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Products such as cars, trucks, and heavy machinery are assembled by two-sided assembly line. Assembly line balancing has
significant impacts on the performance and productivity of flow line manufacturing systems and is an active research area for
several decades. This paper addresses the line balancing problem of a two-sided assembly line in which the tasks are to be assigned
at L side or R side or any one side (addressed as E). Two objectives, minimum number of workstations and minimum unbalance
time among workstations, have been considered for balancing the assembly line. There are two approaches to solve multiobjective
optimization problem: first approach combines all the objectives into a single composite function or moves all but one objective
to the constraint set; second approach determines the Pareto optimal solution set. This paper proposes two heuristics to evolve
optimal Pareto front for the TALBP under consideration: Enumerative Heuristic Algorithm (EHA) to handle problems of small
and medium size and Simulated Annealing Algorithm (SAA) for large-sized problems. The proposed approaches are illustrated
with example problems and their performances are compared with a set of test problems.

1. Introduction

Anassembly line is amanufacturing process inwhich compo-
nents are consecutively assembled to an unfinished product
depending on a set of tasks to produce a final product. The
unfinishedproduct ismoved fromone station to its successive
station until they reach to the end of the line. In an assembly
line, each task which is performed in a certain time called
as the task time is allocated to stations according to a given
precedence relationship among tasks. Each and every station
is assigned with a set of different tasks. At each station, the set
of task allotted to it is performed in a limited time called as
the cycle time. The assembly line balancing problem (ALBP)
is to assign the tasks to the work centers while optimizing one
or more objectives without violating restrictions imposed on
the line. Assembly lines falls under two categories: one-sided
assembly lines and two-sided assembly lines. In a one-sided
assembly line [1] only one side (either left side “L” or right

side “R”) of the line is used, whereas both L and R of the
line are simultaneously used in a two-sided assembly line [2].
The main difference between one-sided and two-sided lines
is the constraints in the assignment of tasks. The one-sided
line needs to satisfy the precedence relationship among the
tasks. Whereas, in two-sided assembly line the certain tasks
are constrained to a specific side (i.e., L or R) in addition
to the precedence constraints. According to Bartholdi [3],
in practice a two-sided line can provide several advantages
over a one-sided line, like the reduction of (i) the number of
operators, (ii) the throughput time, (iii) the cost of tools and
fixtures, as they can be shared by the operators of both sides,
(iv) material handling costs, and (v) length of the assembly
line. This paper addresses the line balancing problem of a
two-sided assembly line in which the tasks are to be assigned
at L side or R side or any one side (addressed as E).

Assembly line balancing has significant impacts on the
performance and productivity of flow line manufacturing
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systems and is an active research area for several decades.The
two general objectives of line balancing are minimisation of
number of workstations to meet the production rate [4–6]
and maximisation of production rate with given number of
work stations [7]. The other objectives are minimisation of
the cycle time for a given number of mated station ([2, 8, 15]);
minimisation of number of mated stations for a given cycle
time, that is, line length and number of positions [9, 10]; min-
imisation of number of tasks assigned to each workstation
[8]; maximisation of work relatedness and slackness [1, 6];
assigning of tasks from left station to right station of the
position based on the start time of the tasks [11]. Minimum
number of workstations is the widely used objective since
it provides advantages in terms of less workspace or line
length, minimum workforce, a smaller amount of material
movement of tools and materials. When the tasks are not
well balanced among the stations it may lead to excess work
to some stages, and consequently idleness to some stations.
This necessitates that assembly line work elements are to be
well balanced among workstations for single piece flow. On
this consideration, this paper considers minimum number of
workstations and minimum unbalance time or minimum of
maximum idle time as the optimality criteria to the two-sided
assembly line balancing problem (TALBP).

The approaches to solve multiobjective optimization
problem are broadly divided into two categories [12]. The
first approach is to combine all the objectives into a single
composite function or to move all but one objective to the
constraint set. The second approach is to determine the
Pareto optimal solution set, solutions that are nondominated
with respect to each other. Pareto optimal solutions are often
preferred to single solutions because they can be practical
when considering real-life problems since the final solution
of the decision maker is always a tradeoff. Unlike the first
approach, Pareto optimization tool provides a solution set in
which solutions are nondominatedwith respect to each other.
This tool is chosen for the proposed problem, because the
problem is of a minimization type with multiple objectives.
The Pareto optimal method will give the set of solutions
fromwhich the user can choose depending upon the require-
ment. On the above concern, this paper attempts to evolve
Pareto optimal front for the two objectives of minimum
number of workstations andminimumunbalance time to the
TALBP.

The TALBP belongs to NP-hard class of combinatorial
optimization problems [3]. Besides, the problem under con-
sideration considers two objectives that add complexity to the
problem. The combinatorial structure and complexity of the
bicriteria optimisation to TALBPmake it difficult to obtain an
optimal solution. Further complexity increases further with
increase in problem size. A large number of methods for
solving one-sided assembly line balancing problemhave been
studied, including heuristic procedures and exact algorithms.
Recently, some heuristic algorithms have been proposed
to solve TALBP. Kim et al. presented an approach based
on genetic algorithm to provide solution for TALBP [2].
Fleszar andHindi [13] proposed an enumerative heuristic and
reduction method for the assembly line balancing problem.
Kim et al. [2] used genetic algorithm to solve two-sided
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Figure 1: Configuration of two-sided assembly lines [4].

