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Abstract: This paper proposes the hybrid sequential quadratic programming (SQP) technique based

on active set method for identifying the optimal placement and rating of distribution generation

(DG) incorporated in radial distribution systems (RDS) for minimizing the real power loss satisfying

power balance equations and voltage limits. SQP runs quadratic programming sequentially as a

sub-program to obtain the best solution by using an active set method. In this paper, the best optimal

solution is selected with less computation time by combining the benefits of both classical and

meta-heuristic methods. SQP is a classical method that is more sensitive to initial value selection and

the evolutionary methods give approximate solution. Hence, the initial values for the SQP technique

were obtained from the meta–heuristic method of Parameter Improved Particle Swarm Optimization

(PIPSO) algorithm. The proposed hybrid PIPSO–SQP method was implemented in IEEE 33-bus RDS,

IEEE 69-bus RDS, and IEEE 118-bus RDS under different loading conditions. The results show that the

proposed method has efficient reduction in real power loss minimization through the enhancement

of the bus voltage profile.

Keywords: radial distribution systems; sequential quadratic programming; Distributed Generation;

power loss minimization; Parameter Improved Particle Swarm Optimization

1. Introduction

Distributed Generation (DG) has become more popular presently owing to its advantages, such as

reduced transmission and distribution losses, connection near the customers, improved reliability [1],

enhanced voltage stability [2], and increased efficiency. DGs are referred to as the heart of the micro

grid, which is defined as the low voltage network comprising of various micro sources and renewable

sources, storage elements, and the loads [3]. In radial distribution systems (RDS), it is stated that the

real power loss contributes more to the total loss occurred in the distribution line conductors due to

the high value of resistance/reactance ratio [4]. Hence, real power loss minimization in a distribution

system plays a vital part from commercial operations and planning conditions.

The primary motivation behind this work is to reduce the real power loss in RDS, satisfying

the power balance equation, and maintain power and voltage limits. The loss minimization can

be achieved through various methods, such as (i) Placement of DGs, (ii) Placement of capacitors,

(iii) Feeder reconfiguration [5]. In the above methods of loss minimization, DG allocation and feeder

reconfiguration could be used in low voltage networks, whereas capacitor placement could be done in

high voltage distribution network [5]. Incorporation of a DGs into the existing distribution network
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has several advantages such as loss reduction, improvement of voltage profile, increase in generation

efficiency, and reduction pollution in nature. The DGs could be placed in distribution networks at an

optimal location and with an optimum size for minimizing the loss significantly.

The excellent rating and placing of DGs are determined by many optimization algorithms that can

be categorized [6] as (i) analytical techniques (ii) conventional techniques (iii) evolutionary methods

and (iv) different techniques. Most of the techniques are implemented in the standard test systems

of IEEE 33–bus system and IEEE 69–bus system for the validation of the proposed algorithm by

considering the optimal DG placement and sizing as the primary objective function.

Eigen value-based analysis for stability analysis uses three methods, namely index method [7]

that calculates the deviation of any parameter, (mostly voltage), the sensitivity-based method that

finds the change in a variable due to the change in another variable, and point estimation method

that is based on uncertainty calculation [6] in analytical techniques. A novel analytical approach was

proposed for a balanced RDS in [3,7]. In addition to the placement and sizing, power factor and

the number of DGs are also included in the power loss determination with a simplified analytical

approach [8]. Efficient analytical (EA) method integrated with an optimal power flow was proposed

in [9] for the optimal installment of multiple DGs for reducing the power loss in distribution systems.

Sensitivity-based analysis was proposed in [10] for the connection of DG with genetic algorithm and

optimal power flow.

The following are the classical or conventional approaches used for identifying the optimal

DG rating/or placing in RDS:linear programming [6], mixed non-linear programming (MNLP) [11]

(consisting of two phases namely siting planning model for finding the candidate buses and capacity

planning model for optimal location and sizing), sequential quadratic programming with trust

region [12] method(which approximates the constraints as linear ones for reducing the optimization

scale), dynamic programming (DP) [13] for loss reduction, and reliability improvement methods.

