

 Int. J. Information Systems and Change Management, Vol. 10, No. 1, 2018 3

 Copyright © 2018 Inderscience Enterprises Ltd.

High performance scheduler for multicast switches

N. Narayanan Prasanth*
School of Computer Engineering,
VIT University Vellore,
Tamilnadu, India
Email: narayana.prasanth@gmail.com
*Corresponding author

R. Chithra Devi
Department of IT,
Dr. Sivanthi Aditanar College of Engineering,
Tiruchendur 628205, Tamilnadu, India
Email: chitra_rajan2001@yahoo.co.in

S.P. Raja
Department of CSE,
Kalasalingam University,
Srivilliputur, Tamilnadu, India
Email: avemariaraja@gmail.com

Abstract: Day-by-day, the desideratum for high speed internet connectivity
increases and consequently, high performance switches are imminent. These
switches require efficient schedulers to reach its maximum potential. In this
paper, a high performance scheduler is proposed for buffered crossbar switches
to work under multicast traffic. The scheduler is able to reduce the starvation
effect and thereby achieves maximum throughput with minimum delay than
existing algorithms.

Keywords: crossbar switch; scheduler; starvation; throughput; delay.

Reference to this paper should be made as follows: Prasanth, N.N.,
Devi, R.C. and Raja, S.P. (2018) ‘High performance scheduler for multicast
switches’, Int. J. Information Systems and Change Management, Vol. 10,
No. 1, pp.3–15.

Biographical notes: N. Narayanan Prasanth is working as an Associate
Professor at the Department of Computer Science and Engineering, VIT
Vellore, Tamilnadu, India. He completed his PhD at the Manonmaniam
Sundaranar University Tirunelveli, India in 2017. His research interest includes
network switch scheduling and routing process. He has research papers
published in various national and international journals.

 4 N.N. Prasanth et al.

R. Chithra Devi is working as an Assistant Professor at the Department
of Information Technology, Dr. Sivanthi Aditanar College of Engineering
Tiruchendur, Tamilnadu, India. She is pursuing her PhD at the Anna University
Chennai since 2016. Her research interest includes network switch scheduling
and its related issues. She has had research papers published in various national
and international journals.

S.P. Raja completed his BTech in Information Technology in 2007 from
the Dr. Sivanthi Aditanar College of Engineering, Tiruchendur India. He
completed his ME in Computer Science and Engineering in 2010 from the
Manonmaniam Sundaranar University, Tirunelveli. He completed his PhD in
2016 from the Manonmaniam Sundaranar University, Tirunelveli. His area of
interest is image processing and cryptography. He has published more than
40 papers in various conferences and journals.

1 Introduction

In recent years, advanced high speed communications have become vital to the economic
growth of a country. Most of the online applications such as video games and
conferencing, internet protocol TV, distance learning, etc. works with multicast traffic
(Guo and Chang, 1998). These applications demand high speed internet support in order
to attain its features. Applications with streaming video and audio are generated,
processed and handled from a single source and are sent to many receivers. For example,
a single video feed is transmitted from a video server to thousands of destined receivers.
As a result, the entire community raises concerns about bandwidth usage and CPU
overheads involved in the same (Sahasrabuddhe and Mukherjee, 2000). In general, if the
video server needs to send a video feed to each individual receiver then it has to generate
thousands of video streams. This result in so many streams which would most likely
saturate the link connected to the server and render the server useless due to the high
CPU load incurred. The concept of multicasting allows a one-to-many transmission that
consists of a single data stream that is propagated to any host that wants to receive the
data stream, without unnecessarily sending that data stream to hosts that do not want to
receive the data stream (Eriksson, 1994; Giaccone et al., 2001).

Packet transmission takes place through three different strategies such as unicast,
multicast and broadcast (Dai et al., 2008). A unicast packet is sent from a single source to
a single destination and is also known as one-to-one communications. A broadcast packet
is sent from a single source to all the destinations on the given environment and is also
known as one-to-all communication. Multicast traffic is designed to send a packet to the
fixed number of destinations in the given environment. It is also known as one-to-many
communications. Multicasting ensures only a single copy of a one-to-many transmission
is sent over the paths necessary to reach the appropriate destination that need to receive it.

