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Algorithms for separation of heart sounds from background lung sound noises are vital for accurate diag-
nosis of heart diseases. In this paper, an improved adaptive noise cancellation technique based on the
Least Mean Square (LMS) algorithm is used to separate heart sounds from lung sounds. The step size
parameter in the LMS algorithm is optimally chosen using a hybrid Nelder-Mead (H-NM) optimization
algorithm. The NM algorithm is initialized with a good initial solution by using computationally cheap
random search to compute a rough estimate of the global minimum. Initialization of the NM algorithm
with a good initial guess avoided convergence to shallow local minima and improved the quality of
the final solution. The effects of using two state-of-the-arts biologically inspired heuristic optimization
algorithms instead of the H-NM algorithm and three variants of the standard LMS algorithm are investi-
gated. The correlation coefficient between the ideal and filtered heart sound signal and running time-
complexity of different algorithms are taken as the metric for comparison of different heart sound sep-
aration approaches. Simulation results indicate that the approach presented in this paper performs sig-
nificantly better than a variety of alternate approaches on heart sound separation problems.
� 2017 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Methods for effective separation of the Heart Sound Signal
(HSS) from background lung sound noise are of great importance
in the diagnosis of cardiac diseases. The separated noise free HSS
is used in real time diagnostic applications like feature segmenta-
tion and analysis, the study of a second heart sound (S2) split [1]
and sleep parameter assessment [2]. The separated lung sound is
also used as an indicative tool for anesthetic management during
surgical procedures [3,4]. In this paper, a novel optimal Least Mean
Square (LMS) algorithm based approach for accurate separation of
the heart sound is proposed and compared with a variety of exist-
ing approaches.

Auscultation refers to the action of listening to the sounds pro-
duced by internal organs traditionally with a stethoscope [5].
Physicians use auscultation as a non-invasive method to get func-
tional information relating to internal organs like the heart, the
lung, and the gastrointestinal system. In auscultation of the heart,
besides the sounds produced from the flow of blood into and out
of the heart, and the breath sounds, there are artifacts in the form
of murmurs, gallops, and environmental noises. The HSS is the
sound produced by the flow of blood, in and out of the cardiac
structure and the movement of the cardiac structure itself. The
HSS is basically composed of two major sounds S1 and S2. S1 is
caused by ventricular contraction during the closure of the atri-
oventricular valves. S1 is the longest and loudest of the heart
sounds. S2 is due to the closure of the semilunar valves at the
end of ventricular systole. Lung Sound Signal (LSS) is produced
by turbulent air flow during respiration. Major frequency compo-
nents of the LSS lie in the range of 20 to 100 Hz [5,6]. This is also
the range in which the HSS has its main frequency components
[7]. The spectral overlap of the heart and Lung sounds makes the
HSS separation problem challenging. Moreover, HSS and LSS are
random signals and can suffer unexpected fluctuations, and also
due to the spectral overlap, the separation of the two signals can-
not be performed using any non-adaptive or time invariant linear
filter. So, the filter used should be able to adapt with such inconsis-
tencies. The word ‘‘adapt” means to adjust the filter coefficients to
cope with the fluctuations of the input signals [8]. Adaptive filters
have a self-learning ability where as traditional digital filters do
not have [9].

Yang-sheng Lu et al. [7] used adaptive filters for accurate sepa-
ration of heart and lung sounds. Hans pasterkamp et al. [10] dis-
cussed the problem of recording LSS using a stethoscope and also
d lung

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jestch.2017.02.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:nruban@vit.ac.in
http://dx.doi.org/10.1016/j.jestch.2017.02.005
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch
http://dx.doi.org/10.1016/j.jestch.2017.02.005