The global criterion of multi-objective method was proposed in [14] for power loss minimization and

DG investment cost reduction with optimal sizing and sitting of DG.

Recent evolutionary methods in the literature for power loss minimization in RDS include various

naturally available bio–inspired algorithms. Intelligent water drop algorithm was used in [15] for DG

sizing with loss sensitivity factor. Ant lion optimization [16] method, which emulates the hunting

mechanism was proposed for power loss minimization in RDS by using loss sensitivity method for

optimal location and sizing of DGs. A distributed optimization technique of bacterial forging combined

with loss sensitivity factor is implemented in [17]. Multi-objective function of power loss reduction and

improvement in voltage stability index is attained by using adaptive shuffled frog-leaping algorithm

in [18]; and the results were compared with adaptive cuckoo search and shuffled frog-leaping methods.

The combining of shuffled frog leap, best features of bat algorithm, and shuffled bat algorithm [19]

was proposed for the same objective function.

Salp–swarm optimization [20] for real power loss reduction and muted salp swarm

optimization [21] for compensation of reactive power were proposed in distribution systems.

Meta–heuristic optimization techniques called salp swarm algorithm (SSA) and whale optimization

algorithm (WOA),and a new hybrid method of WOA–SSA were explored in [22] for reducing the

voltage deviation in IEEE 13 and 123 node RDS. Multi-objective optimization was attained with whale

optimization algorithm by placing real and reactive power injecting DGs in RDS [23]. Population-based

algorithm, namely invasive weed optimization algorithm is employed for cost reduction and voltage

enhancement by decreasing the losses [24]. Stud selection and cross-over is deployed in stud krill

herd algorithm for IEEE 33, 69 and 94 Portuguese RDS based on the minimum distance of the Krill

individual from food and the highest density of the herd [25].

Improved raven roosting optimization algorithm, which uses Pareto optimality and game theory

for the selection of the best solution is discussed in RDS for the same objective [26]. The symbiotic

relationship among different biological species was implemented in RDS for DG location by using

symbiotic organism search (SOS) technique [27]. The review of real power loss minimization in RDS
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with different algorithms is discussed in [28] through network reconfiguration, capacitor allocation,

DG placement and DSTATCOM allocation by keeping optimal operation and planning as key

considerations. A comprehensive study was obtained in [29] for the minimization of power loss

and the improvement of voltage stability in distribution systems through optimum DG placement.

The real power loss in RDS is in a quadratic form and it can be solved by Quadratic Programming

(QP), which is a unique variant of non-linear programming problem with an objective in quadratic

form and subjected to linear constraints. Many QP techniques were analyzed to determine the solution

for the optimal power flow problem with various objective functions, such as reduction of transmission

line real and reactive power losses, and reduction of fuel cost. QP is a significant optimization technique

for the engineering problems with quadratic objective function, and it forms as a sub-problem in

the case of SQP technique to solve the non-linearly constrained problems. Since the SQP technique

iteratively works out successive of quadratic sub-problems, it is known as recursive QP or iterative QP.

A SQP technique based on interior point (IP) method is employed for OPF problem, and thus SQP

is the most efficient method to find solutions for the power system related problems in a faster and

effective manner, when compared to other optimization techniques. Although many classical and

evolutionary methods are available in the literature to find the real power loss in radial distribution

systems, each one has its own merits and drawbacks. The real power loss equation is in a quadratic

form and the reduction of real power loss could be done iteratively by using SQP.

