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Abstract. Image Quality Assessment (IQA) becomes intensely salient in several applications, namely,

acquisition of images, watermarking, image compression, image transmission, enhancement of images and so

on, due to the extensive use of digital images. In the past decades, considerable advancements have been

developed in IQA using Region of Interest (ROI). However, ROI localization is a labour-intensive process that

takes multiple passes of sliding-window in search of proper ROI. The efficiency of examination, reduction in the

time taken for ROI localization by multiple passes and the quality of the image can be improved by the proposed

method, Histogram-Equalized Hypercube Adaptive Linear Regression (HE-HALR) scheme. HE-HALR

scheme first performs the pre-processing step for input images. In this step, the features used to describe the

quality of images are analysed using Histogram-Equalization-based Contrast Masking (HE-CM) model. The

HE-CM model performs ROI localization with the parallelization programming that identifies the contrast

masking and luminance value in a parallel manner. With the resultant feature vectors, dimensional reduction is

performed using machine learning technique, namely, hypercubical neighbourhood. Finally, IQA is performed

with the dimensionality-reduced features using Adaptive Linear Regression.

Keywords. Image Quality Assessment; Region of Interest; Histogram Equalized; Hypercube;

Adaptive Linear Regression.

1. Introduction

With the enormous development of online image volume,

Image Quality Assessment (IQA) is of elementary signifi-

cance. Hence, IQA has become a dynamic research area

over the last decade, which proposes different types of IQA

techniques. One of the crucial elements for accuracy mea-

surement of biometric features is the quality of ultrasound

(US) images during obstetric examination. However,

labour-intensive quality control is considered to be the most

tedious process and frequently found to be not feasible in a

clinical environment.

To minimize the error due to improper scanning of

images and enhance the quality of images, a computerized

Foetal US Image Quality Assessment (FUIQA) [1]

scheme was proposed, using localization and classification;

the proposed FUIQA used two deep convolutional neural

network models, L-CNN and C-CNN, respectively. The

Region of Interest (ROI) localization was identified using

L-CNN of the foetal abdominal region in the US image.

Based on the ROI identified using L-CNN, the ROI clas-

sification was performed using C-CNN, which in turn

evaluated the image quality. The major drawback resides in

the ROI localization that considered multiple passes of

sliding-window scanning in search of proper ROI,

increasing the average processing time.

A computational model with the objective of assessing

the quality of images consistent with Human Visual System

(HVS), called Image Decomposition-based Structural

Similarity (IDSSIM) [2] Index for IQA was proposed. In

the IDSSIM method, the input image is initially partitioned

into two components, namely, edge component and texture

component. TV-flow-based nonlinear diffusion method was

used to partition between the edge and texture components.

The luminance and contrast similarity were measured in

texture component, whereas the structural similarity was

computed in edge component. Finally, after measuring the

local quality map, texture component was evaluated again

to obtain a single quality score, resulting in higher predic-

tion accuracy. Despite higher prediction accuracy, the

image quality was said to be compromised.

An evaluation of high-quality image construction tech-

niques [3] with the limitations related to the image capturing

devices shows that the quality of image gets compromised.

For this, an Adaptive Gamma Correction (AGC) [4] was

presented with the objective of enhancing the image contrast.*For correspondence
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At the same time, the authenticity of the image was provided

with the availability of powerful image processing tools.

There are two types of denoising algorithms [5] to eliminate

the blocking artefacts in spatial domain.

Optimal Pixel Adjustment Process (OPAP) [6] was pre-

sented to improve the visual quality of stego image.

However, with unknown distortion or non-distortion

specific, the OPAP detection accuracy remained unad-

dressed. To address this issue, No-Reference Image Quality

Assessment (NR-IQA) Model [7] was presented, which

considered structural images. Another no-reference quality

index [8] was proposed using Spearman’s coefficient.

In this paper, a Histogram-Equalized Hypercube Adaptive

Linear Regression (HE-HALR) for IQA scheme is proposed to

improve the image quality being assessed by minimizing the

average processing time and improving Peak Signal to Noise

Ratio (PSNR) rate. In the HE-HALR scheme, at first, His-

togram-Equalization-based Contrast Masking (HE-CM)model

using Finite Band Neighbourhood Contrast measure is pro-

posed. Then, hypercube neighbourhood factor is designed to

reduce the average processing time based on the hyper-cubit

metric. HE-HALR scheme achieves comparably better results

of the counterpart extract, the most relevant feature, as well as

the data loss rate. The efficacy of the machine learning

scheme is demonstrated through both simulation and

experiment.