assembly line balancing to minimize the number of worksta-
tions to which tasks are allocated. Lee et al. [1] proposed a
group assignment procedure focusing on the maximization
of work relatedness and work slackness with a little or no
loss in cycle time and the number of stations. Hu et al. [11]
proposed a station-oriented enumeration algorithm that is
integrated with the Hoffmann heuristic (2003). Baykasoglu
and Dereli [6] used ant-colony based heuristic for two-sided
assembly line balancing problem to minimize the number of
workstations and maximize the work relatedness. Kim et al.
[2] used genetic algorithm to solve two-sided assembly line
balancing. Simaria and Vilarinho [4] implement ant-colony
optimization for mixed two-sided assembly line balancing.
On the other hand, Özcan and Toklu [8] developed a
basic mathematical model for the TALBP. Rubiano-Ovalle
and Arroyo-Almanza [14] proposed a Memetic Algorithm
for solving deterministic two-sided assembly line balanc-
ing problem. Özcan [9] used mixed integer programming
and simulated annealing for stochastic two-sided assembly
line balancing. Xiaofeng et al. [10] proposed a branch and
bound algorithm to solve two-sided assembly lines problems.
Purnomo et al. [15] used genetic algorithm and iterative first
fit rules to solve the TALBP with assignment restrictions.
The above review reveals that heuristics and metaheuristics
have been used extensively to solve TALBP. On the similar
thoughts, this paper proposes twoheuristics to evolve optimal
Pareto front for the TALBP under consideration and are as
follows: Enumerative Heuristic Algorithm (EHA) to handle
problems of small andmedium size and Simulated Annealing
Algorithm (SAA) for large-sized problems.

The reminder of this paper is organized as follows.
Section 2 describes the multiobjective TALBP under con-
sideration. Sections 3 and 4 delineate the proposed EHA
and SAA along with illustrations. Section 5 discusses the
performance of the proposed algorithms by comparing their
solutions with standard problems taken from the literature.
Section 6 presents the summary of the research along with
future research directions.

2. Problem Description

The problem under consideration is a two-sided assembly
line [9] in which products such as car, trucks, and heavy
machineries that are larger in size and shape are manu-
factured involving L, R, and E tasks. Figure 1 shows the
arrangement of two-sided assembly lines. The line has two
sides, left and right, and, in most cases, at each position there
is a pair of workstations directly facing each other. The two
opposite operators perform, in parallel, different tasks on the
same individual item.



The Scientific World Journal 3

The line is assumed as inline assembly and the work-
ers/automatic processing heads are arranged on both sides of
the line.Thenumber of tasks involved in the assembly of them
depends on the product structure and in the general sense is
taken as “𝑁.” Each task “𝑖” is constrained with certain pre-
decessor tasks.The precedence relationships among tasks are
known. In addition to the precedence constraints, some of the
tasks are restricted to any one side (LorR) of the assembly line
and other remaining tasks can be assigned to either side (E)
of the line. The time “𝑡𝑖” for processing task “𝑖” is known for
all tasks and deterministic.The cycle time “CT” is fixed based
on the production target and is known. Besides, the following
assumptions are made: operators perform their tasks in
parallel at both sides of the line simultaneously within a given
fixed cycle time and the move times of operators are included
in task times. The objective of minimization of unbalance
time among workstations is considered additionally with the
general objective of minimization of number of workstations
for the specified cycle time “CT” (or the production target).
The problem can be stated as determination of optimal
assignment of tasks to workstation for minimum unbalance
and number of work stations target given the followings:
cycle time “CT,” number of tasks “𝑁,” precedence and side
constraints (L or R or E) for each task, and processing time
(𝑡𝑖) for all tasks (𝑖 = 1 to𝑁).

3. Enumerative Heuristic Algorithm (EHA)

Figure 2 shows the framework of the proposed EHA. The
various modules are described in this section.

Data Input. The task related data to the TALBP under
consideration are given as input in this module and are as
follows:

(i) number of tasks “𝑁,”
(ii) processing time for task “𝑡𝑖” for all tasks (∀𝑖, 𝑖 = 1 to
𝑁),

(iii) operation direction of task “𝑘𝑖” for all tasks (∀𝑖, 𝑖 = 1
to𝑁), where L(1), R(2), and E(3),

(iv) number of precedence tasks “nop𝑖” for all tasks (∀𝑖,
𝑖 = 1 to𝑁),

(v) set of immediate precedence tasks “𝑝𝑖” for all tasks (∀𝑖,
𝑖 = 1 to𝑁),

(vi) cycle time “CT,” where CT ≥Max 𝑡𝑖 and CT ≤ ∑𝑁𝑖=1 𝑡𝑖.

Consider a sample TALBP (used to illustrate the EHA and
addressed hereafter as “P19”) that involves 19 tasks in which 7
and 6 tasks are restricted to left and right sides, respectively,
and the remaining 6 tasks can be performed on either side.
Figure 3 shows the precedence and side restrictions of the
tasks along with their work element times.The number given
inside, above and below the nodes, indicates the task number
“𝑖,” the processing time “𝑡𝑖,” and the operation directions “𝑘𝑖’.
The arrows indicate the precedence relationship for each task.
The task related data given in Table 1 that corresponds to
Figure 3 and the CT, which is assumed as 6minutes, are given
as input to EHA.

Input data

Generation of subproblems strictly restricted to any one side

Allocation of tasks to workstation (using largest

candidate ranking algorithm) and

determination of number of W/S and unbalance time

Update Pareto front

If

Yes

No

IT ≤ 2n

Output Pareto front (solution)

IT = IT + 1

Set IT = 1

Figure 2: Frame work of the EHA.
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Figure 3: Precedence diagram along with task time and operation
directions of P19 - TALBP.

Generation of Subproblems (“E” Type Tasks Restricted to Either
L or R Side). The tasks that belong to “E” category can be and
are to be done either “R” on “L.” This module generates all
possible assignments of “E” type tasks into L or R type tasks
and provides a number of subproblems of two-sided assembly
line, in which all the tasks are strictly restricted to either one
side (i.e., L or R).The number of subproblems depends on the
number of “E” type tasks (𝑛) and is equal to 2𝑛. The number
of “E” type tasks to the P19 problem is 6. Table 2 shows the
64 different possible assignments of the six “E” type tasks to
the P19 problem considered for illustration. This provides 64
subproblems with tasks that are strictly restricted to either
one side (i.e., L or R).