SQP method developed by Wilson, Han and Powell is more popular since the 1970s due to

its ability of solving non-linearly constrained optimization problems. It has been considered to

be the conceptual method rather than a single algorithm [30]. This method finds the approximate

solution for the minimization of the objective function using a sequence of quadratic programming

sub-problems [31]. The added advantage of this method is the regularization of the QP sub-problem

which has a known feasible point and usage of gradient method for the identification of QP active

set [32]. The algorithm combining active set and filter method was proposed in [33] to solve the

non-linear model assuming a few standards. An improved SQP was proposed in [34] by obtaining the

search direction combining the QP sub-problem and the system of linear equations to obtain global and

super linear convergence. A hybrid algorithm of SQP and differential evolution(DE) algorithm was

proposed in [35] by solving the optimal flow problem. Since SQP is a local optimization method and it

gives local optimum solution, it performs initially and then initial individual value from SQP is given

to the DE algorithm. Hybrid PSO and SQP algorithm was investigated in [36] for the optimization of

cluster flying orbit in spacecraft. PSO was used for finding the initial values for the SQP and SQP was

used to reduce the time with improved convergence.

In this paper, reducing the real power loss in the RDS is perceived as the main objective function,

subject to constraints, such as net power flow equations, DG power generation limits, and node

voltage limits. Conventional methods like SQP are sensitive to the selection of initial value and might

sometimes settle at the local optima value and evolutionary methods reach the approximate solution.

Hence, in this paper, PIPSO [37] is first implemented for initial point selection and for narrowing down

the selection, and SQP is then performed to get better results. This algorithm was developed by adding

DGs one by one and by finding out the maximum number of DGs to be added in RDS. In addition,

it was tested with different loadings such as light load, nominal load, and peak load conditions and

the results are compared to the basic load flow methods. An active set method of SQP algorithm

was implemented for optimum location and rating of DGs in IEEE 33–bus, IEEE 69–bus, and IEEE

118–bus distribution networks and the outcomes were compared with other methods to emphasize the

superiority of the proposed approach. The implementation of the hybrid PIPSO–SQP algorithm for

the real power loss reduction in radial distribution systems is a novel concept and has been validated

by comparing the results with other classical and evolutionary methods.
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2. Problem Formulation

Loss (PL) minimization for ‘N’ bus RDS through the integration of DGs at appropriate locations

with the optimum size is considered to be the main objective function. The power flow between the

buses ‘i’ and ‘j’ is shown in Figure 1. The loss formula can be expressed as in Equation (1) [37]:

Minimize PL =
N

∑
i=1

N

∑
j=1

[αij(PiPj + QiQj) + βij(QiPj − PiQj)] (1)

where

αij =
rij

ViVj
cos(δi − δj); (2)

βij =
rij

ViVj
sin(δi − δj); (3)

Zij = rij + xij; (4)

where PL-Power loss in kW; N-number of buses; rij, xij, Zij-resistance, reactance and impedance

respectively for the nodes i and j; Vi, Vj and δi, δj-voltage magnitudes and angles at nodes i,j

correspondingly; Pi, Pj and Qi, Qj-real and reactive power injections at nodes i and j respectively.

Figure 1. Two bus system with real and reactive power injections from DG.

Subject to the constraints:

(a) Net power flow constraints

PGi − PDi =
N

∑
i=1

ViVj[Gijcos(δi − δj) + Bijsin(δi − δj)] (5)

QGi − QDi =
N

∑
i=1

ViVj[Gijsin(δi − δj)− Bijcos(δi − δj)] (6)

where PGi, PGj and QGi, QGj-real and reactive power added by optimally placed DG at node i

and j respectively; The total installed capacity of the DGs are limited to the total demand of the

network. PDi, PDj and QDi, QDj-real and reactive demand at node i,j respectively; Pij, Pji and Qij,

Qji are the real and reactive power flows in the line i-j and j-i respectively; Gij and Bij-conductance

and susceptance of the distribution line between node i and j respectively.

(b) Generation constraints of DG
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PGmin ≤ PGi ≤ PGmax (7)

where PGmin and PGmax-minimum and maximum limits of DG generation. The maximum power

generation from DG is the total load of the system and the minimum power generation is

considered to be zero.