2 R. Nersisson, M.M. Noel / Engineering Science and Technology, an International Journal xxx (2017) xxx–xxx
suggested active noise cancellation techniques for operation in
noisy environments. Yip et al. [11] proved the reduction of heart
sound artifacts using the adaptive noise cancellation algorithms
with automatic gain control technique using experimental results.
Thato Tsalaile et al. [12] considered the separation of HSS from col-
ored noise using the Adaptive Line Enhancement (ALE) LMS algo-
rithm. This paper also addresses the issues relevant to the
optimal selection of ALE algorithm parameters. M. T Pourazad
et al. [13] proposed a time-frequency filtering technique for sepa-
ration of HSS and LSS. January Gnitecki et al. [14] presented a
detailed study of various adaptive noise cancellation algorithms
for HSS and LSS separation and indicated the importance of prop-
erly selecting adaptive filter parameters such as filter order and
the convergence rates. Foad Ghaderi et al. [15] proposed a separa-
tion approach based on the singular spectral analysis. Muhammad
Sukrisno Mardiyanto et al. [16] analyzed the frequency spectrum
of the LSS for diagnostic applications. Ruban et al. [17] reviewed
a variety of algorithms for HSS separation and concluded that
adaptive filters with some modification in the step size could
improve the quality of the separated signals. Mostafa Guda et al.
[18] explored a variety of LMS algorithm improvements for de-
noising Electro Cardio Graph (ECG) signals. An adaptive noise can-
cellation technique, where the step size is updating based on the
power of the input signal is reported by Yüksel Özbay et al. [19].

This paper is organized as follows: firstly HSS, LSS, mixed signal
and adaptive noise cancellation based schemes for separation are
discussed, secondly, an improved adaptive noise cancellation
scheme where the step size is optimally chosen using a hybrid
Nelder-Mead algorithm is proposed and finally the proposed
approach is compared with a variety of alternate approaches.

2. Heart and lung sounds

2.1. Recording sounds produced by internal organs

HSS is recorded with electronic stethoscopes and suitable data
acquisition systems. HSS is usually digitally stored in .mp3 or .
wav formats [10]. The prime location for the HSS recording is right
and left sternal margin between second and fifth intercostal spaces.

The lung sound auscultation is mostly done on upper anterior
region of the chest, mid axillary region and on the posterior basal
side [20]. The HSS is recorded near the mid-axillary line to mini-
mize LSS noise.

2.2. Heart sounds

The heart sound has multiple components such as first heart
sound (S1), second heart sound (S2), third heart sound (S3) and
murmurs Fig. 1.

2.3. Lung sounds

Breathing consists of two phases – inspiration and expiration.
Lung sounds are created when air moves through the airways (tra-
chea and bronchi). The nature of heart and lung sounds is deter-
mined by the movement of the body structures. These sounds
can be classified as tracheal, bronchial, broncho-vesicular, vesicu-
lar and adventitious sounds [20]. The types of lung sounds consid-
ered in this paper are described in Fig. 2.

a. Bronchial sounds: The bronchial sounds are mainly present
and detected over the large airways in the anterior chest
near the second and third intercostal spaces and are thus
heard above the sternum. So these sounds mostly overlap
with the HSS. These sounds are not as harsh and coarse as
tracheal breath sounds but are loud and high in pitch.
Please cite this article in press as: R. Nersisson, M.M. Noel, Hybrid Nelder-Mea
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b. Vesicular breath sounds: These sounds are heard over most
of the lung region. There is a significant overlap between the
vesicular breath sound and HSS. These sounds are high
pitched in the inspiration cycle and low pitched in the expi-
ration cycle without a gap between inspiration and expira-
tion cycles [20].

c. Adventitious lung sounds: These sounds include crackles,
pleural sounds and wheezes. Wheezing is the major sound
present with lung sounds of patients suffering from breath-
ing related problems, so the breath sound recorded with
wheezing is also considered as one of the noise signal.

In this paper four different corrupted signals are used to test the
performance of different HSS separation algorithms. Fig. 3 shows
the heart sounds contaminated with different lung sound noises.

3. Methodology

In the following section, the standard LMS algorithm and its
popular improved variants are reviewed. The design procedure
for filter parameters and the values are presented.

3.1. Adaptive algorithms

The process of active noise cancellation uses an adaptive Finite
Impulse Response (FIR) filter. The filtering is performed in two
parts – the adaptive algorithm and the digital filter.

3.1.1. The LMS algorithm
The LMS algorithm [21,22] is used to adapt the coefficients of a

FIR (Finite Impulse Response) filter based on a suitably defined
error signal to achieve noise separation from the input signals. To
obtain the pure heart sound output y(n) from the noisy input, an
estimate of the noise (lung sound) is computed using an adaptive
FIR filter. The LMS filter coefficient update rule is given in Eq. (1).

wðnþ 1Þ ¼ wðnÞ þ 2leðnÞxðnÞ ð1Þ

yðnÞ ¼ wðnÞ:xTðnÞ ð2Þ
The error signal e(n) is defined as follows:

eðnÞ ¼ dðnÞ � yðnÞ ð3Þ
where

x(n)? contaminated heart sound signal
w(n)? vector of filter coefficients
y(n)? filtered heart sound
d(n)? desired signal
m? step size

The convergence rate of the LMS algorithm depends critically on
the step size parameter m [23]. The overall scheme for separation of
the heart sound signal using the LMS algorithm is shown in Fig. 4.