Initialization of Enumeration Counter. All possible assign-
ments need to be evaluated for the problem objectives. In
order to explore all of them, an iteration counter “IT” is used
and is set equal 1 in this module.

Allocation of Tasks toWorkstations and Evaluation. Consider-
ing one subproblem at a time, this module allocates the tasks
to workstations arranged at both sides work stations, “W(L)
and W(R),” by applying the logic of the Largest Candidate
RankingAlgorithm [16]modified suitably for subproblems of
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Table 1: Input data of P19 TALBP.

Task “𝑖” Processing time
“𝑡𝑖” (min)

Task direction
“𝑘𝑖”

Code of task
directions

Number of
precedence “nop𝑖”

List of immediate
precedence “𝑝𝑖”

1 2.8 L 1 0 —

2 3.1 R 2 0 —

3 2.5 E 3 1 1

4 3.4 R 2 2 1, 2

5 3.2 L 1 1 3

6 2.7 E 3 1 4

7 2.6 L 1 1 4

8 3.3 L 1 1 4

9 5.9 E 3 2 5, 6

10 3.7 R 2 2 6, 7

11 4.1 L 1 2 7, 8

12 2.2 E 3 2 9, 10

13 1.8 R 2 1 10

14 1.2 R 2 2 10, 11

15 2.3 E 3 1 12

16 2.4 L 1 2 12, 13

17 5.8 R 2 1 14

18 3.8 E 3 3 15, 16, 17

19 2.1 L 1 1 18

Table 2: Possible assignment of “E” type task to P19 problem.

Assignment number
“E” type tasks

3 6 9 12 15 18

1 L L L L L L

2 R L L L L L

3 L R L L L L

4 R R L L L L

5 L L R L L L
...

...
...

...
...

...
...

17 L L L L R L
...

...
...

...
...

...
...

21 L L R L R L
...

...
...

...
...

...
...

64 R R R R R R

TALBP. The allocation follows a five-step procedure as given
below.

Step 1. Arrange the tasks in the descending order according
to their precedence relations.

Step 2. Select the taskwith the largest task time from the tasks
that have already satisfied precedence constraint.

Step 3. Assign the selected task to the L or R side workstation
according to the direction restrictions provided balance time
is available in the workstation. New workstation is added

when the available balance time in theworkstation is less than
the task time of the selected task.

Step 4. Repeat Steps 2 and 3 till all the tasks are allotted to
workstations.

Step 5. Determine the objective criteria of number of work-
stations and maximum unbalance time based on the alloca-
tions made to the “E” type assignments.

Table 3 shows the allocation of tasks corresponding to sub-
problem 1 (i.e., 1st possible assignment) of P19.The number of
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Table 3: Allocation of tasks for Ist assignment of P19 (CT = 6min).

W/S type Allotted tasks
Processing time

for task “𝑖”
Work load at each

station
Idle time at each

station

W/S(L)-1 1 2.80 2.80 3.20

W/S(R)-1 2 3.10 3.10 2.90

W/S(L)-2 — — — —

W/S(R)-2 4 3.40 3.40 2.60

W/S(L)-3
8
6

3.30
2.70

6.00 0.00

W/S(R)-3 — — — —

W/S(L)-4 7 2.60 2.60 3.40

W/S(R)-4 — — — —

W/S(L)-5 11 4.10 4.10 1.90

W/S(R)-5
10
13

3.70
1.80

5.50 0.50

W/S(L)-6
3
5

2.50
3.20

5.70 0.30

W/S(R)-6 14 1.20 1.20 4.80

W/S(L)-7 9 5.90 5.90 0.10

W/S(R)-7 17 5.80 5.80 0.20

W/S(L)-8
12
16

2.20
2.40

4.60 1.40

W/S(R)-8 — — — —

W/S(L)-9 15 2.30 2.30 3.70

W/S(R)-9 — — — —

W/S(L)-10
18
19

3.80
2.10

5.90 0.10

W/S(R)-10 — — — —

workstations and maximum unbalance time to subproblem 1
of P19, respectively, are 14 (left-side workstations = 9; right-
side workstation = 5) and 4.8min.

Updation of Pareto Front. This step updates the Pareto
solutions based on the principle of dominance by comparing
the objective functions values of the current assignment
and the objective function values of the existing Pareto
solutions set. As no Pareto solution set is available during
the 1st iteration and the assignment of first iteration is added
to the Pareto solution set. At the beginning of EHA, the
solution corresponds to assignment 1 of the sample problem
P19 (i.e., Number of W/S—14 and maximum unbalance
Time—4.8min) thus becomes the Pareto solution set after
the first iteration. In the 2nd iteration, the subproblem 2
is solved and Table 4 shows the results of it. The solution
corresponding to assignment 2 of P19 is Number of W/S—
14 and maximum unbalance Time—4.7min. Hence, the 2nd
assignment solution dominates the 1st assignment solution
and the Pareto solution set gets updated with the 2nd
solution and 1st assignment exits from the Pareto set. The
3rd assignment results in 13 workstations with 4.8 as the
maximumunbalance time. Its solution given in Table 5, when
compared with the existing Pareto solutions, is superior with
respect to number of workstations and inferior in terms of
unbalance time and thus the Pareto solution set is appended

with this solution. The solutions of 2nd and 3rd assignments
thus becomes the updated Pareto solution set. The process of
updating Pareto solution set continues till all assignments are
evaluated.