Figure 1 shows the multicast traffic in core routers. R1 and R2 are the routers which
receive the message from the server and transfers to the host or next intermediate router.
H1, H2 and H3 are the hosts waiting for the information from the server. Any number of
hosts can be connected to a router. In Figure 1, H1, H2 and H3 are connected to R2. If all
the three host request for the same message from the server, it can send same message
three times to all the hosts. Otherwise, it can use the routers to split the message into

 High performance scheduler for multicast switches 5

three copies and sent to each host. The second method is the better one in terms of
performance and cost which is termed as multicasting. Only requirement is the
routers must be designed to support multicast traffic (Salama, 1996; Navaz and
Balasubramanian, 2016).

Figure 1 Multicast traffic

Multicasting is implemented through layer 2 and layer 3 switches. When multicasting
with layer 2 switches, all the attached network devices receive the packets irrespective to
their requirements. On the other case, when multicasting with layer 3 switches, the
packets are sent only to the exact receiver who needs them. Multicasting allows for a
reduction in bandwidth usage, increasing network efficiency and performance. Any
application that needs to send large amount of information to fixed number of multiple
destination then Multicast is the best option (Navaz and Balasubramanian, 2015).
Example application includes:

 Multimedia applications that consume high bandwidth, such as streaming video and
TV servers.

 Remote conferencing system, i.e., voice.

 Software distribution applications.

 Routing protocols such as open shortest path first (OSPF), enhanced interior gateway
routing protocol (EIGRP) and routing information protocol (RIP) v2.

In this paper, a high performance scheduling scheme is proposed and its performance
is analysed under various uniform and non-uniform traffic patterns in multicast
environment. Section 2 discusses about the BCS support to multicast scheduling.
Section 3 provides the proposed scheduler and Section 4 analyse the throughput and
delay performance of the proposed scheduler. Section 5 concludes the paper.

2 Multicasting in BCS

To support multicasting, BCS is considered as the suitable architecture due to its
scalability, flexibility, low cost and intrinsic multicast capabilities (Marsan et al., 2003;
Prasanth and Balasubramanian, 2015). BCS holds buffer in the switch fabric rather than
in the line cards which means the switch and buffer implemented in a single chip, thereby

 6 N.N. Prasanth et al.

reducing the implementation cost (Chen et al., 2016). At each timeslot, BCS requires
two schedulers to switch a cell namely, arrival and departure scheduler. Arrival scheduler
selects a cell from the HOL of a queue and places it in an empty crosspoint buffer.
Departure schedule selects a cell from a non-empty buffer and transferred it to output
through destination port. At each timeslot, based on the employed scheduling algorithm,
a cell is scheduled from VOQ to one or more crosspoint buffer and from buffer to output
port. Amount of cells stored in the crosspoint buffer is based on its size and it is
practically viable to implement multi-sized buffer in the crosspoint of a switch [Pan and
Yang, (2005), p.23].

Multicasting is a process of transferring a cell from a single source (port) to multiple
destinations at minimum cost and time. Number of destination ports that a cell needs to
be transferred in a switch is said to be fanout set (Liu et al., 2016; Mhamdi, 2009). In
BCS/VOQ architecture, copies of the cell to be multicast are placed in the alternate
queues of VOQ such that multiple copies can be delivered at the same timeslot. This is
possible subject to the availability of empty buffers and employed scheduling algorithm.
These situations are dealt with two procedures namely no fanout splitting and fanout
splitting (Lee and Un, 1997; Prabhakar et al., 1997).

No fanout splitting will switch the cell only if all the buffers corresponding to
destination ports are empty, i.e., cell will be switched only once. Fanout splitting will
switch the cell irrespective to the availability of buffers at the crosspoint and the process
continues until all the port receives the cell. No fanout splitting is easy to implement but
offers low throughput because of work conserving. Fanout splitting is complex to
implement since cells are transferred partially to the destinations ports (Hui and Renner,
1994).