3.1.2. Normalized LMS
In the conventional LMS algorithm, the noise level varies based

on the value of the step size (m), since the step size is calculated by
the Eigen value of the input vector. To solve this problem, another
approach is used in which the step size is calculated by the autocor-
relation of the input vector [24]. The filter coefficient vector w(n) is
normalized [24–27] based on the input vector in each iteration.

The step size is given by [24];

lðnÞ ¼ l0
1
N

XN�1
i¼0

x2ðn� iÞ
" #�1

¼ Nl0

XTðnÞ:XðnÞ ð4Þ
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Fig. 2. a. Bronchial lung sound; b. Vesicular lung sound; c. Lung sound with low pitch wheezing; d. Lung sound with high pitch wheezing.

Fig. 1. Ideal HSS signal with its components.
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N? number of data sample
The adaptive filter weight w(n + 1) is given by [28];

wðnþ 1Þ ¼ 1� Nl0
XðnÞ:XTðnÞ
XTðnÞ:XðnÞ

" #( )
wðnÞ þ Nl0

dðnÞ:XðnÞ
XTðnÞ:XðnÞ

" #
ð5Þ

Once the weight is updated then the Eqs. (2) and (3) are used to
find the filtered output.

3.1.3. Block LMS
In this algorithm, the input signal is divided into equal sized

blocks and the filter coefficient is updated for every block
[29,30]. The input is analyzed blockwise (the block size needs to
be specified). The gradient vector is also calculated based on the
input data block set of the current block.

wðkþ 1Þ ¼ wðkÞ þ lB

XL�1
i¼0

eðkLþ iÞXðkLþ iÞ

L
ð6Þ

The output and error vector are calculated based on the kth
block;
Please cite this article in press as: R. Nersisson, M.M. Noel, Hybrid Nelder-Mea
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XL�1
i¼0

yðkLþ iÞ ¼
XL�1
i¼0
fwðkÞ:xTðkLþ iÞg ð7Þ

eðkLþ iÞ ¼ dðkLþ iÞ � yðkLþ iÞ ð8Þ

L? length of the block
k? block index

3.2. Design parameters

The Adaptive filter parameters are:

(i) Adaptive filter length L: The order of the filter (Filter length
L) is considered to be 300 for all the LMS schemes and this
value is considered based on the length of the input signal.

(ii) The step size parameter m: The step size is calculated by the
Eigen value of the input vector given in Eq. (10).

(iii) Desired signal d(n).
(iv) Block size (only for BLMS): The block size is chosen to be close

to the length of the filter [29], the larger length makes the
converging faster but the adaptation efficiency goes down.
d search based optimal Least Mean Square algorithms for heart and lung
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Fig. 3. HSS mixed with various LSS; a. HSS mixed with bronchial lung sound; b. HSS mixed with vesicular lung sound; c. HSS mixed with low pitch wheezing; d. HSS mixed
with high pitch wheezing.
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-
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y(n)

Fig. 4. Block diagram: adaptive noise cancellation algorithm.
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3.2.1. Selection of step size
The following guidelines are considered while choosing the step

size for the adaptive filter [31].

� Small step size to ensure a small steady state error. However, a
small step size also decreases the convergence speed of the
resulting adaptive filter.
� Larger step size to improve the convergence speed of the result-
ing adaptive filter. However, a large step size might cause the
adaptive filter to become unstable.
� The larger step sizes affect the coefficients causing them to fluc-
tuate and eventually lead to instability of the filter [21].

The m is chosen for a stable filter by the following bound [21]

0 < l <
2

kmax
ð9Þ

The default step size is calculated using [21];

l ¼ 2
kmax þ kmin

����
���� ð10Þ

where kmax, and kmin are maximum and minimum Eigen values of
the autocorrelation (Acor) of input vector respectively.

Acor ¼ E½xðnÞ:xTðnÞ� ð11Þ
Please cite this article in press as: R. Nersisson, M.M. Noel, Hybrid Nelder-Mea
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The step size can be a fixed value, in that case, m will be a small
positive integer value and also the m can be time-varying with
iteration.