The rest of this paper is organized as follows. Section 2

provides related works on IQA schemes provided by dif-

ferent researchers. Section 3 proposes HE-HALR

scheme for IQA. In section 4, experimental settings for the

HE-HALR scheme are presented. In section 5, a discussion

with the table values and graph form is presented. Finally,

section 6 concludes the work.

2. Related works

Many research works have indicated that users’ insight of

visual quality heavily depends on several aspects other than

artefact visibility alone, such as environment change, social

context or user personality.

The image semantic information [9] was applied to

perceptual quality features, resulting in higher association

with user acumen of visual quality. However, time cost was

not analysed. Another method for digital image correlation

measurement [10] was investigated, considering the time

cost by estimating the Point Spread Function (PSF). Despite

reduced time cost, noise during image correlation measured

was not addressed.

An improved spatio-temporal noise reduction algorithm

through CMOS Image Sensor (CIS) [11] was presented. In

addition, a motion-detection process was also used to

determine how pixels from spatial noise and temporal noise

filter were flexibly combined, resulting in favourable sub-

jective and objective image quality. Another objective

assessment of image quality using Blind Image Quality

Assessment (BIQA) [12] resulted in performance gain. By

estimating Motion Vector Field (MVF) [13], maximization

of information potential of a motion-compensated image

was analysed.

The immense expansion in mobile devices has resulted in

vast generation and utilization of digital images. Hence,

IQA has become an important issue to be addressed for

mobile media applications. A three-level representation

[14] of retargeting process combining fidelity measures and

inconsistency detection was analysed to measure the final

retargeting quality. A novel adaptive Singular Value

Decomposition (SVD)-based [15] clutter filtering technique

was designed to improve both the signal-to-noise ratio

(SNR) and contrast-to-noise ratio (CNR). The proposed

technique showed great improvement in concealment of

background noise.

Current advances in High Dynamic Range (HDR) capture

and display technologies have attracted a lot of interest to

perform several researchworks. The results of benchmarking

of objective quality metrics for HDR IQA [16] were pre-

sented. Yet another ParaBoost method [17] was presented to

form Basic Image Quality Scorers (BIQS) and Auxiliary

Image Quality Scorers (AIQS). This was done to measure

images comprising wide range of distortion. The results are

not properly detected in the computationally intensive ima-

ges; noise is considered as the main challenge for IQA. To

address this issue, a technique based on noise quality index

[18] was presented. Local quality assessment [19, 20] based

on visual field adaptation and information content weighting

was presented to address computational issues.

Intensity Histogram Equalization (IHE) [23] prepro-

cessing enhances the image contrast by changing the

intensity values to improve the brightness. A new feature

similarity (FSIM) index was developed in [24] for complete

reference IQA according to the salient low level features.

Visual Saliency-based Index (VSI) was designed in [25] for

Perceptual IQA.

The preprocessing step includes mask production,

enlightenment equalization and colour normalization. These

steps de-noise the image and hence image contrast gets

improved but it does not address the quality of the image.

Thegoal of this paper is to design an IQAscheme that is able

to achieve higher image detection ratio compared to the state-

of-the-art schemes. The algorithms designed in this paper will

serve as a guideline for improving the image quality.

3. HE-HALR for IQA

A block diagram of our HE-HALR for IQA scheme is

illustrated in figure 1. With heterogeneous input sources of

original input data, the HE model is able to perform ROI

localization with the contrast masking features. The

hypercube model then further analyses the identified ROI
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localization with the neighbourhood scheme. Finally, IQA

is performed as illustrated in figure 1 using ALR.

The first step involved in the HE-HALR scheme is pre-

processing. Preprocessing is performed using the HE-CM

model. In the HE-CM, ROI localization is done to remove

the noise present in the images. The second and third steps

involved in the HE-HALR are performed using the machine

learning technique, hypercubical neighbourhood and ALR.

Dimensionality reduction in the proposed scheme is per-

formed with the aid of hypercubical neighbourhood.

Finally, ALR is applied to the dimensionality-reduced

features to measure image quality.

3.1 HE-CM

The key role played in IQA is the usages of image features.

Therefore to design the input features vector for IQA, a

scalar value is initiated for testing the feature. The entire

set, of enumerated scalars, results in the feature vector

analogous to an image. This vector is then used as the basis

to measure the image quality. Figure 2 shows a block

diagram of HE-CM model.