(c) Node voltage constraints

Vmin ≤ Vi ≤ Vmax (8)

where Vmin and Vmax-minimum and maximum node voltage limits. In this work, the voltage

limits were considered to be 1.05 per unit (p.u) maximum and 0.9 p.u minimum.

3. Sequential Quadratic Programming

Since power loss is the quadratic function of current, the SQP method was chosen for solving the

objective function by running QP as the sub-problem. The objective function in Equation (1) and the

constraints (5) to (8) are cumulatively formulated as a non-linearly constrained optimization problem

and are solved by using the SQP technique, which shows its effectiveness while solving a problem

with large nonlinearities in the constraints [38].

3.1. Quadratic Programming

QP pertaining to the optimization of linearly constrained problems with quadratic objective

function. In addition, it provides solution for sub-problems in non-linearly constrained techniques,

like SQP, augmented Lagrangian methods, and IP methods [39].

The general objective of the QP problem is represented as follows,

Minimize f (x) =
1

2
xT Hx + xTc (9)

subjected to

aT
i .x − bi = 0; i ∈ E, where i = 1, 2......me (10)

aT
i .x − bi ≤ 0; i ∈ I, where i = me + 1, 2......m (11)

where x-design vector with n parameters; f(x)-objective function, which is quadratic in nature; m-total

constraints; me, m-me are equality and inequality constraints, H-symmetric matrix of n × n Hessian;

ai, bi, c-vectors in constraints. The optimization problem stated in Equations (9)–(11) is a convex

quadratic program, if H is positive and semi definite. When H is indefinite, then the problem will be

non-convex, and it is tough to find the optimum global solution since the problem may have several

locally optimal solutions.

Sequential Quadratic Programming depends on a fundamental theoretical basis and renders

potential algorithmic rules to prevail optimum solutions in large-scale engineering problems. Typically,

the non-linearly constrained problem could be expressed as in Equation (12):

Minimize f (x) (12)

Subjected to

hi(x) = 0; f or i = 1, 2....me (13)

hi(x) ≤ 0; f or i = me + 1, ....m (14)

The Lagrangian equation for the non-linearly constrained problem mentioned from (12) to (14) can be

written as:
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Γ(x, λ) = f (x) +
m

∑
i=1

λihi(x) (15)

where ‘Γ’ is the Lagrangian function & ‘λ’ is the Lagrangian multiplier; The great advantage of SQP is

its ability to elucidate problems with non-linear limitations h(x). The assumption is that the non-linear

programming problem should contain a minimum of one non-linear constraint. SQP is modeled

as a non-linear programming through an iterative technique as mentioned in Equations (12)–(14).

This procedure is repeated for creating a sequence of solutions, which lead to a convergence with the

optimum solution x∗.

3.2. Implementation of SQP Technique

In this proposed approach, the term f(x) in the Lagrangian equation of non-linearly constrained

problem (15) represents the active power loss PL (1) and the term h(x) in Equation (15) symbolizes the

non-linear constraints as in Equations (5) and (6). Therefore, the function f(x) and the constraints h(x)

in Equation (15) can be expressed as,

Minimize f (x) PL =
N

∑
i=1

N

∑
j=1

[αij(PiPj + QiQj) + βij(QiPj − PiQj)] (16)

The design vector x for the problem described in Equations (16) and (17) comprises of the magnitude

of bus voltage V, angle δ, injected DG real power PG and injected DG reactive power QG. Let ‘nbus’ be

the number of buses in RDS and the design vector x is expressed as shown in Equation (18). subject to:

Equality constraints:

hi(x) = PGi − PDi =
N

∑
i=1

ViVj[Gijcos(δi − δj) + Bijsin(δi − δj)]; f or i = 1 to nbus (17)

QGi − QDi =
N

∑
i=1

ViVj[Gijsin(δi − δj)− Bijcos(δi − δj)]; f or i = nbus + 1 to 2 ∗ nbus (18)

Inequality constraints:

PGmin ≤ PGi ≤ PGmax (19)

Vmin ≤ Vi ≤ Vmax (20)

The maximum number of DGs to be incorporated in the RDN has been determined using the flowchart

as shown in Figure 2, in which ‘α’ is the step length parameter which can be determined by line search

method and ‘s’ is the search direction obtained from Quadratic Programming sub problem.

