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Image stitching of similar scenes is a challenging task when scenes are captured under varying illumina-
tions between the scenes, varying camera positions, varying orientations either in axial or azimuth. In
this paper, we explore a seamless image stitching algorithm to address the above-said issues by applying
techniques of dehazing on the acquired scenes and before identifying the image features and holoentropy
aided feature matching on the Scale Invariant Feature Transform (SIFT) based features for the image.
Experimentation of the proposed system is compared with the existing image stitching methods using
squared distance, Minkowski and pairwise Euclidean distance for feature matching. The proposed
seamless stitching method is evaluated based on the metrics, horizontal square gradient value (HSGV)
and vertical square gradient value (VSGV). The obtained results are shown to be feasible for stitching
the nonuniform or illumination variation multiple images. The exploration of above said stitching
algorithm is intended to reduce the number of computations and inconsistencies in the stitched results.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Image stitching technique is used to create a panaramic
image from more than one image with overlapped regions that
are captured using any digital camera (Huang et al., 2015) or any
smartphone camera (Ma et al., 2015). Typically, in biomedical
applications, image stitching process arises in microscopic or nat-
ural internal organs imaging with a smaller size overlapping
images having high resolutions or different resolutions (implied
by varying image patches) caused by scale changes to create a sin-
gle seamless image with high resolution for intended image anal-
ysis (Brown and Lowe, 2007) (Candocia, 2003). Also, this image
stitching process arises in telescopic imaging systems using satel-
lite or any other airborne camera. Its main objective is to integrate
multiple images with overlapped regions to create a seamless and
high-resolution image. Image alignment and image blending are
very important for generating a high resolution image. The accu-
racy and efficiency of image stitching are enhanced by the quality
of image alignment (Kybic, 2004). Image alignment includes three
methods such as transformation domain-based method, intensity-
based method (Zitova and Flusser, 2003) and feature-based
method (Zoghlami et al., 1997). Among them, a feature-based
method is popular for image stitching applications (David and
Lowe, 2004). Image stitching consists of three main steps
(Zaragoza et al., 2014) – feature matching, homography estimation
and seam selection with color blending. Feature matching is based
on the correspondence of points. While stitching many images, fea-
ture matching would be the time-consuming one.

A large number of image stitching tools are developed including
Lowe’s method (Yang and Wang, 2013), optimal seam selection
algorithm (Boykov and Kolmogorov, 2004), heuristic seam
selection algorithm (Mills and Dudek, 2009), Panorama weaving
(Summa et al., 2012), Smooth transition algorithms (Peleg, 1981)
etc. But these tools have problems because they produce uncon-
vincing results such as yielding misalignment artefacts or ghosting
in the results (Zaragoza et al., 2014), time-consuming (Huang et al.,
2015) leading to critical bottleneck (Ma et al., 2015), poor stitching
performance (Song et al., 2015), blurred image formation (Liu et al.,
2008), misalignment (Zhi and Cooperstock, 2012) and stitching
noise (Lei et al., 2016).
bitrary
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Table 1
State-of-the-art similarity measures adopted in image stitching process.

Author [Citation] Adopted
Methodology

Drawbacks

Lei et al. (2016) Correlation Chaotic noise
Ma et al. (2015) Hamming

distance
Susceptible to Illumination
variant

Huang et al. (2015) Maximum
likelihood

Sensitive to initial values and
low dimensional data

Zaragoza et al. (2014) Singular value
decomposition

Prone to outlier and huge
computational complexity

Song et al. (2015) Chaos theory Huge computational complexity
Li et al. (2015) Greedy search

algorithm
Local searching characteristics
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Image stitching using images captured at nonfixed camera posi-
tions would encounter the following issues with respect to any two
images, namely, (1) Resolution or scale changes due to varying
positions between camera and objects while acquiring. (2) Fore-
shortening or elongation of image formation due to orientation
changes between the two acquired images due to either camera
or object motions.

The main intention of this proposed novel method is basically to
address image stitching using images acquired with arbitrary and
unknown camera positions that would result in image stitching
challenges having varying scales, rotation and translations.

The main contribution of this paper is Holoentropy aided fea-
ture matching: Feature matching based on the holoentropy scheme
is introduced in this paper. The key points of the images to be
stitched are determined using holoentropy because of the effective
representation of nonlinear data and outlier removal characteris-
tics. The noise tolerant behaviour of holoentropy helps to over-
come the external influences on images in seamless stitching (Li
et al., 2018; Lu et al., 2018; Li et al., 2018; Li et al., 2018). This paper
further ensures image stitching under varying illumination
environment.

The rest of the paper is organized as follows. Section 2 reviews
the related works in image stitching and discusses the problems
associated with the state-of-the-art methods. Section 3 details
the proposed stitching method with required illustration and
mathematical formulations. Section 4 discusses the obtained
results and Section 5 concludes the paper.

