) is
directly proportional tor; and M
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