Termination Check and Output. This step checks whether
all possible assignments are evaluated. When the iteration
counter exceeds 2𝑛 (i.e., the possible number of assignments),
the updating of Pareto front stops and proceeds to provide the
output. Otherwise, the iteration counter is incremented by
one and goes to allocation and evaluation module. Figure 4
shows the solution output. The nondominated solution set
with respect to minimum number of workstations (12) and
minimum maximum unbalance time (2.9min) becomes the
Pareto solution set. Assignments corresponding to 9 and 11
provide optimal Pareto solution set after 64 iterations. Tables
6 and 7 provide the solutions to 9th and 11th assignments,
which are optimal solutions to the problem P19.

4. Simulated Annealing Algorithm

The EHA, an iterative procedure, requires large computa-
tional effort for large size problems.The number of iterations
to be performed (i.e., 2𝑛) increases exponentially with the
number of “E” type tasks “𝑛.” Figure 5 indicates the required
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Table 4: Allocation of tasks for 2nd assignment of P19 (CT = 6min).

W/S type Allotted tasks
Processing time for

task “𝑖”
Work load at each

station
Idle time at each

station

W/S(L)-1
1
3

2.80
2.50

5.30 0.70

W/S(R)-1 2 3.10 3.10 2.90

W/S(L)-2 — — — —

W/S(R)-2 4 3.40 3.40 2.60

W/S(L)-3
8
7

3.30
2.60

5.90 0.10

W/S(R)-3 6 2.70 2.70 3.30

W/S(L)-4 11 4.10 4.10 1.90

W/S(R)-4
10
13

3.70
1.80

5.50 0.50

W/S(L)-5 5 3.20 3.20 2.80

W/S(R)-5 14 1.20 1.20 4.80

W/S(L)-6 9 5.90 5.90 0.10

W/S(R)-6 17 5.80 5.80 0.20

W/S(L)-7
12
16

2.20
2.40

4.60 1.40

W/S(R)-7 — — — —

W/S(L)-8 15 2.30 2.30 3.70

W/S(R)-8 — — — —

W/S(L)-9
18
19

3.80
2.10

5.90 0.10

W/S(R)-9 — — — —
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Note: the number given inside the boxes indicate the assignment number

Figure 4: Pareto front for problem P19 of proposed EHA.

number of iterations for different values of “𝑛.” This restricts
its application to large size problems. Meta heuristics, such
as genetic algorithm (GA), ant colony optimization (ACO),
Particle Swarm Optimization (PSO), Tabu Search (TS), and
Simulated Annealing Algorithm (SAA) have the capability
of searching intelligently in larger solution space and can
provide solution quicker than the iterative procedure. SAA is
commonly said to be the oldest among themetaheuristics and
surely one of the first algorithms that had an explicit strategy
to avoid local minima.
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Figure 5: Number of iteration of EHA Vs number of “E” type tasks.

TheSAA is derived from the field of statistical mechanics.
It follows a slow cooling process called “annealing” to estimate
the ground state energy of a matter [17]. Metropolis and
his colleagues developed an algorithm based on annealing
principle to simulate a solid to thermal equilibrium. Kirk-
patrick et al. [18] successfully illustrated the application of
this algorithm to optimize a combinatorial problem. The
fundamental idea is to allow moves resulting in solutions
of worse quality than the current solution (uphill moves)
in order to escape from local minima. The acceptance of
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Table 5: Allocation of tasks for 3rd assignment of P19 (CT = 6min).

W/S type Allotted tasks
Processing time for

task “𝑖”
Work load at each

station
Idle time at each

station

W/S(L)-1
1
3

2.80
2.50

5.30 0.70

W/S(R)-1 2 3.10 3.10 2.90

W/S(L)-2 — — — —

W/S(R)-2 4 3.40 3.40 2.60

W/S(L)-3
8
6

3.30
2.70

6.00 0.00

W/S(R)-3 — — — —

W/S(L)-4
5
7

3.20
2.60

5.80 0.20

W/S(R)-4 — — — —

W/S(L)-5 11 4.10 4.10 1.90

W/S(R)-5 9 5.90 5.90 0.10

W/S(L)-6 — — — —

W/S(R)-6
10
13

3.70
1.80

5.50 0.50

W/S(L)-7
12
16

2.20
2.40

4.60 1.40

W/S(R)-7 14 1.20 1.20 4.80

W/S(L)-8 15 2.30 2.30 3.70

W/S(R)-8 17 5.80 5.80 0.20

W/S(L)-9
18
19

3.80
2.10

5.90 0.10

W/S(R)-9 — — — —

deteriorated solution is probabilistically determined by the
Metropolis Criterion (𝑃) as given by

𝑃 = 𝑒(−(𝑋𝑝−𝑋)/𝑇), (1)

where𝑋 is the solution at current state,𝑋𝑝 is the perturbated
solution of the system at new state, and 𝑇 is the control
parameter (temperature). The algorithm begins with an
initial solution (randomly generated) and a high temperature.
The second solution is accepted directly, provided it has
a smaller functional value (fitness) than the first solution;
otherwise, it is accepted with a probability, which is obtained
from (1). This completes an iteration of the SAA procedure.
In the next generation, using the perturbation scheme,
the neighborhood of the current solution creates another
solution and checks for acceptance or rejection. In order
to simulate the thermal equilibrium at every temperature, a
number of solutions are tested at a particular temperature
before reducing the temperature.The algorithm is terminated
when a sufficiently small temperature is obtained or a small
enough change in the objective function value is found. Sim-
ulated annealing performs better than any local optimization
method and yields a solution close to global optimum [19]. It
is mainly attributed to the occasional acceptance of the worse
solution, which enables to escape from being trapped at the
localminimum.On these considerations, this paper proposes
SAA to handle larger problems.