2. Literature review

2.1. Related research

Though the enormous amount of literature exists, there are only
a few attempts that are directed to stitching images pertaining
varying illumination scenes. Zaragoza et al. (2014) developed an
estimation technique based on Moving Direct Linear Transforma-
tion to minimize the problem of ghosting without any changes in
the image stitching views. Here, Singular Value Decomposition
(SVD) method has been used to determine the closest points for
stitching. The SVD measurements suffer practical challenges such
as outliers, illumination variation and noise. Hence, secondary
methods are required to handle such issues. Also, this technique
is computation inefficient due to SVD.

Ma et al. (2015) have exploited RANSAC and Weighted average
bending algorithm for finding the optimum affine-transformations
and smoothening the intensities of the overlapping regions,
respectively. However, the hamming distance based similarity
measure adopted here explores minor deviations from its original
intensity and hence it fails to determine the precise similarity
between the images under varying illumination. Huang et al.
(2015) have determined the stitching similarities using maximum
likelihood estimation process. Despite being able to handle nonlin-
ear image intensities, the likelihood estimation process is sensitive
to initialization and number of samples. The context of chaos the-
ory has been adopted in Song et al. (2015) for determining the sim-
ilarity between the images. The chaos theory is a renowned
intelligent methodology, yet the complexity of the representation
of the image increases the computing complexity. The greedy
search adopted in Li et al. (2015) is a local search algorithm and
hence the probability of sticking with the local minima is high.

Lei et al. (2016) developed a 3D image stitching method which
is based on noise mechanism analysis. Here, correlation analysis
has been deployed to understand the dissimilarity among the
stitching images. However, the correlation analysis is prone to
chaotic noise and so misalignment often happens in the stitching
process.
Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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In 2009, Morel and Guoshen (2009) proposed Affine-SIFT
(ASIFT) image matching algorithm extends the SIFT method to a
fully affine invariant device. It has attempted to prove that mathe-
matical arguments by a new algorithm that a fully affine invariant
image matching is possible.

In 2010, Rosten et al. (2010) presented the FAST family of
detectors. In addition, they turned the simple and repeatable seg-
ment test heuristic into the FAST-9 detector that has unmatched
processing speed by machine learning. In spite of the design for
speed, the resulting detector has excellent repeatability.

In 2012, Alahi et al. (2012) proposed a novel keypoint descrip-
tor, which inspired by the human visual system and more accu-
rately the retina, termed Fast Retina Keypoint (FREAK). A cascade
of binary strings is calculated by efficiently comparing image
intensities over a retinal sampling pattern.

Table 1 comprehensively gives review outcome of the state-
of-the-art similarity measurement methodologies for image
stitching process and the critics on them in the lines of adopted
methodology. Close observing the current literature, there is less
information on the consideration of external constraints such as
varying illumination, outliers and noise, especially in image
stitching involving images captured with low light imaging cam-
era systems.
2.2. Image stitching for overlapped images but captured at nonfixed
camera positions

In this paper, we explore an image stitching process to create
a wide angle or wide area or panaorama image using multiple
overlapped images acquired using either handheld or smart-
phone camera, which is not assured to be in a fixed position
would suffer from the following two kinds of image parameters
issues:

1) Geometric image transformation feature parmeters such as
rotation, scale (resolution), translate positions may differ
from other images (consider overlapped region) would suf-
fer from unknown values that are dependent on camera
position, which may not hold fixed while imaging.

2) Photometric image transformation features such as bright-
ness, contrast, sharpness and saturation, may differ in
each image dependent on the source of illumination,
exposure, view angle variation, scattering and absorption
of media and object whose image are to be captured
would result in varying illumination effect. Further, while
imaging of any live wet tissue of the organ in biomedical
field yields images with varying contrast due to the
scattering and absorption of light or a non-uniform illumi-
nated images.
or image stitching of scenes acquired under CAMERA unknown or arbitrary
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3. Image stitching based on holoentropy aided SIFT feature
matching

In this section, a detailed discussion about the proposed
methodology is deliberated. The overall block diagram of the pro-
posed methodology is shown in Fig. 1. Initially, the images with
overlap areas are accepted as the input for the stitching procedure.
Because the noise is inevitable especially sensor noise during a low
light condition of image acquisition, the preprocessing noise
removal is adopted.

In contrast to any conventional image stitching methods, the
proposed image stitching method helps noise removal so that the
practical viabilities of the proposed method are increased. The fea-
tures of the images are vital for accurate stitching of the images.
Here, feature extraction is accomplished using SIFT, because SIFT
features are known to be invariant to a scene change, rotation,
blurring etc. in the image. The extracted features from the images
are subjected to feature matching process. The features in the over-
lapped images are matched using cost function enabled by holoen-
tropy based upon the estimated maximum holoentropy value.
Image matching follows feature matching.

The objective of image matching is to find the matching points
of the images based on maximum feature match. Using RANSAC,
the inliers between the images with compatible homography are
selected. In image matching, errors due to the concatenation of
the pairwise homographies are adjusted using the bundle adjuster.
In bundle adjustment, the sum of the squared image distance (sum
of the squared distance of two images to be stitched) is minimized
regarding the images parameter. Lastly, blending of images is done.
Fig. 1. Architecture of Image stitching based on

Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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Image blending results in a panoramic image of the overlapped
images accepted as the input.