The design vector ‘x’ for the problem described comprises of bus voltage magnitude ‘V’,

bus voltage angle ‘δ’, injected DG real power ‘PG’ and injected DG reactive power ‘QG’. Let ‘nbus’ be

the no of buses in RDN.

The design vector ‘x’ is expressed as shown in Equation (21):

x = [V2, ....Vnbus, δ2, .....δnbus, PG1, PG2, ....PGnbus, QG1, QG2, ....QGnbus] (21)
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Figure 2. Flowchart of PIPSO–SQP optimization algorithm for power loss minimization of RDN.
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As from Equation (21), the design vector x has a size of 2*(nbus − 1) + 2*nbus. In this

study, it is considered that the radial distribution network is exclusively equipped with the real

power supporting DGs such as PV source or fuel cell. Therefore, the reactive power supported

by these sources becomes zero. Consequently, the reactive power term in Equation (21) can be

eliminated, the design vector x is written in Equation (22), and its size is reduced to 2*(nbus − 1) + nbus :

x = [V2, ....Vnbus, δ2, .....δnbus, PG1, PG2, ....PGnbus] (22)

Suppose the number of DG incorporated in a radial distribution network is limited to ‘n’ and BusDG

be the DG location vector with size n. Then PG becomes zero for all buses except the DG located buses.

PGi = 0, i = 1, 2....nbus, i 6∈ BusDG (23)

PGi = PDGj, i = 1, 2....nbus, j = 1, 2...n, i ∈ BusDG (24)

From Equation (23), the consideration of all ‘PG’ terms in design vector is not meaningful. Hence,

the final design vector ‘x’ used for active power loss minimization problem is rearranged as in

Equation (24):

x = [V2, ....Vnbus, δ2, .....δnbus, PDG1, PDG2, ....PDGn] (25)

From equations, it is clear that the dimension of the proposed real power loss minimization problem

is 2*(nbus − 1) + n. The gradient vector for the objective function f(x) is with vector length of

[nbus]*[2*(nbus − 1) + n]. Similarly, there are 2*nbus non-linear equality constraints h(x), each with

gradient vector with vector length of 2*(nbus − 1) + n. The minimum power generation from DG is

considered to be zero and the maximum is the total load in the system.

The steps involved in solving the quadratic sub-problem by using the active set method are

discussed as follows:

Step 1: Read distribution network bus data and line data. Run PIPSO to compute optimal DG location,

bus voltage magnitude V and bus voltage angle δ. Initialize PDGi randomly between PGmin and PGmax

for all DG candidate buses (i = 1 to n). Create initial feasible design vector x0 using V, δ and PDGi such

that x0 = [V2, ..., Vnbus,δ2, ..., δnbus, PDG1, ..., PDGn].

Step 2: Set the iteration counter k to be zero, i.e., k = 0.

Step 3: Form the initial active set as a subset with the constraints at the initial vector which is active.

Step 4: Articulate the QP sub-problem with the constraints.

Step 5: Find the solution for QP sub-problem by solving Karush–Kuhn–Tucker system of

linear equations.

Step 6: Repeat the above steps until the convergence criteria are satisfied by increasing the

iteration count.

Step 7: The solution of the QP is used to update the vector of voltages, phase angles and the power

using the following equation:

xk+1 = xk + αk.s (26)

where α(k) is the step length parameter that can be determined by using the line search technique.

The line search assumes an initial value for α as 1 and calculates the ‘x’ vector. The power loss

determined from the ‘x’ vector was checked with the precious value. If it is less than the previous one,

then the corresponding alpha is considered. Otherwise, the value of α is reduced to its half and it then

proceeds with the calculation of ‘x’.