3.2.2. Filter parameter for the desired signal d(n)
A recursive bandpass filter is designed to get the desired signal

from the mixed input signal [32]. The filter length (order) is calcu-
lated by the scopeFIR software for the required signal noise reduc-
tion based on the input signal characteristics. The frequency
parameter, like the normalized cut-off frequency ranges are con-
sidered based on the frequency spectrum by taking Fast Fourier
Transform (FFT) analysis of the input signals [6].

4. Optimization algorithms

In this section, the theoretical back ground and the mathemat-
ical representation of proposed algorithm for the step size opti-
mization of LMS filters and two other biologically inspired
optimization algorithms which are used for the comparative study
are presented.

4.1. Hybrid Nelder-Mead algorithm (H-NM)

The efficiency of LMS filter in bio signal separation from the
noise depends highly on selection of optimal step size value. So
an optimization algorithm based on Nelder-Mead (NM) search
d search based optimal Least Mean Square algorithms for heart and lung
h.2017.02.005
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[33–35] is designed for the purpose. The NM algorithm needs an
initial set of population, which is generated by the random search
algorithm [36]. Thus a hybrid NM-based approach is derived
(Fig. 5). It runs in two stages, stage one is the random search, which
will find out the close approximation (mopt). Using the mopt as initial
Please cite this article in press as: R. Nersisson, M.M. Noel, Hybrid Nelder-Mea
sound separation, Eng. Sci. Tech., Int. J. (2017), http://dx.doi.org/10.1016/j.jestc
population, the second stage proceeds and the best possible step
size is examined. The cost function in the designed algorithm seeks
to minimize the difference in the correlation coefficient. The algo-
rithm for H-NM is given below and the Table 1 gives the nomencla-
ture for the algorithm.
d search based optimal Least Mean Square algorithms for heart and lung
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Table 1
Nomenclature.

Variable Description Standard values
[34,35]

N Number of random test points 100
MSE Mean Square Error
mopt Best possible solution for random search
n Number of variables
xc Centroid point
x0 Initial vertex (xc x0 mopt)
f Cost function
DC Deviation Coefficient
xrefl Reflected x value
a Reflection coefficient (Positive number) 1
xexp Expanded x value
c Expansion coefficient (greater than unity) 2
xCout Contracted x value (outside)
xCin Contracted x value (inside)
b Contraction coefficient (lies between 0 and 1) 0.5
S New test points after shrink operation
e Shrink coefficient (lies between 0 and 1) 0.5
cor Condition function for DC
r Standard deviation
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4.2. Genetic algorithm (GA)

Genetic algorithm (GA) is a search algorithm based on natural
selection and natural genetics. A simple GA consists of three oper-
ators [37];

Reproduction: It is the process in which individual strings are
copied according to their objective function values. The effect of
reproduction is computed by,

mðH; t þ 1Þ ¼ mðH; tÞ f ðHÞ�f ð22Þ

H? Schemata (similarity templates)
m? Number of copies of a schema H
t? time
Please cite this article in press as: R. Nersisson, M.M. Noel, Hybrid Nelder-Mea
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The average fitness of the strings representing schema is given
by;
f ðHÞ ¼

X
Si2H

f ðsiÞ

mðH; tÞ ð23Þ

The average fitness of the entire population (A) is given by;
�f ¼
X

f i=u ð24Þ
u? number of strings in the population
Crossover: In this process, the newly copied strings are mated

and each pair of strings will undergo crossing over at the uniformly
selected crossing site.

Mutation: It is the process of random alteration of the value of a
string position.

By considering all these three operators, the next generation
copies of a particular schema H is given by the following equation,
mðH; t þ 1ÞP mðH; tÞ: f ðHÞ�f 1� pc
dðHÞ
l� 1

� oðHÞpm

� �
ð25Þ

d(H)? Defining length of a schema
o(H)? order of a schema
Pc, Pm ? cross over and mutation probabilities
l? length of the string
4.3. Particle swarm optimization (PSO)

It is a population based metaheuristic approach. In PSO, the par-
ticle which is a potential solution used to move in the problem
space with the help of its own historical best experiences and with
the overall best experiences of the swarm [38].
d search based optimal Least Mean Square algorithms for heart and lung
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Table 2
Parameter settings.