4.1. Framework of SAA. Figure 6 provides the framework
of the proposed SAA. This section delineates the details of
the various steps of the SAA that is proposed to evolve
the pareto front for the objectives of minimum number of
workstations and minimum of maximum unbalance time
among workstations.

4.2. Procedural Steps of the Proposed SAA

4.2.1. Input. The data relevant to the problem are given
as input to SAA. Figure 7 provides the TALBP used for
illustration (Source: [14]) of proposed SAA. Table 8 provides
the input data for the illustration problem P47 in which the
number of “E” type tasks is 25. The number given inside and
above and left, right, and below the nodes indicates the task
number “𝑖,” the processing time “𝑡𝑖,” and the operation direc-
tions “𝑘𝑖.”The arrows indicate the precedence relationship for
each task.

4.2.2. Initialization of SAA Parameters and Counters. The
parameters that influence the performance of SAA are initial
temperate 𝑇𝑖, temperature reduction factor “𝑍,” number of
perturbations at each temperature “𝐶,” and final temperature
𝑇𝑓. The parameter temperature of the algorithm decides
the probability of acceptance of the inferior solutions. The
probability of acceptance at the beginning of the algorithm
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Table 6: Allocation of tasks for 9th assignment of P19 (CT = 6min).

W/S type Allotted tasks
Processing time for

task “𝑖”
Work load at each

station
Idle time at each

station

W/S(L)-1
1
3

2.80
2.50

5.30 0.70

W/S(R)-1 2 3.10 3.10 2.90

W/S(L)-2 — — — —

W/S(R)-2 4 3.40 3.40 2.60

W/S(L)-3
8
6

3.30
2.70

6.00 0.00

W/S(R)-3 — — — —

W/S(L)-4
5
7

3.20
2.60

5.80 0.20

W/S(R)-4 — — — —

W/S(L)-5 9 5.90 5.90 0.10

W/S(R)-5
10
13

3.70
1.80

5.50 0.50

W/S(L)-6 11 4.10 4.10 1.90

W/S(R)-6 — — — —

W/S(L)-7
12
16

2.20
2.40

4.60 1.40

W/S(R)-7
15
14

2.30
1.20

3.50 2.50

W/S(L)-8 — — — —

W/S(R)-8 17 5.80 5.80 0.20

W/S(L)-9
18
19

3.80
2.10

5.90 0.10

W/S(R)-9 — — — —

is normally set around 0.9. This is used to set the value of
“𝑇𝑖.” The other parameters “𝑍”, “𝑇𝑓,” and “𝐶” decide the
exploration requirements of SAA which primarily depend
on problem size/solution space [20]. Based on trials, the
parameters are set as follows: 𝑇𝑖 = 450∘C; 𝑇𝑓 = 20∘C; 𝑍 =
0.95; 𝐶 = 𝑛3 for large size problems (or) 𝑛2 for small size
problems.

4.2.3. Generation of Current Seed. Each “E” type task is
assigned to either left side (coded as 1) or right side (coded
as 2) by random process. In a string of length “𝑛,” the choice
of assignment (1 or 2) of a bit at position “𝑗” corresponds to
the 𝑗th “E” type tasks from the list of “E” tasks arranged in
ascending order of their node numbers. This string becomes
the initial seed “𝑋” that represents one assignment of E type
tasks to L or R. Table 9 shows a current seed “𝑋” that is
generated randomly for the illustration problem “P47.”

4.2.4. Initialization of Pareto Front (𝑋𝑔), Temperature (𝑇),
and Perturbation Counter (𝐶). The following values are set
as initial values to pareto front (𝑋𝑔), current temperature of

SAA (𝑇), and counter (𝐶): 𝑋𝑔 = 𝑋(𝑗, 𝑖, 𝑘𝑖), 𝑇 = 𝑇𝑖 (450∘),
𝐶 = 0;

4.2.5. Generation of Perturbation Seed (𝑋𝑝). Theinitial seed is
perturbed randomly to yield another solution which is called

a perturbed solution, “𝑋𝑝.” In order to avoid redundancy,
the perturbation mechanism is made purely random. A
perturbed string (𝑋𝑝) is generated in the following manner.
Four random numbers are generated between 1 to 𝑛. The
choice of assignments (1 or 2) in those four positions of “𝑋”
is changed to the opposite choice (i.e., if the choice in 𝑋
is 1, it is changed to 2 and vice versa). Table 10 shows the
perturbation seed “𝑋𝑝” to the initial seed given in Table 9,
which is generated with the random numbers (𝑟), generated
4, 11, 16, and 19.

4.2.6. Calculation of Change in Entropies of Objective Criteria.
Theobjective functions of number ofworkstations andunbal-
ance time are found for the two assignments represented
in “𝑋” and “𝑋𝑝” using the steps described in allocation of
tasks to workstations and evaluation module of Section 3.
Let W/S(𝑋) and W/S(𝑋𝑝) be the number of workstations
corresponding to the assignments given in 𝑋 and 𝑋𝑔,
respectively, and let UB(𝑋) and UB(𝑋𝑝) be the unbalance
time corresponding to the assignment given in 𝑋 and 𝑋𝑔,
respectively. Then change in entropies for the workstation
Δ𝐸W/S and the unbalance time Δ𝐸UB are calculated using (2)
and (5), respectively:

Δ𝐸W/S =W/S (𝑋𝑝) −W/S (𝑋) , (2)

Δ𝐸UB = UB (𝑋𝑝) − 𝑈𝐵 (𝑋) . (3)
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Table 7: Allocation of tasks for 11th sssignment of P19 (CT = 6min).