Structural information is located at visible edges of

image. These visible edges correspond to spatial equaliza-

tion factor; hence spatial Histogram Equalization Factor

(HEF) is measured to obtain the structural information. To

evaluate spatial HEF, Contrast Masking using Finite Band

Neighbourhood Contrast measure is obtained in the pro-

posed scheme. The contrast is based on neighbourhood

value as it calibrates the human observer’s sensitivity to the

luminance dissimilarity with respect to the neighbourhood

mean luminance. In addition, it is said to be a Finite Band

as the degradation perception depends on its spectral

location.

The Contrast Masking ‘CM’ for spatial HEF is mathe-

matically obtained as follows:

CMa;b i; jð Þ ¼ La;b i; jð Þ
Pm

c¼1;d¼1 L
a
c;d i; jð Þ : ð1Þ

In (1), ‘La;b i; jð Þ’ and ‘CMa;b i; jð Þ’ represent, respectively,
the luminance and contrast masking present at the coordi-

nates ‘ i; jð Þ’ of the ath channel (i.e., radius of the channel)

and the bth angular sector (i.e., the angular representation of

the corresponding sector). In addition, ‘d’ represents the

angular sector of the cth band.

In the proposed scheme, an input test image is repre-

sented in the form of a vector in an image space with

contrast masking as specified in (1). In this case, any image

distortion is interpreted (in such a way) by including a

distortion vector to the training image vector. In this space,

the two vectors that represent luminance and contrast

changes span a plane that is adapted to the training image

vector. Hence, the luminance value ‘L a; bð Þ’ is mathemat-

ically obtained as follows:

L a; bð Þ ¼ 2lalb þ b1
la2lb2 þ b1

ð2Þ

From (2), the luminance value is a measure of mean

intensities of image ‘la’ and ‘lb’, where ‘b1’ denotes the

constant circumventing uncertainty factor. Following this,

the contrast change ‘C a; bð Þ’ is mathematically obtained as

follows:

C a; bð Þ ¼ 2rarb þ b2
r2a þ r2b þ b2

: ð3Þ

From (3), the contrast change is a measure of standard

deviation of image ‘ra’ and ‘ rb’, where ‘b2. ’ denotes the
constant circumventing uncertainty factor with respect to

images ‘a’ and ‘b’. With the obtained luminance and con-

trast changes, preprocessing is performed using HEF. In

order to perform HEF, Probability Mass Function ‘PMF’

and Cumulative Distributive Function‘CDF’ are measured.

These functions are measured for ‘N’ number of images

(i.e., here ‘N’ represents the sample number of images

considered for simulation) with ‘ga’ grey level for an image

‘and ‘gb’ grey level for an image ‘gb’. They are mathe-

matically obtained as follows:

Figure 1. Block diagram of Histogram-Equalized Hypercube Adaptive Linear Regression.
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PMF ga; gbð Þ ¼ Ia

N

Ib

N
ð4Þ

CDF Iað Þ ¼
Xn

i¼1

Prob ga; gbð Þ: ð5Þ

The PMF is obtained using Eq. (4). The Histogram

Equalization (HEQ) grey level value ‘Sa’ to grey level ‘ga’

and ‘gb’ for each input testing image is calculated using the

following equation:

Sa;b ¼ L a; bð ÞPMF ga; gbð Þ: ð6Þ

A pseudo-code representation for noise removal using

Finite Band Neighbourhood Contrast is as follows:

As given in this Finite Band Neighbourhood Contrast

algorithm, features are selected and/or noise removal is

accomplished. To measure the noise present in the input

image, initially, luminance and contrast measure have to be

detected. In order to detect luminance and contrast measure

in a grey image, the HEF is expressed in the Finite Band

Neighbourhood Contrast measure. Then HEQ level value

‘Sa’ is applied on the resulting feature vectors in order to

remove both noise and non-important edges.