Several scheduling algorithms are proposed for the multicast traffic under BCS (Sun
et al., 2005). At each timeslot, a HOL cell is switched to empty crosspoint buffer results
in minimum residue left. Another scheduling algorithm opts for a cell which has
maximum possible destinations. A new algorithm works with respect to maximum
service ratio (MSR), which is the number of reachable destination outputs divided by the
fanout number of a cell. Mhamdi et al. (2007) proposed multicast crosspoint round robin
scheduler (MXRR) scheduler and its performance are compared as best to other
schedulers such as TATRA and iSLIP (Mhamdi and Hamdi, 2004). In Divanovic et al.
(2012), author proposed longest queue first and round robin scheduler for multicast
support and their performances are analysed. From all the above work, it is understood
that most of the algorithms try to cover certain issues but fails with other requirements.
None of the algorithms proved efficient in terms of throughput and delay performance.
Also, these algorithms have taken a very less effort to reduce the starvation effect.

The prolonged waiting period of a cell in a virtual output queue is called as starvation.
Starvation is one of the primary factors which disturb the performance of a scheduling
algorithm. TPQRS and D-PQRS are the commonly used unicast algorithms which made
an impressive attempt to reduce the impact of starvation. PQRS uses priority queue
scheduler as input schedule and round-robin algorithm as output schedule. It reduces the
difference between the average waiting of the queues in a VOQ and thereby reduces
starvation. Simulation ensures that the performance of the switch gets increased by the
reducing the starvation. PQRS is updated as D-PQRS which uses delay-based priority
queue scheduler as input schedule and round-robin algorithm as output schedule. It
further reduces the starvation effect by stabilising the average waiting time. Simulation

 High performance scheduler for multicast switches 7

result shows that D-PQRS achieves high throughput with minimum delay by reducing the
starvation effect in the input queues.

3 DPQRS-M scheduling scheme

D-PQRS scheduler for multicast support is called as D-PQRS-M or DPQRS-M. Proposed
algorithm has taken at-most care to reduce the starvation effect and is given.

3.1 Arrival schedule

1 Incoming cells are stored in the VOQ’s of the switch.

2 Multicasting cells are stored in alternate queues of the VOQ.

3 At each timeslot, a cell is transferred to multiple destination ports based on fanout set
subject to the availability of buffer.

4 Selection of cell to be switched is based on the priority value (PV) of a queue.

5 Initially, PV is assumed to be the size of the queue and for each timeslot, PV is
updated with respect to bonus value (BV), i.e., PV = PV + BV.

6 BV is the waiting time of HOL cell in a queue which is represented in terms of
timeslots.

7 During every schedule, PV of the currently used queue will be reduced by one.

8 If two queues have same PV, then queue which is not recently selected will be
allowed to switch their cell or queue which is not selected at least once will be
selected or FIFO principle will be used.

9 If high prioritised queue is empty, then switch the cell from next high priority queue.

3.2 Departure schedule

Round robin scheduling (RRS) is a proven output queued scheduler and is used to switch
the cell from buffer to destination ports unless the buffer is empty.

3.3 An example

The proposed scheduling algorithm made an attempt to overcome the starvation problem
by prioritising the waiting cells with BV. BV for a cell is computed based on its waiting
time in the queue. For example, consider a 4 × 4 switch works under uniform switch
which assumes all the input cell arrived at the same time. For each schedule, BVs are
computed for the queue cells of each VOQ and are shown in Table 1.

At timeslot T0, numbers of cells entered in the queues are (5, 7, 8, 6) and are
considered as queue PVs. As per the proposed scheduler, Q2 is selected for the first
schedule because it has the highest PV and the priority table at T1 is updated as
(6, 8, 7, 7). At T1, Q1 is selected for the schedule and Table 1 is updated as (7, 7, 8, 8). At
the third timeslot, Q3 is selected for schedule even though Q2 and Q3 have same PV. This

 8 N.N. Prasanth et al.

is because Q2 is already switched once but not Q3. The process continues until all the
incoming cells are scheduled or the scheduling period gets over. From the above
example, it is clear that the proposed approach made a significant effort to serve the cells
equally from all the queues and thereby reduces the starvation effect.
Table 1 BV computation

Timeslots ↑

Queues ↓
T0 T1 T2 T3

Q0 5 6(+1) 7(+1) 8(+1)

Q1 7 8(+1) 7(–1) 8(+1)

Q2 8 7(–1) 8(+1) 9(+1)

Q3 6 7(+1) 8(+1) 7(–1)

4 Performance analysis

A 4 × 4 buffered crossbar switch is used to multicast the packets with buffer size 1. Each
packet is segmented into equal sized cells in the input side and is reassembled in the
output side before they move out of the switch. JNetworkSim developed by Nick
Mckeown Group of Stanford University is used to simulate the switching process with a
total amount of 10,000 cells. At each timeslot, multicasting a cell is implemented through
both the fanout splitting and no fanout splitting principle to analyse its outcomes.
Proposed algorithm is tested and compared with MXRR algorithm (Dai et al., 2008)
under non-uniform unbalanced and non-uniform bursty traffic patterns.