3.1. SIFT feature extraction

The major steps involved in SIFT feature extraction (Brown and
Lowe, 2007) procedure are; (i) Scale Space Extrema detection (ii)
Key point localization (iii) Orientation Assignment and (iv) Key
point descriptor (David and Lowe, 2004). The key locations repre-
senting the SIFT features are defined as the maxima and minima
result of the difference of Gaussian function applied in scale space
to the input images. The steps evolved to ensure that the key points
are more stable for the feature matching leading to image
matching.

1. Detection of Scale-Space Extrema: The point of interest is noth-
ing but the Key points. It is effectively achieved by making use of
Gaussian difference function (DOG), since the images are con-
volved with Gaussian filters at different scales. The DOG function
increases the visibility of the edges in the images. For the input
image I with M � N number of the pixels, the scale space function
is defined as

Lm;n rð Þ ¼ Gm;n rð Þ � Im;n ð1Þ
where,m ¼ 1;2; . . . ;M; n ¼ 1;2; . . . ;N; * is the convolution func-

tion, isthevariablescaleGaussianfunction; is the variable scale Gaus-
sian function, r is the scale value and Im,n is the input image. The
difference of Gaussian (DOG) is used to detect the stable key point
as given in (2) below:

Dm;n rð Þ ¼ Lm;n Ksrð Þ � Lm;n Ktrð Þ ð2Þ
Holoentropy aided SIFT feature matching.

or image stitching of scenes acquired under CAMERA unknown or arbitrary
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where, Ksr and Ktr specifies the variation in the scale values.
The scale space feature using DOG can be computed using simple
subtraction. In order to find the local minima and maxima of
DOG, the key point is compared with the neighbors in the image.

2. Precise Key Point localization: Scale-space extrema detection
generates more number of key points. In key point localization,
the key points are selected based on the measure of their stability
(David and Lowe, 2004; Yang and Guo, 2008).

a) To eliminate key points associated with contrast:. Interpolation
is done using the Taylor series expansion of DOG as given in Eq. (3),
where, D is estimated at the candidate key point with Cm;nðrÞ as the
offset (Li et al., 2008).

D Tð Þ ¼ Dþ @DT

@T
T þ 1

2
TT @

2DT

@T2 T ð3Þ

b) To eliminate key points associated with the edge responses: DOG
function may choose the key points in the location with high edge
response (Yang and Guo, 2008). In order to overcome this effect,
the key points are selected based on stability. By finding the prin-
ciple curvature of the peaks in DOG function, the edgy responses
can be neglected. Since the edgy responses have higher principal
curvature values, it is easier to eliminate. On noting the equiva-
lence between principal curvature and Eigenvalues of the second
order Hessian Matrix, Hm that is obtained from (3) represented as:
Fig. 2. Results under normal conditions, (a) and (b) Images at different points, Stitched
pairwise Euclidean distance and (f) Holoentropy based matching.

Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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� �
ð4Þ

the key points associated with the edgy responses are excluded
based on the absolute difference value.

3. A consignment of Orientation to key points: In this step, the
local image gradient direction induced orientations are assigned
to the key points. Hence, the invariance to image rotation can be
achieved by the SIFT features (David and Lowe, 2004; Li et al.,
2008). Given a Gaussian smoothed function Lm;n rð Þ; the gradient
magnitude g and the orientation h (Fang et al., 2010) f the key point
are determined using Eqs. (5) and (6).

gm;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lmþ1;n � Lm�1;nð Þ2 þ Lm;nþ1 � Lm;n�1ð Þ2

h ir
ð5Þ

hm;n ¼ tan�1 Lm;nþ1 � Lm;n�1ð Þ; Lmþ1;n � Lm�1;nð Þ½ � ð6Þ
4. Key point descriptor vector: In the key point descriptor (Brown

et al., 2005), from the gradient magnitude and orientation values
of the key point, histograms are computed. Each histogram contains
the values from the neighborhood of the considered key points. The
values of the histograms are converted into a descriptor vector by
adding a weighted Gaussian function to the gradient magnitude
with scale equal to the length of the descriptor window. Normaliza-
tion of the descriptor vector achieves the invariance in the affine
image from methods based on (c) Euclidean distance, (d) Minkowski distance, (e)

or image stitching of scenes acquired under CAMERA unknown or arbitrary
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Table 2
Stitching performance of various methods under normal conditions.

HSGV

Similarity Measures Image 1 Image 2 Image 3 Mean Rank

Euclidean 345.71 72.276 290.23 236.072 4
Minkowski 799.51 70.19 292.6 387.4333 3
Pairwise Euclidean 813.99 77.767 276.52 389.4257 2
ASIFT (Morel and Guoshen, 2009) 339.72 89.07 346.98 267.90 7
FAST (Rosten et al., 2010) 323.80 96.56 378.09 256.32 6
FREAK (Alahi et al., 2012) 314.09 92.76 365.04 357.98 5
Chaos-inspired (Song et al., 2015) 298.98 102.43 468.12 333.43 8
Holoentropy 359.01 186.15 725.83 423.6633 1