GA DNL-PSO H-NM

Dimension 1 1 1
Population size 10 10 –
Number of

iteration
– – 10

Inertia factor (w) – 0.4–0.9 –
Crossover

fraction
0.8 – –

Acceleration
parameter C1 & C2

– 2 –

Stopping criteria Maximum No.
Generation (20)

Maximum No.
Generation (20)

Maximum No.
Generation (20)

 

 

 

 

 

 

 

 

Stage 2.a Stage 2.b

No 

µopt
Random 
Search

µrand

Stage 1

Reflection

Expansion
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condition 
check of 
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xbest

Nelder –Mead Algorithm
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Pure signal

Yes 

Fig. 5. Block diagram: H-NM algorithm.
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4.3.1. Dynamic neighborhood learning based particle swarm optimizer
(DNL-PSO)

It is a powerful variant of PSO; it is a single- objective optimiza-
tion problem. In which the best particle is selected from the
defined neighborhood only.
Fig. 6. Random search results for three different algorithms (only selected values are pl
sound; c. HSS mixed with low pitch wheezing; d. HSS mixed with high pitch wheezing.
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Velocity updating equation of DNL-PSO is given by [39];

Vd
i ¼ w � Vd

i þ C1 � r1 � pbestdf di � Xd
i

� �
þ C2 � r2 � ðgbestd � Xd

i Þ
ð26Þ

The position will updated by the new velocity vector using the
below equation;

Xd
i ¼ Xd

i þ Vd
i ð27Þ

Vi ? Velocity vector of the ith particle
d? Dimension of the problem
Xi ? position vector
pbesti ? personal best of the ith particle
gbest? best position of all the particle
w? inertia factor
r1 & r2 ? random numbers [0 to 1]
C1 & C2 ? acceleration parameter (approximately 2)
fi ? local best of a particle which will be followed by ith particle
otted), a. HSS mixed with bronchial Lung sound; b. HSS mixed with Vesicular lung

d search based optimal Least Mean Square algorithms for heart and lung
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Fig. 7. The function evaluation graph for the proposed H-NM search of different algorithms, a. HSS mixed with bronchial lung sound; b. HSS mixed with vesicular lung sound;
c. HSS mixed with low pitch wheezing; d. HSS mixed with high pitch wheezing.

Table 3
Convergence of the H-NM algorithm.

Algorithm Number of Iterations for
Convergence (H-NM search)

HSS with Bronchial LSS LMS 11
NLMS 4
BLMS 4

HSS with Vesicular LSS LMS 10
NLMS 4
BLMS 7

HSS with adventitious LSS
(Low pitch Wheezing)

LMS 11
NLMS 9
BLMS 3

HSS with adventitious LSS
(High pitch Wheezing)

LMS 11
NLMS 5
BLMS 11

The bold value is the lowest number of iteration in all the three algorithms.

Fig. 8. The filtered output using LMS algorithm with the optimized step size (m); a. HSS
HSS retrieved from low pitch wheezing; d. HSS retrieved from high pitch wheezing.
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The fitness function for the GA and DNL-PSO is given in the Eq.
(28). And the fitness function for the H-NM is given in Eq. (15). The
parameter selection for GA, DNL-PSO and H-NM are given in
Table 2.

f ðxÞ ¼min 1� E½ðHSS� HSSavgÞðy� yavgÞ�
rHSS:ry

� �	 

ð28Þ
5. Results and discussion

Fig. 1 shows the ideal HSS recorded without LSS interference.
The mixed signal is a combination of the HSS and the LSS as shown
in Fig. 3. The filtered outputs with the step size optimally chosen
using random search, basic NM search, and H-NM search for the
three different LMS algorithms are presented. H-NM search results
are compared with two other biologically inspired algorithms. In
the following section, the metrics of different algorithms are com-
retrieved from bronchial lung sound; b. HSS retrieved from vesicular lung sound; c.

d search based optimal Least Mean Square algorithms for heart and lung
h.2017.02.005
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Fig. 9. The filtered output using NLMS algorithm with the optimized step size (m); a. HSS retrieved from bronchial lung sound; b. HSS retrieved from vesicular lung sound; c.
HSS retrieved from low pitch wheezing; d. HSS retrieved from high pitch wheezing.

Fig. 10. The filtered output using BLMS algorithm with the optimized step size (m); a. HSS retrieved from bronchial lung sound; b. HSS retrieved from vesicular lung sound; c.
HSS retrieved from low pitch wheezing; d. HSS retrieved from high pitch wheezing.