W/S type Allotted tasks
Processing time for

task “𝑖”
Work load at each

station
Idle time at each

station

W/S(L)-1
1
3

2.80
2.50

5.30 0.70

W/S(R)-1 2 3.10 3.10 2.90

W/S(L)-2 — — — —

W/S(R)-2 4 3.40 3.40 2.60

W/S(L)-3
8
6

3.30
2.70

6.00 0.00

W/S(R)-3 — — — —

W/S(L)-4
5
7

3.20
2.60

5.80 0.20

W/S(R)-4 — — — —

W/S(L)-5 11 4.10 4.10 1.90

W/S(R)-5 9 5.90 5.90 0.10

W/S(L)-6 — — — —

W/S(R)-6
10
13

3.70
1.80

5.50 0.50

W/S(L)-7
12
16

2.20
2.40

4.60 1.40

W/S(R)-7
15
14

2.30
1.20

3.50 2.50

W/S(L)-8 — — — —

W/S(R)-8 17 5.80 5.80 0.20

W/S(L)-9
18
19

3.80
2.10

5.90 0.10

W/S(R)-9 — — — —

The change in entropies is given below:

Δ𝐸W/S =W/S (𝑋𝑝) −W/S (𝑋) = 9 − 9 = 0,

Δ𝐸UB = UB (𝑋𝑝) − UB (𝑋) = 64.48 − 78.34 = −ve.
(4)

4.2.7. Check for Move. This step directs the further steps of
SAA to uphill move or downhill move to update initial seed
(𝑋) and Pareto front (𝑋𝑔). The algorithm takes the route of
downhill move when Δ𝐸W/S < 0 or Δ𝐸UB < 0. Otherwise it
proceeds with uphill move.

Example 1. When𝑋𝑝 = [1 1 1 2 1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 1] that
has WS(𝑋𝑝) = 9 and UB(𝑋𝑝) = 64.48 sec and 𝑋 = [1 1 1 1 1 1
2 2 2 1 1 1 1 1 2 2 2 2 2 1] that has WS(𝑋) = 9 and UB(𝑋) =
78.34 sec, then the condition of Δ𝐸UB ≤ 0 is satisfied and
results to downhill move. Suppose 𝑋 and 𝑋𝑝 are vice versa
(say𝑋󸀠 = 𝑋𝑝 and𝑋󸀠𝑝 = 𝑋); then the condition is not satisfied
and results to uphill move.

4.2.8. Downhill Move. Thismodulemodifies the current seed
(𝑋) and updates the Pareto front (𝑋𝑔). First, Pareto front is
updated by comparing the 𝑋𝑝 and 𝑋𝑔 using the procedure
outlined in Section 3. Then the perturbed seed 𝑋𝑝 is set as
current𝑋.

Example 2. When 𝑋 = [1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 1] and
𝑋𝑝 = [1 1 1 2 1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 1], then 𝑋𝑔 = 𝑋𝑝 and
𝑋 = 𝑋𝑝. That is, 𝑋𝑔 = [1 1 1 2 1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 1] and
𝑋 = [1 1 1 2 1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 1].

4.2.9. Uphill Move. In this module, the perturbed seed (𝑋𝑝),
though inferior to current seed (𝑋) in both objectives, it
is accepted with probability as current seed 𝑋 allowing the
algorithm to search for good solution in the other solution
region. The steps involved in this process are as follows.

Step 1. Calculate the probability of accepting “𝑃𝑎” for the
inferior “𝑋𝑝” using the formula given in

𝑃𝑎 =
𝑒− Δ𝐸W/S/𝑇 + 𝑒− Δ𝐸UB/𝑇

2 . (5)

Step 2. Generate random number “𝑟” (0 to 1).

Step 3. If 𝑟 ≤ 𝑃𝑎, then modify𝑋 = 𝑋𝑝; otherwise𝑋 = 𝑋.

Example 3. When𝑋󸀠 = [1 1 2 2 1 2 2 1 2 1 2 2 1 2 2 1 1 1 1 1] that
has WS(𝑋󸀠) = 8 and UB(𝑋󸀠) = 16.74 sec and 𝑋󸀠𝑝 = [1 1 1 2 1 2
2 1 2 1 2 1 1 1 2 1 2 1 1 1] that has WS(𝑋󸀠𝑝) = 9 and UB(𝑋󸀠𝑝) =
64.48 sec, then the condition of Δ𝐸W/S ≤ 0 or Δ𝐸UB ≤ 0 is
satisfied and proceeds with the uphill move.
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Table 8: Input data for TALBP P47 shown in Figure 7 (CT = 102 seconds).

Task “𝑖” Processing time “𝑡𝑖”
(seconds)

Code of task directions
“𝑘𝑖”

Number of precedence
“nop𝑖”

List of immediate
precedence “𝑝𝑖”

1 5.89 3 0 —

2 5.81 3 1 6

3 15.47 2 1 6

4 15.24 3 1 6

5 13.21 3 1 1

6 8.55 3 1 1

7 35.19 1 1 6

8 9.54 1 2 5, 6

9 6.33 1 1 6

10 10.12 3 1 12

11 7.53 2 1 6

12 10.40 2 1 16

13 12.29 2 1 16

14 8.77 2 1 16

15 9.91 1 1 6

16 33.14 3 1 15

17 34.93 2 2 7, 9

18 28.74 2 1 17

19 23.14 2 1 6

20 38.35 3 1 17

21 14.70 1 1 17

22 5.84 1 1 17

23 26.98 2 1 28

24 12.78 2 1 23

25 7.99 2 1 24

26 10.26 2 1 25

27 6.35 1 1 6

28 3.31 1 2 20, 21

29 5.39 1 1 23

30 19.12 1 1 28

31 8.85 1 2 23, 27

32 6.58 1 1 31

33 29.18 3 1 34

34 46.20 3 0 —

35 17.96 3 1 34

36 35.37 3 2 33, 35

37 28.41 1 1 7

38 10.60 1 1 37

39 6.19 1 1 6

40 24.96 3 1 7

41 10.54 3 1 40

42 29.70 3 0 —

43 9.68 3 2 7, 36

44 21.03 3 2 36, 42

45 14.39 3 1 44

46 8.66 3 1 45

47 14.11 3 1 44
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Table 9: Initial seed “𝑋” of the illustration problem P47.