VSGV

Similarity Measures Image 1 Image 2 Image 3 Mean Rank

Euclidean 739.21 241.88 592.94 524.6767 4
Minkowski 744.25 248.67 594.07 528.9967 3
Pairwise Euclidean 784.24 273.31 615.58 557.71 1
ASIFT (Morel and Guoshen, 2009) 645.89 214.78 456.87 342.23 5
FAST (Rosten et al., 2010) 677.93 209.67 498.90 358.87 7
FREAK (Alahi et al., 2012) 623.66 198.76 367.04 478.90 8
Chaos-inspired (Song et al., 2015) 611. 97 188.45 379.39 524.78 6
Holoentropy 751.59 220.49 694.73 555.6033 2

Fig. 3. Results under varying illumination, (a) Image without any effect of illumination and (b) Image with illumination. Stitched image from methods based on (c) Euclidean
distance, (d) Minkowski distance, (e) pairwise Euclidean distance and (f) Holoentropy based matching.
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changes and non-linear illumination effect is reduced by applying a
threshold value to the vector followed by normalization (David and
Lowe, 2004). The feature vector extracted using SIFT for the input
images I1 and I2 can be represented as and and B ¼ ai;n

� � 2 Rm2�N;

respectively,where, i ¼ 1;2; . . . ;m1; j ¼ 1;2; . . . ;m2;andn = 1,2,� � �N.

3.2. Holoentropy enabled feature matching

Commonly, some metrics mentioned in Ma et al., (2015), Hua
and Li (2010) or likelihood information is used to extract and
match the relevant image features (Lei et al., 2016; Huang et al.,
2015). But, the matching is to be performed between the features
of two images having some overlapping portions and the same
need to be continued across multiple images one after the other.
Especially, while feature matching between any corresponding to
overlapped regions that involves more than one image requires
either to perform maximization of correlation for best matches
by similarity or reduction of dissimilar wrong matches by minimiz-
ing entropy, simultaneously. Interestingly, both of them are com-
plementary to each other. Our motivation factors are to reduce
the dissimilar matches that are not belonging to the overlapped
regions, at the same time maximize similarity features belonging
to the overlapped region, which are having geometric and photo-
metric variations in the overlapped regions of the images.

In order to combine both the above-stated characteristics we
recall the holoentropy formulated by Watanabe (Ganesa Moorthy
and Nandhini Devi, 2014) and exploit this as holoentropy enabled
feature matching. The Holoentropy utilized for Image matching
includes determining the holoentropy of the features associated
with the images and selecting the feature vector element, which
has maximum holoentropy values as the best feature in the
Table 3
Stitching performance of various methods under varying illumination effect.

HSGV

Similarity measures Illumination effect Image

Euclidean 1 587.58
2 611.56

Minkowski 1 558.43
2 580.75

Pairwise Euclidean 1 532.43
2 464.17

ASIFT (Morel and Guoshen, 2009) 1 578.33
2 590.75

FAST (Rosten et al., 2010) 1 527.27
2 621.36

FREAK (Alahi et al., 2012) 1 533.44
2 413.15

Chaos-inspired (Song et al., 2015) 1 537.28
2 631.36

Holoentropy 1 1110.6
2 678.98

VSGV

Similarity measures Illumination effect Image 1

Euclidean 1 1051.7
2 1027.4

Minkowski 1 1018.7
2 1025.3

Pairwise Euclidean 1 965.78
2 504.32

ASIFT (Morel and Guoshen, 2009) 1 1011.8
2 1037.6

FAST (Rosten et al., 2010) 1 1128.6
2 1135.2

FREAK (Alahi et al., 2012) 1 923.73
2 504.34

Chaos-inspired (Song et al., 2015) 1 1052.76
2 1023.6

Holoentropy 1 984.94
2 1175.2

Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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images. Subsequently, image stitching is done using the extracted
features. Holoentropy is the summation of both the entropy and
the total correlation (Shu and Wang, 2013). The steps involved in
the holoentropy enabled feature matching are given below.

Essentially, the features with maximum H value are selected as
the optimal feature among the feature vectors of the input image.
In other words, the Holoentropy is a transformation of feature vec-
tor of the image. It provides precise information statistics of the
feature vector. Instead of finding the similarity between the feature
vectors, the proposed process finds the similarity between the fea-
ture vectors, which have increased holoentropy, which are called
as optimal feature vector. This provides more precise similarity
among the images points.

Further, entropy is generally used as a measure to detect the
unmatched features (Shu and Wang, 2013). For the entropy value
calculated over the feature vector, if the value of entropy decreases
when a feature is neglected, it specifies that feature to be
unmatched. In information theory, the entropy value aids in the
prediction of the correct value, even if the value of the attribute
is unknown. Entropy is calculated based on the chain rule, which
can be simplified as given in (7) below:

Eij ¼ �Pijlog Pij ð7Þ
where, the value of in in (7) is regarded as a ratio dependent on

both correlation and total correlation due to the individual features
are given as (10).