4.1 Average waiting time analysis

Waiting time of a cell is a measure of total time spent by a cell in the queue of a VOQ.
The primary objective of every scheduler is to reduce the waiting time of a cell so that the
overall performance will increase. Waiting time of a cell is measured in terms of
milliseconds/timeslots. Figure 2 shows the averating waiting time of a VOQ under no
fanout splitting scheme. For DPQRS-M, queue 1 of the VOQ has the minimum waiting
time of 3.7 ms and queue 3 has the maximum waiting time of 5.1 ms with a difference
between them is 1.4 ms. For MXRR, queue 3 of the VOQ has the minimum waiting time
of 4.3 ms and queue 2 has the maximum waiting time of 6.7 ms with a difference
between them is 2.4 ms. In Figure 3, under no fanout splitting scheme, the difference
between the minimum and maximum average waiting time is 1.2 ms for DPQRS and
1.9 ms for MXRR. Therefore in both the cases, the average waiting between the queues
has been considerably reduced in DPQRS-M compared to MXRR, which means
starvation is also reduced.

 High performance scheduler for multicast switches 9

Figure 2 Averating waiting time of a VOQ under no fanout splitting scheme (see online version
for colours)

Figure 3 Averating waiting time of a VOQ under fanout splitting scheme (see online version
for colours)

4.2 Throughput analysis

Throughput performance of DPQRS-M and MXRR algorithms are analysed under
non-uniform bursty traffic and is depicted in Figure 4. It adopts no fanout principle.
DPQRS-M throughput performance is greater than 70% when minimum load (20%) is
supplied and thereafter throughput drops up to 50% when maximum load is supplied.
Comparing with MXRR, less than 5% of throughput is separating both the algorithms in
favour of DPQRS-M. Figure 5 shows the throughput performance of DPQRS-M and
MXRR algorithms under non-uniform bursty traffic with a burst size of 100. Both the
algorithms offer similar performance slightly lesser than 70% when minimum load is
offered and greater than 40% for the maximum load offered. To improve the performance
further, a speedup of two can be introduced in the switch against line speed. But
considering the implementation cost, speedup is not used in our work. It is understood
that the throughput performance is average because of the no fanout splitting.

 10 N.N. Prasanth et al.

Figure 4 Throughput performance of DPQRS-M and MXRR under non-uniform unbalanced
traffic using no fanout splitting (see online version for colours)

Figure 5 Throughput performance of DPQRS-M and MXRR under non-uniform bursty traffic
using no fanout splitting (see online version for colours)

Figure 6 shows the throughput performance of DPQRS-M and MXRR algorithms under
non-uniform unbalanced traffic which uses fanout splitting procedure. Overall throughput
is increased by 20% for DPQRS-M which is slightly greater than 90% for minimum load
and lesser than 80% when maximum load is offered. For any load, DPQRS-M throughput
performance is 5% better than MXRR. Figure 7 shows the throughput performance of
DPQRS-M and MXRR algorithms under non-uniform bursty traffic which uses fanout
splitting procedure. Again, a 20% increase is noted as similar to unbalanced traffic.

 High performance scheduler for multicast switches 11

Throughput is slightly less than 90% and greater than 70% for minimum and maximum
load, respectively. DPQRS-M and MXRR schedulers’ throughput are much improved
under fanout splitting and difference between them is around 5%. From the simulation
results, it is understood that proposed scheduler offers better throughput performance
than MXRR. Fanout splitting principle should be used to achieve maximum throughput
performance.