Title Initial feasible string for 20 “E” type tasks “𝑋” which are randomly assigned to left or right side

Task “𝑖” 1 2 4 5 6 10 16 20 33 34 35 36 40 41 42 43 44 45 46 47

Position
“𝑗” 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑘𝑖(𝑋) 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 1

Table 10: Perturbed seed “𝑋𝑝”.

Task “𝑖” 1 2 4 5 6 10 16 20 33 34 35 36 40 41 42 43 44 45 46 47

Position “𝑗” 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝐾𝑖(𝑋) 1 1 1 1 1 1 2 2 2 1 1 1 1 1 2 2 2 2 2 1

𝐾𝑖(𝑋𝑝) 1 1 1 2 1 2 2 1 2 1 2 1 1 1 2 1 2 1 1 1

Input data relevant to TSALBP

Calculate change in entropy of objectives

Set:

C = 0 No, uphill

Yes

Yes

Yes

Yes,

downhill

Check

for move

(and/or)
Update

pareto front

Check for
accept an
inferior
solution

Set

No

No

No
Increment counter

If
Check end of

perturbation at T

if C ≥ n2 (or) n3

Termination

Generate perturbation solution (Xp)

if ΔW/S < 0

ΔUB < 0

(Xg = X)

X = Xp

T ≤ Tf

(Xg), UB (Xg)

Calculate probability
of acceptance of
inferior solution

C by 1 (C = C++)

T = Z∗T

Set: X = Xp

Generate initial seed “X” for “E” type tasks randomly

Initialize Xg = X, T = Ti, C = 0

Initialize SA parameters (Ti, Tf, Z, C)

Output Xg , W/S

Figure 6: Framework of the proposed Simulated Annealing Algorithm for TSALBP.
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Table 12: Data of problem P9, CT = 4, 5, and 6min [2].

Task “𝑖” Processing time
“𝑡𝑖” (min)

Code of task directions
“𝑘𝑖”

Number of precedence
“nop𝑖”

List of immediate
precedence “𝑝𝑖”

1 2.00 1 0 —

2 3.00 2 0 —

3 2.00 3 0 —

4 3.00 1 1 1

5 1.00 2 1 2

6 1.00 3 2 2 3

7 2.00 3 2 4 5

8 2.00 1 1 5

9 1.00 3 1 6

Table 13: Data of P12, CT = 5, 6, and 7min [2].

Task “𝑖” Processing time
“𝑡𝑖” (min)

Code of task directions
“𝑘𝑖”

Number of precedence
“nop𝑖”

List of immediate
precedence “𝑝𝑖”

1 2.00 1 0 —

2 3.00 2 0 —

3 2.00 3 0 —

4 3.00 1 1 1

5 1.00 3 1 2

6 1.00 1 1 3

7 3.00 3 2 4 5

8 3.00 2 1 5

9 2.00 3 2 5 6

10 2.00 3 2 7 8

11 2.00 3 1 9

12 1.00 2 1 11

4.2.10. Check forNumber of Perturbations. This step limits the
number of perturbations performed at any temperature “𝑇”
to 𝑛3 times for small size problems (or) 𝑛2 times for large size
problems. It is done giving an increment to the perturbation
counter “𝐶” and checking whether it is within the maximum

number of perturbations set as 𝑛3 small size problems (or)
𝑛2 for large size problems. 𝐶 is reset with the value of zero
whenever a fresh 𝑇 is set.

4.2.11. Check for Termination. The perturbations and updates
of Pareto front are carried out by reducing the 𝑇 by 𝑍 ∗ 𝑇 till
it 𝑇 reaches 𝑇𝑓 (=20∘C).

4.2.12. Output Pareto Front. The updated Pareto front (𝑋𝑔)
and their corresponding assignments are the output of the
SAA. The final Pareto front to P47 is a single solution, the
output of which is given below:

𝑋𝑔 = [1 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1],

W/S [𝑋𝑔] = 8,

UB [𝑋𝑔] = 14.69 seconds.

5. Results and Discussions

Five data sets, illustrative problems P19 and P47 [14], and
three more problems taken from the literature [2] and
addressed as P9, P12, and P24 are used to study the per-
formance of the proposed algorithms. Tables 12, 13, and 14
provide the data of P9, P12, and P24, respectively. Table 11
shows the results obtained for the test data with EHA and
SAA along with results reported in the source papers.

The comparison of results reveals the following.

(i) The solutions of EHA (except P47) and SAA match
with the optimal solutions of the source papers to
the objective of minimum number of workstations,
besides meeting the other objective of minimum
unbalance time among the work stations. This proves
the capability of the proposed algorithms in handling
multiobjective optimization.

(ii) The EHA could not solve P47 problem due to the
limitation in the array size of the program code and
memory requirement for large computation.

(iii) The repeatability of Pareto solution on 5 trails with

SAAwith 𝑛3 as perturbation termination, when com-
pared to 𝑛2 as perturbation termination, especially
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Table 14: Data of P24, CT = 20, 25, 30, 35, and 40min [2].