Pij ¼
Cij

�� ��
TCr

ð8Þ

Now, on noting the correlation between the standard feature
vectors of the images I1 and I2 as
1 Image 2 Image 3 Mean Rank

128.48 478.46 478.46 3
416.23 464.53 464.53 4
281.71 799.08 799.08 1
423.42 468.82 468.82 3
386.3 497.1 497.1 2
236.68 516 516 2
242.71 722.18 789.18 2
483.52 454.22 438.12 4
138.48 412.46 423.36 2
414.23 434.53 434.33 3
323.3 437.1 426.1 2
224.68 545.23 528.4 4
164.48 448.36 428.46 3
416.23 424.33 444.33 3
131.29 356.46 356.46 4
218.06 969.88 969.88 1

Image 2 Image 3 Mean Rank

321.51 947.18 773.4633 1
361.96 922.49 770.6167 3
294.04 885.14 732.6267 3
374.82 935.28 778.4667 2
372.11 977 771.63 2
355.09 1155.1 671.5033 4
341.21 923.28 763.42 3
331.93 932.47 761.64 1
263.16 845.24 712.63 2
326.84 934.18 722. 7 3
333.12 934.2 732. 33 3
344.19 1235.1 643.53 2
324.31 923.18 722. 33 1
361.46 924.59 799.62 4
328.83 785.82 699.8633 4
378.16 962.31 838.5567 1

or image stitching of scenes acquired under CAMERA unknown or arbitrary
es (2018), https://doi.org/10.1016/j.jksuci.2018.08.006
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Cij ¼ 1� 1
2N

d2
ij ð9Þ

and total correlation as the sum of possible correlations

TCr ¼
Xm1

i¼1

Xm2

j¼1

Cij
� � ð10Þ

where the Euclidean distance on on
using the feature sets defined as A ¼ ai;n

� � 2 Rm1�N and

B ¼ ai;n
� � 2 Rm2�N; respectively, where, i ¼ 1;2; . . . ;m1;

j ¼ 1;2; . . . ;m2; and as as
Optimizing the total correlation and joint entropy are indepen-

dent objectives, where total correlation needs to be maximized and
joint entropy needs to be minimized.

Holoentropy treats all the attributes with equal importance.
However, the real data set has different weightage. In order to
weigh the entropy relied on each attribute, reverse sigmoid func-
tion (Shu and Wang, 2013) is used. Hence, holoentropy, H is repre-
sented as (11),

H ¼ wij þ Hij ð11Þ
where, the value of Hij is the combination of the entropy value

Hij ¼ Eij þ Cij ð12Þ
and wij as:

wij ¼ 2

1þ e �Hijð Þ ð13Þ
Fig. 4. Stitching results under noisy environment. Images to be stitched (a) noise-free
distance, (d) Minkowski distance, (e) pairwise Euclidean distance and (f) Holoentropy b

Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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Note also Hij denotes holoentropy value without weighted
reverse sigmoid function.

3.3. Image matching and blending

In image matching, the images with maximum feature matches
are collected. The collected images are finally stitched into a
panoramic image. Since each image taken for reconstruction over-
laps with the other, the features may match with every possible
image. Hence, it is necessary to match the image with a small num-
ber of overlapping images so that good solution for image geome-
try can be chosen. RANSAC (Li et al., 2008) solves the purpose by
selecting the image with feature matches compatible to homogra-
phy between the images. The feature point with a correct match to
the input image (reference image) is called inlier and the feature
point without a correct match is called an outlier. RANSAC intends
to acquire a significant set of data points with the inliers by the
rejection of outliers which is achieved by a set of model parameters
(Yang and Guo, 2008). The model parameter set with higher sup-
port is considered to be the correct/compatible homography. The
inliers generated by RANSAC are verified using probabilistic model.
The probabilistic model (Li et al., 2008) compares the probabilities
of inliers or outliers generated by correct or false match. By the
application of RANSAC, image matches between the two images
are attained. The problem here is to eliminate the accumulated
error between the images. By using bundle adjuster (Brown and
Lowe, 2007), the error is minimized. In bundle adjustment, param-
eters of the homography matrix are optimized constantly, until the
residual error due to the accumulation of the image is decreased.
image and (b) noisy image. Stitched image from methods based on (c) Euclidean
ased matching.
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Image blending is the fusion/integration of the images (based
on the matched images). Image matching using RANSAC method
results in image stitching geometry, with the seam in the overlap
region (Li et al., 2008). The objective of image blending is to stitch
the images to spawn panoramic images seamlessly. For the precise
reconstruction of the images with overlap, blur, etc. into panora-
mic images, some of the techniques in addition to fusion are
endured. They are 1) Straightening 2) Gain Compensation 3)
Multi-band blending (Brown and Lowe, 2007). Straightening is a
method by which wavy effect from the output panoramas is
removed effectively. Gain compensation is the technique adapted
in image fusion to nullify the intensity error for all the overlapping
pixels. The edges in the images which are visible even after gain
compensation, parallax effect, misregistration errors etc. are
reduced by multi-band blending strategy.
4. Results and discussion

4.1. Procedure

The experimentation is carried out in a computingmachine with
Intel Core i3 Processor, 2 GB RAM and Windows operating system.
The simulation is done using theMATLABR2014a. The experimental
procedure is as follows. Initially, two images with overlap region
without having any noise or the illumination effect is given as the
input for the image stitching scheme. The proposed scheme results
in the quality panoramic imagewith less time for computation. Sec-
ondly, an image with illumination effect is given as the input and
Table 4
Stitching performance in terms of HSGV of stitched images resulted from various method