Table 4
Filter performance assessed with correlation coefficient for NM search initialized with the default m.

Algorithm Initial m (Approximated) No. of iteration for convergence Correlation coefficient (%)

HSS with Bronchial LSS LMS 0.0758 Not converging No correlation
NLMS 0.0758 14 95.27
BLMS 0.0758 Not converging No correlation

HSS with Vesicular LSS LMS 0.126 15 94.7
NLMS 0.126 7 95.32
BLMS 0.126 Not converging No correlation

HSS with adventitious LSS (Low pitch Wheezing) LMS 0.4315 Not converging No correlation
NLMS 0.4315 5 78.17
BLMS 0.4315 Not converging No correlation

HSS with adventitious LSS (High pitch Wheezing) LMS 0.216 Not converging No correlation
NLMS 0.216 13 82
BLMS 0.216 Not converging No correlation
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Table 5
Filter performance assessed with correlation coefficient using default step size and the step size computed with different optimization algorithms including the proposed
algorithm.

Algorithm Default GA DNL-PSO H-NM algorithm

Default
m

Correlation
coefficient (%)

Correlation
coefficient (%)

Correlation
coefficient (%)

Optimal m Correlation
coefficient (%)

HSS with Bronchial LSS LMS 0.0758 No correlation 94.7 94.38 8.4e-05 94.74
NLMS 0.0758 94 95.27 95.27 0.00134 95.27
BLMS 0.0758 No correlation 94.7 94.7 8.79e-05 94.7

HSS with Vesicular LSS LMS 0.126 No correlation 94.75 94.18 6.9e-05 94.75
NLMS 0.126 93 95.3 95.32 0.0012 95.32
BLMS 0.126 No correlation 94.7 94.73 6.9e-05 94.74

HSS with adventitious LSS (Low pitch
Wheezing)

LMS 0.4315 No correlation 78.02 77.9 0.0109 78.1
NLMS 0.4315 78 78.1 76.65 0.6848 78.17
BLMS 0.4315 No correlation 77.2 77.24 8.12e-04 77.24

HSS with adventitious LSS (High pitch
Wheezing)

LMS 0.216 No correlation 79.64 79.62 0.0068 80.2
NLMS 0.216 79 82.04 81.52 0.003 82.23
BLMS 0.216 No correlation 79.51 79.5 5.34e-04 80.5

The bold values are the best possible correlation coefficient by the proposed algorithm.

Table 6
Time complexity analysis of the three algorithms.

Algorithm GA DNL-PSO H-NM algorithm

Converging time (Sec) Converging time (Sec) Converging time (Sec)

Mean Standard Deviation Mean Standard Deviation Mean Standard Deviation

HSS with Bronchial LSS LMS 118.04 6.02 363.69 11.44 37.22 0.53
NLMS 134.41 2.88 349.45 23.4 41.3 1.56
BLMS 75.5 1.37 168.73 7.755 22.09 0.41

HSS with Vesicular LSS LMS 159.19 6.39 360.14 36.1 46.6 1.43
NLMS 173.1 8.11 411.47 17.25 52.46 1.6
BLMS 92.04 2.58 211.42 18.66 26.81 0.45

HSS with adventitious LSS (Low pitch Wheezing) LMS 131.06 9.91 455.23 12.25 35.13 0.7
NLMS 131.25 5.68 490.82 26.28 46.16 3.13
BLMS 71.28 1.17 165.32 4.03 25.13 2.08

HSS with adventitious LSS (High pitch Wheezing) LMS 143.06 11.03 474.28 13.91 39.24 0.63
NLMS 144.98 2.59 454.72 49.3 45.75 0.91
BLMS 77.58 1.09 202.98 9.73 22.85 0.21

The bold values denote the lowest meantime and standard deviation among the three optimization algorithm.

Fig. 11. The running time comparison of different optimization algorithms; a. HSS mixed with bronchial lung sound; b. HSS mixed with vesicular lung sound; c. HSS mixed
with low pitch wheezing; d. HSS mixed with high pitch wheezing.
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pared based on the correlation coefficient and average running
time complexity.

5.1. Filter performance with random search

Fig. 6 depicts the performance of all the three LMS algorithms
with the random search for step size. The graph is plotted between
Random m to the MSE values for all the four input signals. The step
size (Mu or m) which results in lowest MSE is considered to be the
optimal choice (mopt).