Task “𝑖” Processing time
“𝑡𝑖” (min)

Code of task directions
“𝑘𝑖”

Number of precedence
“nop𝑖”

List of immediate
precedence “𝑝𝑖”

1 3.00 1 0 —

2 7.00 1 0 —

3 7.00 2 0 —

4 5.00 2 0 —

5 4.00 1 1 2

6 3.00 3 2 2 3

7 4.00 2 1 3

8 3.00 3 1 5

9 6.00 3 1 6

10 4.00 3 1 7

11 4.00 1 1 1

12 3.00 1 2 8 9

13 3.00 3 1 9

14 9.00 2 2 9 10

15 5.00 2 1 4

16 9.00 1 1 11

17 2.00 3 1 12

18 7.00 3 1 13

19 9.00 3 2 13 14

20 9.00 2 1 15

21 8.00 1 2 16 17

22 8.00 3 1 18

23 9.00 2 2 19 20

24 9.00 3 1 20

with larger problems (P24 and P47), is higher.Though

100% repeatability could not be assured even with 𝑛3
as perturbation termination, it has the potential to
capture the near optimal solution. Further tuning the
parameters of SAA can guarantee optimal solution in
all runs.

(iv) All the test instances except P12 under 5min CT
have resulted with sole Pareto solution. However, the
nature of Pareto solution (sole or multiple) depends
on the data.

(v) The Pareto front with two solutions in its front to
P12 problem under 5min CT validates the update
mechanism adopted in the proposed algorithms.

6. Conclusions

This paper addresses a multiobjective optimization of two-
sided assembly line balancing problem associated with task
directions assignment restrictions for the objective criterion
of minimizing the unbalance among work stations and the
number of workstations. The model has the capability to
address all three-task direction restrictions. When all the
tasks are strictly restricted to any one side (i.e., left or right),
it turns out to be a single side assembly line problem. When

the tasks are restricted to either left or right, then the model
becomes a two-sided assembly line problem with strict side
restrictions. Hence, the model presented in this paper is a
general case of an assembly line balancing problemand can be
used for all types (single-sided as well two-sided) of assembly
line balancing problems. Though the model presented in
this paper deals with two objectives of minimum number
of workstations and minimum unbalance time among the
workstations, it may be extended to include objectives. Two
algorithms, namely, EHA and SAA, are proposed to solve
the problem for the two objectives of minimum number
of workstations and minimum unbalance time among the
workstations. Both algorithms use the logic of Largest Can-
didate Ranking Algorithm for assignment of tasks in the
workstations. Other heuristics may provide better solution
quality and may be attempted. The proposed algorithms are
structured such that they can be used for any other two
objectives by changing the evaluation parameters suitably
to go with the selected objectives. The algorithm structured
based on EHA provides reasonable quality assignment of
tasks to workstations to small size problems in practical
time and can be useful in dynamic environments. However,
the computational effort is very high for large size practical
problems. On the other hand, the proposed SAA has the
capability to explore the large solution space with limited
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Figure 7: Precedence diagram along with task time and operation directions of 47 tasks TSALBP (Source: [14]).

number of searches to locate near optimal solution. Though
the results of SAA show that SAA is better for larger size
problems, its robustness and computational efficiency can
be improved by fine tuning the parameters. The future
work may consider fine tuning of SAA by applying different
perturbation mechanisms and SA parameters. Besides, other
metaheuristics, as alternate to SAA, may be attempted for
large problem instances and more than two objectives.

Nomenclature

𝐶: Counter
CT: Cycle time
E: Set of tasks which can be performed at

either side of a station
Δ𝐸: Change in entropy
I: Identifier for task
IT: Iterations number
𝑘𝑖: Task direction for 𝑖th task
{𝑘𝑖 = L(1),R(2),E(3)}

L: Set of tasks which should be performed at
a left-side station

𝑁: Number of tasks

𝑛: Number of “E” type task
nop𝑖: Number of immediate predecessor of task

“𝑖”
𝑃: Probability of acceptance
𝑝𝑖: List of predecessor for task “𝑖”
R: Set of tasks which should be performed at

a right-side station
𝑟: Random number
𝑇𝑖: Initial temperature
𝑇𝑓: Final temperature

𝑇ek: Individual work element task times
𝑡𝑖: Processing time of task “𝑖”
UB: Unbalance time among workstations
W/S: Number of workstations
𝑋: Current solution
𝑋𝑔: Pareto solution

𝑋𝑝: Perturbation solution

𝑍: Quench rate.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



16 The Scientific World Journal

References

[1] T. O. Lee, Y. Kim, and Y. K. Kim, “Two-sided assembly
line balancing to maximize work relatedness and slackness,”
Computers and Industrial Engineering, vol. 40, no. 3, pp. 273–
292, 2001.

[2] Y. K. Kim, W. S. Song, and J. H. Kim, “A mathematical model
and a genetic algorithm for two-sided assembly line balancing,”
Computers and Operations Research, vol. 36, no. 3, pp. 853–865,
2009.

[3] J. J. Bartholdi, “Balancing two-sided assembly lines: a case
study,” International Journal of Production Research, vol. 31, no.
10, pp. 2447–2461, 1993.

[4] A. S. Simaria and P. M. Vilarinho, “2-ANTBAL: an ant colony
optimisation algorithm for balancing two-sided assembly lines,”
Computers and Industrial Engineering, vol. 56, no. 2, pp. 489–
506, 2009.

[5] Y. K. Kim, Y. Kim, and Y. J. Kim, “Two-sided assembly line
balancing: a genetic algorithm approach,” Production Planning
and Control, vol. 11, no. 1, pp. 44–53, 2000.

[6] A. Baykasoglu and T. Dereli, “Two-sided assembly line balanc-
ing using an ant-colony-based heuristic,” International Journal
of AdvancedManufacturing Technology, vol. 36, no. 5-6, pp. 582–
588, 2008.

[7] A. S. Simaria and P. M. Vilarinho, “A genetic algorithm based
approach to the mixed-model assembly line balancing problem
of type II,” Computers and Industrial Engineering, vol. 47, no. 4,
pp. 391–407, 2004.
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