Feature Matching Noise variation Image 1

Euclidean 0.005 494.51
0.01 296
0.015 425.42
0.02 882.14
0.025 859.02

Minkowski 0.005 815.66
0.01 438.18
0.015 969.75
0.02 618.66
0.025 449.36

Pairwise Euclidean 0.005 389.2
0.01 339.08
0.015 1035.5
0.02 1061.6
0.025 434.43

ASIFT (Morel and Guoshen, 2009) 0.005 321.45
0.01 326.78
0.015 621.34
0.02 503.43
0.025 421.65

FAST (Rosten et al., 2010) 0.005 284.34
0.01 331.23
0.015 623.49
0.02 505.67
0.025 431.67

FREAK (Alahi et al., 2012) 0.005 356.78
0.01 345.89
0.015 641.34
0.02 505.56
0.025 423.56

Chaos-inspired (Song et al., 2015) 0.005 345.67
0.01 342.78
0.015 675.43
0.02 514.67
0.025 434.36

Holoentropy 0.005 387.53
0.01 365.42
0.015 757.76
0.02 529.44
0.025 440.57
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stitched into panoramic imagewithout any variation in the stitching
performance because of the illumination effect. Lastly, an image
with the noisy environment is given as the input. In experimenta-
tion, five noise variation images are used for the stitching purpose.
The resulted panoramic image is invariant to the noise effect. Two
performance metrics namely, ‘‘Horizontal Square Gradient Values”
and ‘‘Vertical Square Gradient Values” (Song et al., 2015), which
are given in Eqs. (14) and (15) respectively, are used to evaluate
the stitching performance on the stitched image.

HSGV ¼
XM
m¼1

XN
n¼1

I
_

m;nþ 1ð Þ � I
_

m;nð Þ
����

����
2

ð14Þ

VSGV ¼
XM
m¼1

XN
n¼1

I
_

mþ 1;nð Þ � I
_

m;nð Þ
����

����
2

ð15Þ

The performance of the proposed stitching system is compared
with the existing methods like squared distance (Brown and Lowe,
2007) and its variants, Minkowski and pairwise Euclidean distance.
The obtained results on the image stitching under normal condi-
tions, images with the noise and images with illumination effects
are discussed here.

4.2. Under normal conditions

Fig. 2 shows the stitching performance of multiple methods
under normal conditions. Fig. 2(a) and (b) are the images acquired
from different points and Fig (c–f) refers to the panoramic images
obtained from all the methods.
s under noisy environment.

Image 2 Image 3 Mean Rank

142.84 577.77 405.04 4
203.38 912.95 470.7767 4
295.25 681.15 467.2733 4
220.31 1283.2 795.2167 1
283.72 885.99 676.2433 1
136.34 599.57 517.19 2
148.77 902.27 496.4067 1
206.65 862.46 679.62 2
381.85 1160 720.17 2
264.17 883.57 532.3667 2
198.09 1054.3 547.1967 1
214.12 865.55 472.9167 3
226.6 799.3 687.1333 1
278.73 764.93 701.7533 3
3.6127 39.134 159.0589 4
123.54 543.34 328.65 3
132.45 708.86 367.21 2
165.43 654.32 532.12 1
254.23 934.54 543.23 4
431.76 229.54 324.54 4
129.65 543.67 324.65 2
124.56 745.54 523.43 3
170.98 734.65 532.45 4
257.89 957.86 547.80 4
439.54 229.65 378.45 1
124.87 645.67 321.78 2
132.39 762.45 390.09 3
173.23 699.02 537.72 4
254.76 976.40 548.50 2
412.98 231.42 331.45 2
129.76 675.89 325.69 4
134.67 765.54 398.7 3
178.16 765.32 543.17 1
276.43 989.76 569.98 2
435.78 234.65 345.23 3
134.12 712.64 411.43 3
171.88 898.91 478.7367 2
207.52 803.48 589.5867 3
290.82 1002.1 607.4533 4
471.42 259.99 390.66 3
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Table 5
Stitching performance of various methods under noisy environment.

Feature Matching Noise variation Image 1 Image 2 Image 3 Mean Rank

Euclidean 0.005 451.16 326.41 892.59 556.72 4
0.01 307.45 401.84 1204.8 638.03 4
0.015 487.8 330.99 1073.1 630.63 4
0.02 1008.1 431.12 1701.6 1046.94 2
0.025 765.26 517.88 869.33 717.49 3

Minkowski 0.005 791.08 314.61 975.49 693.7267 3
0.01 789.52 315.18 1194.4 766.3667 2
0.015 993.11 338.83 1122.3 818.08 3
0.02 1084.5 527.63 1544.5 1052.21 1
0.025 766.56 379.04 852.84 666.1467 4

Pairwise Euclidean 0.005 763.46 336.3 1074.3 724.6867 2
0.01 722.99 391.46 1172.6 762.35 3
0.015 980.71 411.84 1194.7 862.4167 2
0.02 1096.6 472.66 767.06 778.7733 4
0.025 447.12 7.5926 101.57 185.4275 2