3.2 Hypercubical neighbourhood-based

dimensionality reduction

Once the feature vector is obtained, the second issue

addressed in the proposed scheme is the dimensionality of

the feature vector. Let ‘EL’ be the edge length of a

‘mdimensional’ hypercube in which the feature vector

samples ‘Sa;b’ are distributed in a fixed fashion. The edge

length ‘EL’ of a hypercubical neighbourhood that captures

a fraction ‘d’of feature vector samples is given by

EL mð Þ dð Þ ¼ Eld
1
m: ð7Þ

Every ‘n-cube‘ for ‘n[ 0’ of the measured edge length

is composed of feature vectors or ‘n-cube’ of a lower

dimension on the ‘(n – 1)’ dimensional surface on the

parent hypercube. A side is any feature vector of

‘ n� 1ð Þ’ dimension of the parent hypercube with a

hypercube of dimension ‘n’ having ‘2n’ sides; the number

of vertices of the hypercube is ‘2n’. The number of

‘mdimensional’ hypercubes on the boundary of an ‘ncube’

is expressed as

DRFm;n ¼ ELm;n Sa;b
� �

¼ 2n�m n

m

� �

Sa;b
� �

ð8Þ

Figure 2. Block diagram of Histogram-Equalization-based Contrast Masking.

Algorithm 1 Finite Band Neighborhood Contrast algorithm

, ( , ) =
, ( , )

∑ , ( , )=1, =1

( , ) =
2 + 1

2 2 + 1

( , ) =
2 + 2

2 + 2 + 2

( , ) = ∗

( ) = ( , )

=1

, = ( , ) ∗ ( , )

Initialize Testing images ‘{ = 1, 2, … , }’, coordinates ‘( , )’, constant 

circumventing uncertainty factor ‘ 1’, luminance ‘ , ( , )’, mean intensities of 

image ‘ ’ and ‘ ’, standard deviation of image ‘ ’ and ‘ ’

Output: Feature vectors ‘ , = 1 1, 2 2, … , ’

For testing images ‘{ = 1, 2, … , }’

End for 
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n

m

� �

¼ n!

m! n� mð Þ! : ð9Þ

From (8), the dimensionality-reduced feature ‘DRF’ for

‘mdimension’ and ‘ ncube’ is evaluated based on the edge

length ‘EL’. An image transform prior to a hypercubical

metric significantly reduces the dependences between fea-

ture vector samples, thus reducing the dimensionality and

improving image quality metric. Figure 3 shows a block

diagram of hypercubical neighbourhood-based dimension-

ality reduction model.

A pseudo-code representation for dimensionality reduc-

tion using hypercube is as follows:

As given in algorithm 2, the feature vectors should

extract only the features that are relevant to IQA. The

hypercubical neighbourhood dimensionality reduction

algorithm removes non-informative features that carry

either redundant or inappropriate information. This, in turn,

reduces the average processing time involved in IQA.

3.3 IQA using Adaptive Linear Regression

The most fundamental principle underlying structural

approaches to IQA is to extract structural information from

the dimensionality-reduced feature vector, and therefore a

measurement of structural similarity provides a good

approximation to image quality. In the proposed scheme, to

differentiate between structural information and structural

distortion, Adaptive Linear Regression (ALR) is employed.

The ALR indices measure the linear regression between

two images. If one of the images is regarded to be of perfect

quality, then the ALR index is viewed as an indication of

the quality of the other images being compared.

The proposed scheme provides spatially varying quality

map of the image that delivers more information about the

quality degradation of the image. Such a quality map is

employed in the proposed scheme to indicate the quality

variations across the image and is expressed as follows:

Da ¼ De1I1 þ De2I2 þ � � � þ DemIm ð10Þ

Da ¼ LDc ð11Þ

From (10), ‘e1’, ‘e2’ and ‘em’ denote the structural dis-

tortion elements for images ‘ I1’, ‘ I2’ and ‘Im’, respectively.

The image quality map for the dimensionality-reduced

feature vectors is presented in figure 4.

For each Image ‘I’ (i.e., sample ‘S’), a weighting factor is

defined and is mathematically expressed as follows:

W ¼ w1;w2; . . .;wmf g ð12Þ

In Eq. (12), ‘w1’ represents the overall pixel size of the

corresponding image ‘I1’ (i.e., the product of rows and

columns), ‘w2’ represents the overall pixel size of the

corresponding image ‘I2’ and so on. With this weighting

factor ‘W’, to measure the distortion, within a sliding-

window, the following minimization function is analysed:

min WDcð Þ2 such that Dx ¼ LDc; ð13Þ

D ¼ W�1LT LW�2LT
� ��1

Da
� �2

: ð14Þ

The final step of an IQA scheme is to combine the

quality map into one single quality score for the entire

image using weighted aggregation. Let ‘a’ and‘b’ be the

two sample images being compared, and ‘ Daj;Dbj
� �

’ be the

local ALR indices evaluated at the ‘jth’ local sample; then

the ALR index between ‘a’ and ‘b’ is mathematically

defined as follows:

Daj; Dbj
� �

¼
PN

i¼1 Wi aibið Þ Da;Dbð Þ
PN

i¼1 Wi aibið Þ
ð15Þ

A pseudo-code representation for IQA using ALR is as

follows:

,, Hyper cubical 
neighborhood Dimensionality-

reduced features

Figure 3. Block diagram of hypercubical neighbourhood-based dimensionality reduction.
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In estimating image quality, certain regions may have

more importance than the others. Based on this hypothesis,

many researchers have used different schemes to combine

several facets of visual attention to estimate the quality of

images. In the proposed scheme, the IQA has been per-

formed based on the ROI localization and structural

information (i.e., contrast masking, luminance value and

contrast changes) through HEF. With the aid of ALR,

image quality is enhanced as the regression follows a linear

pattern resulting in the good prediction of perceived image

quality.

4. Experimental evaluation

HE-HALR for IQA on Public-Domain Subjective Image

Quality Database is developed in MATLAB platform. HE-

HALR scheme uses the LIVE Public-Domain Subjective

Image Quality database [21] and TID2013 database [22] for

IQA. The idea of the HE-HALR scheme is to define a

database with a test image used as benchmark images for

IQA.

The IQA research heavily depends upon subjective

experiments to provide both the calibration data and

testing mechanism, as the objective of IQA research is to

make quality predictions and get agreement with sub-

jective opinion of human observers. In order to calibrate

IQA algorithms and perform tests, a dataset including

images and videos whose quality has been ranked by

human subjects is required. Using LIVE Public-Domain

Subjective Image Quality database, an extensive experi-

ment was conducted to obtain scores from human sub-

jects for a number of images distorted with different

distortion types. These images were acquired to support a

research project on generic shape matching and

recognition.

Using LIVE Public-Domain Subjective Image Quality

database [21] and TID2013 [22] database, the defined

testing method results are compared to those of the existing

method. SC-PR technique is compared to the existing

Foetal US Image Quality Assessment (FUIQA) [1] scheme,

Image Decomposition-based Structural Similarity (IDS-

SIM) Index [2], FSIM index [24] and VSI for IQA. The

experiment is conducted on factors such as PSNR, average

processing time, detection accuracy, sensitivity and

specificity.

5. Discussion

In order to evaluate the performance of the proposed

scheme, machine learning technique was applied to a

database used for IQA using LIVE Public-Domain Sub-

jective Image Quality database and TID2013 database.

Dimensionality-
reduced features

Figure 4. Image quality map representation.
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Specifically, the experimental study has the following

goals:

1. To investigate the PSNR of the proposed scheme with

reference to different IQA schemes.

2. To compare the proposed scheme to existing IQA

scheme in terms of average processing time.

3. To compare the obtained image quality detection

accuracy to the original accuracy without machine

learning scheme.

5.1 PSNR

The first parameter considered for experimental evaluation

and discussion is the PSNR. PSNR is the ratio of maximum

possible power of a signal to power of corrupting noise that

affects fidelity of its representation. The ‘PSNR’ is com-

puted using Eq. (16):

PSNR ¼ 10 log
2B � 1ð Þ2

NMSE

" #

ð16Þ

In (16), ‘B’ represents the number of bits per pixel of the

image. Normalized Mean-Square Error is denoted as

‘NMSE’, which is calculated as follows:

NMSE ¼
1
N

PN
i¼0 a i; jð Þ � b i; jð Þ½ �2

a i; jð Þ ð17Þ

In (17), ‘i’ and ‘ j’ represent the number of row and

columns in the reference ‘ a’ and test ‘ b’ images respec-

tively. Figure 5 shows the PSNR rate with respect to

number of images used. It can be observed that the PSNR

rate improves (when the contrast masking is used to reduce

the noise present in the images) with the number of images

used.

Figure 5 shows a graphic representation of PSNR (nor-

malized MSE) using LIVE database. The database consists

of 779 images, whereas in figure 5, 100 images are taken

for observation. Higher the PSNR value, more reliable the

method. The value of PSNR is found to be higher using the

proposed HE-HALR scheme than FUIQA [1] and IDSSIM

[2]. This is because of the application of ROI localization

using Histogram-Equalization-based Contrast Masking in

the HE-HALR scheme. Here, the contrast based on the

neighbourhood value is used for localizing the ROI. This is

because of the fact that the human eye perception is more

towards neighbouring values. Hence, using the neighbour-

hood value, the noise present in the images is easily iden-

tified. With ROI localization involving a series of

uncertainties, using neighbourhood value, accurate features

are extracted that in turn appropriate the classification of

features in an efficient manner. This in turn improves the

rate of PSNR by 12% compared with FUIQA [1], 23%

compared with IDSSIM [2], 39% compared with FSIM [24]

and 30% compared with VSI [25].