5.2. Filtering performance with step size computed by H-NM search

The Fig. 7 depicts the function evaluation graph of the H-NM
search algorithm, where graph is plotted between the iteration
number and cost function values. The convergence of each algo-
rithm is marked in the graph. From the plot it is clear that NLMS
algorithm converges quickly than the other two algorithms.

Table 3 shows the convergence rate of each algorithm for differ-
ent input classes. It is observed from the Table 3 that; the LMS,
NLMS and BLMS algorithms converge at 11th, 4th, and 7th itera-
tions respectively. There after the convergence reaches a stable
condition in all the three algorithms.

5.3. Filtered output using LMS, NLMS and BLSM algorithms

LMS: The filtered heart sound signal (HSS) extracted from the
corrupted signal (HSS with different Lung sounds) using LMS algo-
rithm with optimal step size identified by the proposed scheme is
shown in Fig. 8. The graph is plotted between time and amplitude.
The correlation values are given in Table 5.

NLMS: The filtered heart sound signal extracted from the cor-
rupted signal (HSS with different Lung sounds) using NLMS adap-
tive algorithms is shown in Fig. 9. The graph is plotted between
time and amplitude. The correlation values are given in Table 5.

BLMS: The filtered heart sound signal extracted from the cor-
rupted signal (HSS with Normal and Adventitious LSS) using BLMS
with the optimal step size is shown in Fig. 10. The graph is plotted
between time and amplitude. The correlation values are given in
Table 5.

5.4. Discussion

The performance of different LMS filter variants on benchmark
heart sound separation problems is summarized in Tables 4 and 5.
Table 4 presents the performance of LMS filter variants with step
size computed by NM search initialized with default step size.
The results indicate that the filter does not converge for LMS and
BLMS algorithms with the NM (default step size) choice.

In Table 5 the correlation coefficients are given for four cases;
default m (without optimization), optimized m with GA, DNL-PSO
and H-NM.

Both the biologically inspired algorithms converge close to the
proposed algorithm, and the correlation coefficient is also similar
with negligible difference, but the computational complexity is
more in the case of GA and DNL-PSO which increases the time
complexity of the algorithm (Table 6 & Fig. 11).

Table 6 shows the average running time complexity of different
optimization algorithms. The mean and standard deviation for over
10 independent trials are presented. Table 6 indicates that the
average running time for GA is approximately 3 times, and DNL-
PSO is approximately 9 times that of the proposed H-NM algo-
rithm. The standard deviation is large in the case of DNL-PSO. Thus
the LMS filter with step size computed with the H-NM algorithm
presented in this paper performs significantly better in terms of
correlation coefficient with less running time compared to other
Please cite this article in press as: R. Nersisson, M.M. Noel, Hybrid Nelder-Mea
sound separation, Eng. Sci. Tech., Int. J. (2017), http://dx.doi.org/10.1016/j.jestc
biologically inspired algorithms. This is because, optimizing the
step size parameter of LMS algorithm is a simple one dimensional
problem for which computationally expensive multidimensional
optimization algorithms are inappropriate.

The Table 6 values are graphically indicated in the bar chart
given Fig. 11.

The correlation values depicted in Table 5 shows that the recov-
ered HSS from the mixed Bronchial and Vesicular LSS using the
proposed approach has an average correlation coefficient of
94.9%. Also the HSS recovered from the adventitious LSS has an
average correlation coefficient of 79.4%. Thus the approach pro-
posed in this paper significantly improves the quality of heart
sounds recovered from lung sounds and will enable more effective
diagnosis of heart issues.
6. Conclusion

This paper presented an effective method for separation of the
HSS from background lung sound noise using an improved LMS
algorithm. The step size parameter in the improved LMS algorithm
was optimally chosen using a combination of the Nelder-Mead
simplex algorithm and random search. Use of random search to
provide a good initial solution to the NM algorithm avoided con-
vergence to the nearest local minima and resulted in significant
improvement in filter performance. Simulation results indicate
that the approach presented in this paper significantly outperforms
other heart sound separation approaches in terms of correlation
with the ideal filtered output. The effect of replacing the NM algo-
rithm with more sophisticated biologically inspired algorithms
was explored. Two popular variants of the standard LMS algorithm
were also considered. The Normalized LMS algorithm with step
size optimized using the NM algorithm initialized with random
search provided the best performance among the approaches con-
sidered in terms of filtering accuracy and running time complexity.
Future work might apply the approach presented in this work for
the filtering of other biological signals.
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