ASIFT (Morel and Guoshen, 2009) 0.005 675.29 298.89 989.76 654.89 3
0.01 714.78 304.76 1006.45 455.97 3
0.015 897.87 234.56 1234.76 768.90 1
0.02 1109.7 376.89 876.98 789.56 2
0.025 897.09 456.78 265.90 456.90 4

FAST (Rosten et al., 2010) 0.005 567.89 198.78 879.09 568.94 4
0.01 678.90 289.76 998.78 389.76 3
0.015 678.98 289.67 967.89 678.90 4
0.02 987.90 278.54 765.87 654.89 1
0.025 845.67 387.90 256.86 433.21 2

FREAK (Alahi et al., 2012) 0.005 678.45 281.23 1106.7 717.89 2
0.01 698.67 303.56 988.56 756.89 3
0.015 1120.8 324.67 967.89 924.76 4
0.02 897.65 456.87 876.56 789.65 1
0.025 902.34 534.76 197.65 489.67 3

Chaos-inspired (Song et al., 2015) 0.005 654.45 276.78 1109.5 698.76 4
0.01 689.56 312.34 1198.5 675.78 4
0.015 956.78 289.67 1024.76 789.67 1
0.02 1034.7 367.98 845.67 786.34 2
0.025 897.56 489.34 254.78 463.76 3

Holoentropy 0.005 759.14 303.87 1119.1 727.37 1
0.01 755.71 317.28 1248.7 773.8967 1
0.015 1131.3 346.25 1336.6 938.05 1
0.02 1115.6 497.57 979.74 864.3033 3
0.025 914.5 540.86 275.38 576.9133 1
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The comparative evaluation specifying the HSGV and VSGV val-
ues of the proposed and conventional stitching methods such as
Euclidean, Minkowski, Pairwise Euclidean, ASIFT (Morel and
Guoshen, 2009), FAST (Rosten et al., 2010), FREAK (Alahi et al.,
2012) and Chaos-inspired (Song et al., 2015) is shown in Table 2.
The proposed method attained the maximum HSGV value of
423.6633 which is 8% higher than pairwise Euclidean distance
based stitching, and 8.5% higher than Minkowski distance based
stitching. The worst case performance of HSGV value, i.e.,
236.072 is achieved by the renowned Euclidean distance based
image stitching. The VSGV value of Minkowski distance based
stitching reached the limit of 528.6767, which is 5.2% lesser than
the maximum value, 555.6033 attained by proposed stitching.
Euclidean distance based image stitching again attains the worst
case scenario of VSGV. Hence, the proposed stitching secures the
first rank among all the four methods that illustrate the quality
maintained in the stitched images.

4.3. Under illumination variation

The panoramic image resulted in the input acceptance as the
image with the illumination effect is shown in Fig. 3. In the course
of experimentation, two illumination effects are added along with
the normal image for evaluating the seamless stitching perfor-
mance without any effect of the illumination variation. In order
to perform such investigation, one of the two images to be stitched
is subjected to high illumination condition, i.e., the white effect has
Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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been added more. The resultant stitched images from the four
stitching methods are given in Fig. 3.

In Table 3, the stitching performance of the various methods
under varying illumination effects 1 and 2 are shown in terms of
both HSGV and VSGV. Under illumination effect 1, the worst case
HSGV value of 356.46 is attained by the proposed method. Min-
kowski distance based stitching achieves the maximum value of
799.08. However, in the image stitching with the illumination
effect 2, based on the rank value estimated, it is clear that the pro-
posed method provides feasible stitching with increased HSGV
value. The maximum value attained by the proposed method with
illumination effect 2 is of 4.68% higher than pairwise Euclidean
distance based stitching, 5.17% higher than Minkowski distance
based stitching and 5.21 higher than Euclidean distance based
stitching, which is the vilest case.

The VSGV value managed by the proposed method is lesser
than the other methods under illumination effect 1. Under illu-
mination effect 2, the best VSGV value of 838.5567 is reached
by the proposed method which is 19.92% greater than the VSGV
value of pairwise Euclidean distance based stitching, 7.1% greater
than Minkowski distance based stitching and 8.1% greater than
VSGV value reached by Euclidean distance based stitching. The
increased HSGV and VSGV value obtained at the end of the pro-
posed system for the image with the varying illumination effects
proves the efficiency of the stitching invariant to the effect of
the illumination and also perseverance of the sharpness
perspective.
or image stitching of scenes acquired under CAMERA unknown or arbitrary
es (2018), https://doi.org/10.1016/j.jksuci.2018.08.006

https://doi.org/10.1016/j.jksuci.2018.08.006


Fig. 5. (a) and (b) Images captured at different camera positions, (c) Stitched image from methods based on (c) Euclidean distance, (d) Minkowski distance (e) pairwise
Euclidean distance and (f) Holoentropy based matching.

Table 6
Stitching performance of various methods.