Figure 6 shows the graphic representation of PSNR when

applied with TID2013 database. It is observed that with the

increase in the number of images, the rate of PSNR is also

increased. In other words, the PSNR is directly proportional

to the number of images given as input. This is evident for

the first 20 images, i.e., with the increase in the number of

images, the PSNR is also found to be increased. On the

other hand, with images in the range of 20–30, a fall of

PSNR is observed. This is because with different images

used of different sizes, the presence of noise in the images

degrades the image quality and therefore a fall in the PSNR

rate is observed. However, PSNR using HE-HALR was

found to be comparatively better than FUIQA and IDSSIM

because of the Finite Band Neighbourhood Contrast algo-

rithm. By applying Finite Band Neighbourhood Contrast

algorithm, luminance and contrast measure are detected.

Besides, the HEF equalizes the grey level and removes the

non-important edges. By removing non-important edges,

only the portion of image of better quality is extracted,

therefore removing the noise present in the testing images.

As a result, improved PSNR rate was found using HE-

HALR scheme by 11% compared with FUIQA and 21%
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compared with IDSSIM, 42% compared with FSIM and

31% compared with VSI.

5.2 Average processing time

The experimental results in previous section have indicated

that HE-HALR scheme is more efficient than FUIQA and

IDSSIM in terms of PSNR. In this section, we compare HE-

HALR scheme with ARC-MDCC method to FUIQA and

IDSSIM to illustrate the effectiveness of applying Hyper-

cubical Neighbourhood Dimensionality Reduction algo-

rithm for measuring the average processing time.

The average processing time measures the average time

required to process an image (i.e., noise removal and

dimensionality reduction). The average processing time is

the summation of time taken to perform noise removal

using HE-CM and time taken to perform dimensionality

reduction using hypercube:

averagePT ¼ time Sa;b
� �

þ time DRFm;n

� �
ð18Þ

In (18), the average processing time ‘ averagePT ’ is

obtained for reference ‘ a’ and test ‘ b’ images for ‘

mdimensional’ and ‘ncube’. It is measured in units of

milliseconds (ms).

Figure 7 shows the performance of HE-HALR scheme,

FUIQA and IDSSIM over different number of images of

different sizes in terms of average processing time using

LIVE and TID2013 databases. The average processing time

is observed to be low on applying the HE-HALR scheme.

Figure 7 shows a graphical representation of average

processing time. The performance of average processing

time was analysed using an independent set of 100 images,

of which 25 JPEG compressed images and 25 Gaussian blur

images were used. To analyse the robustness of the HE-

HALR scheme for IQA, HE-HALR scheme was compared

to other IQA schemes. From figure 7 it is seen that HE-

HALR scheme works better than FUIQA [1] and IDSSIM

[2] in most of the experiments. This is because of the

application of Hypercubical Neighbourhood Dimensional-

ity Reduction algorithm. On applying Hypercubical

Neighbourhood Dimensionality Reduction algorithm, a

fraction ‘ d’of feature vector samples are captured through

edge length. Thus, only the required features are retrieved

due to the incorporation of hyper-cubical neighbourhood

value. Due to this the irrelevant features are discarded via

‘mdimensional’ hypercube on ‘ncube’. Therefore, by dis-

carding irrelevant features and obtaining only relevant

features, the average processing time for IQA is found to be

minimal. Hence, the average processing time is found to be

reduced by 12% compared with FUIQA, 3% compared with

IDSSIM, 30% compared with FSIM and 25% compared

with VSI using LIVE database.

Figure 8 illustrates the performance analysis of average

processing time using the proposed HE-HALR scheme by

comparing with the state-of-the-art works. On increasing

the number of images, as the size of the images increases,

the average processing time increases. However, a down-

pour of average processing time is found when 60–70

images are given as input. This is because by increasing the

number of images, the average pixel size is not always

found to increase. Certain images possess lesser pixel size.