Figure 6 Throughput performance of DPQRS-M and MXRR under non-uniform unbalanced
traffic using fanout splitting (see online version for colours)

Figure 7 Throughput performance of DPQRS-M and MXRR under non-uniform bursty traffic
using fanout splitting (see online version for colours)

 12 N.N. Prasanth et al.

4.3 Delay analysis

Average cell latency of D-PQRS-M and MXRR algorithms are analysed under
non-uniform unbalanced traffic using no fanout splitting. Figure 8 depicts the average
delay performance of DPQRS-M compared to the MXRR running on 4 × 4 buffered
crossbar switch. For DPQRS-M, ACL is 22% for minimum load and 40% for maximum
load. Comparing with MXRR, DPQRS-M ACL is better by 5% when minimum load is
offered and when load exceeds 70% (p = 0.7), both the algorithms deliver similar delay
performance. Figure 9 shows the average cell latency of DPQRS-M and MXRR under
non-uniform bursty traffic using no fanout splitting. For bursty traffic, both the algorithm
offers similar delay performance (30%) when minimum load is offered. When maximum
load is supplied, delay increases up to 55% for MXRR which is 7% greater than
DPQRS-M. Similar to throughput, switch delay performance also suffered under no
fanout splitting.

Figure 8 Average cell latency of DPQRS-M and MXRR under non-uniform unbalanced traffic
using no fanout splitting (see online version for colours)

Average cell latency of D-PQRS-M and MXRR algorithms are analysed under
non-uniform unbalanced traffic using fanout splitting. Figure 10 depicts the average delay
performance of D-PQRS-M under non-uniform unbalanced traffic running on 4 × 4
buffered crossbar switch. Delay performance of D-PQRS-M is much improved to 5% for
minimum load and 20% for maximum load. For any load structure, D-PQRS-M delay
performance is better than MXRR by 10%. Figure 11 shows the average cell latency of
DPQRS-M and MXRR under non-uniform bursty traffic using fanout splitting. Delay
performance of DPQRS-M is under 10% for minimum load and slightly greater than 20%
for maximum load. A delay of 10% difference is found between DPQRS-M and MXRR
schedulers in favour of DPQRS-M.

 High performance scheduler for multicast switches 13

Figure 9 Average cell latency of DPQRS-M and MXRR under non-uniform bursty traffic using
no fanout splitting (see online version for colours)

Figure 10 Average cell latency of DPQRS-M and MXRR under non-uniform unbalanced traffic
using fanout splitting (see online version for colours)

From the simulation results, it is proved that DPQRS-M provides better delay
performance than MXRR for any non-uniform load structures. As discussed, scheduler
deployed fanout splitting procedure delivers better performance than no fanout splitting.

 14 N.N. Prasanth et al.

Figure 11 Average cell latency of DPQRS-M and MXRR under non-uniform bursty traffic using
fanout splitting (see online version for colours)

5 Conclusions

A DPQRS-M algorithm is proposed with the intent of reducing the starvation effect in a
switch scheduling process and thereby increasing the switching performance. DPQRS-M
for multicast support is analysed with respect to throughput and delay performance and
the results are compared with MXRR algorithm. Proposed scheduler is implemented in a
BCS under unbalanced and bursty traffic patterns. Simulation is carried out under no
fanout splitting as well as fanout splitting strategies to transfer the cells in and out of
the switch. Simulation result shows D-PQRS-M offers better throughput and delay
performance than MXRR for any non-uniform traffic patterns. D-PQRS-M performance
under fanout splitting procedure is 20% greater than non-fanout splitting. In the future,
the performance of DPQRS-M can be analysed with different crossbar buffer sizes and
also with multistage switching architectures.

References
Chen, G., Zhao, Y. Pei, D. and Sun, Y. (2016) ‘Analyzing the impact of buffer capacity on

crosspoint-queued switch performance’, Journal of Communications and Networks, Vol. 18,
No. 3, pp.523–530.

Dai, Y., Su, J.S. and Zhang, Y. (2008) ‘A coordination scheduling mechanism to guarantee packet
ordering in parallel packet switch’, International Journal of Electronic Security and Digital
Forensics, Vol. 1, No. 4, pp.362–373.