Similarity Measures HSGV Rank VSGV Rank

Euclidean 163.74 3 399.35 2
Minkowski 162.98 4 394.26 3
Pairwise Euclidean 179.91 2 394.25 4
ASIFT (Morel and Guoshen, 2009) 154.23 5 392.32 5
FAST (Rosten et al., 2010) 145.03 6 388.23 6
FREAK (Alahi et al., 2012) 133.45 7 386.22 7
Chaos-inspired (Song et al., 2015) 123.63 8 384.23 8
Holoentropy 480.38 1 407.15 1
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4.4. Under noisy environment

Fig. 4 shows the stitched panoramic image from noisy images.
The experimentation is carried out by contaminating one of the
images to be stitched by Gaussian noise with its ratio under image
as 0.005, 0.01, 0.015, 0.02and 0.025. The stitching performance
under such five noise variations is observed in terms of HSGV
and VSGV and tabulated in IV and V, respectively.

In Table 4, when stitching is performed between the normal
image and the image with the noise level of about 0.005, the best
Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
positions. Journal of King Saud University – Computer and Information Scienc
HSGV value 547.1967 is obtained by stitching that uses Minkowski
distance as feature matching entity. At the noise variation 0.005,
the HSGV value of the proposed method is lower than Minkowski
distance based stitching but greater than the values achieved by
Euclidean distance based stitching. Under 0.01noise variant, the
proposed method has attained the HSGV value of 478.7367, which
is 1.66% greater than the HSGV value of Euclidean distance based
stitching which is the vilest case among the existing methods
taken into consideration for the experimentation. According to
Table 5, the proposed stitching has reached the maximum of VSGV
or image stitching of scenes acquired under CAMERA unknown or arbitrary
es (2018), https://doi.org/10.1016/j.jksuci.2018.08.006
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Fig. 6. Camera position at different angles.

Table 7
Stitching performance of proposed method.

Angles HoloEntropy

a b c

10 Nil nil 2558.3
10 10 Nil 1647.7
10 10 -10 1284.4
10 10 10 957.09
10 20 Nil 842.87
10 20 10 1785.8
10 30 Nil 860.92
20 Nil Nil 1129.7
20 20 10 1255
30 Nil Nil 2907.7
30 10 Nil 1647.7
30 10 10 1724.7
30 30 10 1167.7
40 Nil Nil 1500.5

Table 8
Computational complexity of the proposed and con-
ventional methods.

Similarity Measures Time (s)

Euclidean 18.5
Minkowski 15.6
Pairwise Euclidean 19.5
ASIFT (Morel and Guoshen, 2009) 25.8
FAST (Rosten et al., 2010) 22.5
FREAK (Alahi et al., 2012) 17.4
Chaos-inspired (Song et al., 2015) 18.4
Holoentropy 14.3
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values over the existing methods with multiple noise variants. For
the images to be stitched with 0.005 noise effect, the average VSGV
value obtained by the proposed method is 727.37, while the VSGV
values of Euclidean distance based stitching, Minkowski distance
based stitching and pairwise Euclidean distance based stitching
have achieved 30.65%, 4.8% and 32% lesser than the VSGV value
of the proposed method, respectively. Similarly, for the image with
an increase in the noise variation has a lesser effect on the stitched
image than other methods. The same can be observed from the
increased VSGV values of the proposed stitching over the other
stitching methods.
4.5. Under real time environment

Fig. 5 demonstrates the stitching performance of multiple
methods under typical conditions. In Fig. 5(a) and (b), the images
acquired from the camera kept at different positions and also
unknown relative distance between those specific camera
positions. In other words, the image captured at an arbitrary
position and the arbitrary relative distance between those camera
positions. In addition, Fig. 5(c–f) refers to the panoramic images
obtained from all the methods. The comparative evaluation speci-
fying HSGV and VSGV values of the proposed and conventional
Please cite this article in press as: Ane Delphin, D., et al. Holoentropy measures f
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stitching methods is shown in Table 6. The proposed method
attained the maximum HSGV value of 480.38. The worst case per-
formance of HSGV value, i.e., 162.98 is achieved by the renowned
Minkowski based image stitching. The VSGV value of Minkowski
distance based stitching reached the limit of 394.26, and the pro-
posed attained 407.15. Hence, the proposed stitching secures the
first rank among all the four methods that illustrate the quality
maintained in the stitched images. Fig. 6 demonstrates the camera
position at different angles. Table 7 summarizes the stitching per-
formance of the proposed method for different angles. Table 8
states the computational time complexity of the proposed and con-
ventional methods.

5. Conclusions

This paper presented a seamless image stitching scheme which
performs well under varying illumination conditions. The proposed
stitching scheme is based on holoentropy aided SIFT feature
matching, which overcomes stitching problem concerned with
scale, rotation and zooming effects of the images taken for stitch-
ing. The RANSAC image matching criteria is used in the proposed
system to choose the inliers and the outliers representing the dom-
inant frames with the significant visual content. The experimenta-
tion results of the proposed system are compared with the
renowned Euclidean distance based stitching, which is the tradi-
tional image stitching method, Minkowski distance based image
stitching and Pairwise distance based stitching. The performance
is computed using the horizontal and vertical square gradient val-
ues. The experimental results indicate that the proposed image
stitching scheme can handle images with noise and varying light-
ing conditions, with reduced misalignment and improved
resolution.
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