As a result, the average processing time for number of

images between 60 and 70 drops. However, comparative

analysis shows the improvement using HE-HALR

scheme when applied with TID2013 database. This is

because of the dimensionality-reduced features obtained

through edge length. Besides, an image transform prior to a

hypercubical metric minimizes the dependences between

feature vector samples, thus minimizing the dimensionality

of image by removing irrelevant feature and therefore

improving image quality metric. The average processing

time for 60 images and 70 images was increased in HE-

HALR scheme, respectively, by 12% and 11% in the case

compared with FUIQA, and 6% in the case compared with

IDSSIM. The average processing time of HE-HALR

scheme is reduced by 29% and 25% compared with FSIM

and VSI methods, respectively.

5.3 Image detection accuracy

The third parameter considered for experimentation is the

image detection accuracy. With this parameter, the image
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Figure 7. Average processing time results obtained employing

the LIVE database.
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Figure 8. Average processing time results obtained employing
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quality is assessed. IQA is more efficient if the image

detection accuracy is higher. The image detection accuracy

depends on the proper detection of the image. It is mathe-

matically evaluated as follows:

AccID ¼
XN

i¼1

Ii � INDC ð19Þ

The image detection accuracy ‘AccID’ is measured on the

basis of number of images given as input, ‘ Ii’, and the

images that have not been correctly detected, ‘INDC’.

Finally, the third goal of experiments is addressed with

respect to IQA through image detection accuracy, showing

the comparison of HE-HALR to FUIQA and IDSSIM. In

figure 9, the analysis of image detection accuracy with

respect to number of images in the range of 10–100 is

shown. It is measured in terms of percentage (%). For all

images and image sizes, image detection accuracy increases

with the number of images used. Ten unique experiments

were conducted for each image size.

The final goal of the IQA is to accurately detect the

images. Using the data obtained from the LIVE database,

JPEG compressed images from their data are divided into

two portions for training and testing. Here, we use 60–40

ratio for the training and testing of IQA. In the proposed

work, comparative studies are made with the two schemes

FUIQA and IDSSIM. HE-HALR scheme gives better result

than FUIQA and IDSSIM, which is shown in figure 8.

Figure 8 gives the information about training and testing

accurately for the detected images. The percentage of

image detection in HE-HALR scheme is 8% accuracy

compared with FUIQA whereas HE-HALR

scheme achieves 5% accuracy when compared with IDS-

SIM, 36% compared with FSIM and 24% compared with

VSI.

The improvement in image detection accuracy is due to

the application of the ALR for the dimensionality-reduced

features using machine learning. With the machine learning

ALR, the ALR indices measure the linear regression

between reference and test images. As a result, spatially

variable quality map delivers more information about the

quality degradation of the image. With this, the HE-HALR

scheme using the ALR image quality assessor algorithm

produces lower test-set error than those of the state-of-the-

art methods. As a result, the image detection accuracy is

proved to be significantly improved whe compared with the

state-of-the-art methods.

Figure 10 shows the image detection accuracy curves

results using TID2013 database. HE-HALR scheme using

machine learning technique provides significantly better

image detection accuracy than FUIQA and IDSSIM. This is

because JPEG compressed images are extremely chal-

lenging for IQA schemes, where certain image aspects (i.e.,

edge features) can be missing. On the contrary, feature

extraction performed through machine learning extracts the

most relevant features based on hypercubical neighbour-

hood divergence, reducing dimensionality. As a result, with

the most relevant features extracted, average processing

time gets reduced using HE-HALR scheme, therefore

achieving the best performance. This is due to the fact that

HE-HALR scheme considers both the noise removal and

dimensionality reduction during ROI localization, while

FUIQA and IDSSIM make multiple passes in search of

proper ROI. As a result, the image detection accuracy is

improved by 5% compared with FUIQA, 10% compared

with IDSSIM, 33% compared with FSIM and 25% com-

pared with VSI.

5.4 Sensitivity and specificity

Sensitivity is also called as the true positive rate. Sensitivity

measures the proportion of actual positives that are cor-

rectly identified as such. In other words, while assessing

image quality, sensitivity refers to the percentage of testing

images that are correctly identified as testing images after

IQA. On the other hand, specificity is also called as the true

negative rate. The specificity measures the ratio of actual

negatives that are correctly identified as such. Consider the

example of an IQA. Specificity of a test is the proportion of

testing images known not to have noise, which will test

negative for it. Table 1 shows the results of sensitivity and

specificity using images in the range of 10–100 using the
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Figure 9. Image detection accuracy results obtained employing

the LIVE database.
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proposed HE-HALR and existing methods FUIQA [1] and

IDSSIM [2].