Divanovic, S., Kovacevic, V., Radonjic, M., Yoshigoe, K. and Radusinovic, I. (2012) ‘Crosspoint
queued switch performance analysis under multicast traffic’, 20th Telecommunications Forum
TELFOR 2012, Belgrade, pp.226–229.

Eriksson, H. (1994) ‘MBONE: the multicast backbone’, Communications of the ACM, Vol. 37,
No. 8, pp.54–60.

 High performance scheduler for multicast switches 15

Giaccone, P., Prabhakar, B. and Shah, D. (2001) ‘Towards simple, high-performance schedulers for
high-aggregate bandwidth switches’, Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies, Vol. 3, pp.1160–1169.

Guo, M.H. and Chang, R.S. (1998) ‘Multicast ATM switches: survey and performance evaluation’,
ACM SIGCOMM Computer Communication Review, Vol. 28, No. 2, pp.98–131.

Hui, J.Y. and Renner, T. (1994) ‘Queuing analysis for multicast packet switching’, IEEE
Transactions on Communications, Vol. 42, No. 2, pp.723–731.

Lee, J.Y. and Un, C.K. (1997) ‘Performance analysis of two fanout splitting schemes for a
multicast packet switch with capacity m’, Elsevier – Performance Evaluation, Vol. 29, No. 1,
pp.1–14.

Liu, K., Yan, J., Lu, J. and Chen, X. (2016) ‘Predictive unicast and multicast scheduling in onboard
buffered crossbar switches’, IEEE Communications Letters, Vol. 20, No. 3, pp.498–501.

Marsan, M.A., Bianco, A., Giaccone, P., Leonardi, E. and Neri, F. (2003) ‘Multicast traffic in
input-queued switches: optimal scheduling and maximum throughput’, IEEE/ACM
Transactions on Networking, Vol. 3, No. 11, pp.465–477.

Mhamdi, L. (2009) ‘On the integration of unicast and multicast cell scheduling in buffered
crossbar switches’, IEEE Transactions on Parallel and Distributed Systems, Vol. 20, No. 6,
pp.818–830.

Mhamdi, L. and Hamdi, M. (2004) ‘Scheduling multicast traffic in internally buffered crossbar
switches’, IEEE International Conference on Communications, Vol. 2, pp.1103–1107.

Mhamdi, L., Gaydadjiev, G. and Vassiliadis, S. (2007) ‘Efficient multicast support in high speed
packet switches’, Journal of Networks, Vol. 2, No. 3, pp.28–35.

Navaz, K. and Balasubramanian, K. (2015) ‘OQSMS: optimal queue selection based multicast
scheduling algorithm for input-queued switches’, Australian Journal of Basic and Applied
Sciences, Vol. 9, No. 27, pp.373–378.

Navaz, K. and Balasubramanian, K. (2016) ‘Multicast due date round robin scheduling algorithm
for input queued switches’, International Journal of Computer Network and Information
Security, Vol. 8, No. 2, pp.56–63.

Pan, D. and Yang, Y. (2005) ‘FIFO-based multicast scheduling algorithm for virtual output queued
packet switches’, IEEE Transaction on Computers, Vol. 54, No. 10, pp.1283–1297.

Prabhakar, B., McKeown, N. and Ahuja, R. (1997) ‘Multicast scheduling for input-queued
switches’, IEEE Journal on Selected Areas in Communications, Vol. 15, No. 5, pp.885–866.

Prasanth, N. and Balasubramanian, K. (2015) ‘Performance analysis of buffered crossbar switch
scheduling algorithms’, International Journal of Information and Computer Security, Vol. 7,
No. 1, pp.49–63.

Sahasrabuddhe, L.H. and Mukherjee, B. (2000) ‘Multicast routing algorithms and protocols:
a tutorial’, IEEE Network, Vol. 14, No. 1, pp.90–102.

Salama, H.F. (1996) Multicast Routing for Real-time Communication of High-speed Networks,
Doctoral dissertation, North Carolina State University.

Sun, S., He, S., Zheng, Y. and Gao, W. (2005) ‘Multicast scheduling in buffered crossbar switches
with multiple input queues’, IEEE Workshop on High Performance Switching and Routing,
pp.73–77.

Websites
http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/ip_multicast/White_papers/mcst_ovr.html
http://yuba.stanford.edu/JNetworkSim/