This table illustrates that the sensitivity and specificity

rates are improved by applying the HE-HALR scheme. At

the same time, it also illustrates that the number of images

is not directly proportional to sensitivity and specificity. It

is evident from the table that variance is observed with

respect to 60 images for sensitivity and with respect to

50–60 images while evaluating specificity. This is because

of the application of ALR algorithm. By applying ALR

algorithm, the IQA has been done on the basis of ROI

localization and structural information using HEF. With

this, betterment of sensitivity and specificity is said to be

observed by applying the HE-HALR scheme. Hence, sen-

sitivity is found to be improved using HE-HALR scheme,

by 4%, 8%, 19% and 13% compared with FUIQA [1] and

IDSSIM [2], FSIM [24] and VSI [25], respectively. In a

similar manner, sensitivity is found to be improved using

HE-HALR scheme, by 6%, 11%, 23% and 17% compared

with FUIQA [1], IDSSIM [2], FSIM [24] and VSI [25],

respectively.

5.5 IQA metrics

In order to evaluate the performance of proposed HE-

HALR scheme, the most common IQA metrics such as

Spearman Rank Order Correlation (SROC), Kendall Rank

Order Correlation Coefficient (KROCC), Pearson Linear

Correlation Coefficient (PLCC) and Root Mean Squared

Error (RMSE) metrics are used. PLCC and RMSE are

calculated with the aid of a nonlinear regression equation:

f xð Þ ¼ bi
1

2
� 1

1þ eb2 x�b3ð Þ

� �

þ b4xþ b5 ð20Þ

where bi, i = 1, 2, …, 5 are the parameters to be fitted.

Figures 11 and 12 show the comparisons of IQA metrics

with different datasets. A better objective IQA measure

(correlation score) is expected to have higher SROCC,

KROCC and PLCC but lower RMSE. Figures 11 and 12

show that the proposed HE-HALR scheme using LIVE and

TID2013 databases provides better correlation values than

those of the FUIQA [1], IDSSIM [2], FSIM [24] and VSI

[25] methods. RMSE is measured between Mean Opinion

Scores (MOS) and the objective scores after nonlinear

regression. Similarly, PLCC is calculated between MOS

and the objective scores after nonlinear regression. For

analysing the performance, 10–100 images are considered.

Higher correlation indicates higher quality score of an

Table 1. Performance results of sensitivity and specificity.

No. of images

Sensitivity (%) Specificity (%)

HE-HALR FUIQA IDSSIM FSIM VSI HE-HALR FUIQA IDSSIM FSIM VSI

10 92.35 89.34 85.23 77.25 80.23 87.25 81.33 80.15 72.31 76.32

20 90.14 87.19 82.14 74.26 77.32 82.04 80.25 78.14 68.22 72.32

30 89.89 86.83 83.14 76.31 79.35 82.79 78.14 75.32 69.15 72.36

40 89.75 86.79 84.55 77.14 80.32 84.65 80.23 77.12 71.24 74.25

50 87.35 83.34 81.32 75.36 78.31 80.25 75.55 70.23 64.35 67.44

60 90.14 87.16 85.43 76.44 81.34 81.04 78.13 73.15 67.52 70.64

70 85.14 82.12 79.14 73.6 76.63 78.34 72.35 69.15 62.24 66.44

80 85.09 81.03 79.13 71.36 74.32 80.19 75.56 71.23 63.11 65.21

90 80.13 78.18 75.43 67.32 71.63 75.03 71.32 68.25 62.33 64.11

100 84.33 80.37 77.15 68.32 72.36 79.13 74.25 66.14 58.28 62.31
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Figure 11. Performance comparisons of IQA metrics on LIVE

database.
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image. This graph shows that the proposed HE-HALR

scheme provides better quality images by means of higher

correlation score.

6. Conclusion

In this paper, we have proposed a machine learning

scheme using robust feature extraction with which His-

togram Equalization has been applied to the digital input

images. The proposed HE-HALR scheme is able to extract

the most relevant features for IQA to digital input images

robustly. After noise removal performance using the his-

togram equalizer, relevant feature extraction is achieved

by measuring the edge length based on the proposed

hypercubical neighbourhood measure. The hallmark of the

HE-HALR scheme is its robust machine learning IQA

scheme, which considers both the dimensionality consis-

tency and structural similarity. Experiments on different

datasets provided significant results, showing the practical

use of the proposed scheme. The reliability of the

assumption that ROI localization can provide accurate

image quality was also exhibited. We noted that our

proposal using the ROI localization for improving image

quality achieved better results compared with the state-of-

the-art methods.
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