The maximum generation limit of DG in RDS comes from the idea of power balance constraint in

lossless economic dispatch problem, i.e.,
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ng

∑
i=1

PGi = PD (27)

where PGi-output power of generator i, PD-total power demand and ng-number of generators in power

balance problem. Therefore, the maximum generation limit for DG in RDS is defined as:

PGmax =
N

∑
i=1

PDi (28)

The minimum generation limit for DG is taken as zero.

PGmin = 0 (29)

QP is the sub-problem of SQP and is obtained by the quadratic approximation of the Lagrangian

Equation (15), and the non-linear constraints (5) to (8) are linearized. The QP sub-problem was referred

from [39] and implemented for power loss minimization, as mentioned in the flow chart. Generally,

the classical methods tend to converge at local optima due to the improper selection of initial value

selection; hence, the parameter improved particle swarm optimization (PIPSO) method was chosen for

the initial value selection in this paper. Figure 2 illustrates the flow chart of PIPSO–SQP real power

loss minimization objective function by using QP as the sub-problem.

4. Test Case and Results Comparison

The optimal location/rating of DGs was implemented in MATLAB environment and the optimal

real power losses were performed in IEEE 33-bus, IEEE 69-bus and IEEE 118-bus RDS. The structure

of the test systems are presented in Annexure I. In this simulation study, the number of DGs to be

installed increased one by one and the maximum number was attained. Since the load demand in a

RDS is stochastic in nature, the various test cases were considered for different loading conditions,

such as lightly loaded (50% of the base load), base load and heavily loaded (160% of the base load).

The simulations were carried out for various loading conditions and the positioning of DG and

its rating varied when it was installed with one or more DGs. Thus, the different locations of DG

obtained for the same system under different loading environment were not suitable for real-time

implementation. Practically, it is necessary to attain a unique DG location in a network, and that

should suit for all loading conditions. The proposed method has been tested with various loading

conditions with inclusion of three DGs and the results are compared with the conventional load flow

methods. Both real and reactive power losses are reduced, and the minimum and maximum voltage

profile are enhanced under all loading conditions.

In this proposed work, a novel PIPSO–SQP strategy was accomplished for each distribution test

system to determine the maximum number of allowable DGs to be incorporated. This strategy was

implemented in the radial system simulation analysis with single DG and then one DG was added in

each step and iteration. The network objective function was evaluated for the addition of single DG

and the maximum numbers of DGs was then identified for each distribution system. Once the optimal

quantity of DGs was found, the optimal number of DG was fixed, and its location/rating was found

by the proposed PIPSO–SQP algorithm.

4.1. Case 1: IEEE 33-bus RDS

The total demand in IEEE 33–bus RDS is (3715 + j 2300) kVA and the base voltage is 12.66 kV.

The real and the reactive power loss of the base system are calculated as 210.84 kW and 143.12 kVAR,

respectively. The maximum number of required DGs was identified for this system by applying

the strategy mentioned in the previous section and the outcome are given in Table 1. It shows that

power losses decreased when the number of DG sources increased. The real and the reactive power

losses increased When the number of DGs was four; however, both losses were less with three DGs.
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Since the maximum power from DG was considered to be the total load, the power from each DG

varied according to the increase in the number of DGs. The power loss started to reduce after the

inclusion of three DGs. When the fourth DG was added, the power generation was shared among

four DGs and its location changed due to the lateral structure of the network. However, the loss

increased due to the difference in the power generation of the four DGs. Hence, it was inferred that

the maximum number of allowable DGs to be installed for IEEE 33-bus RDS was three.

Table 1. Results after placing multiple DGs in IEEE 33 bus system using PIPSO–SQP.

Number of DGs DG Location
DG Power

Rating in MW
Real Power
Loss in kW

Reactive Power Loss
in kVAR

Voltage Deviation
Index p.u

Simulation
Time in s

1 6 2.59 111.01 81.71 0.9237 10.22

2 13 0.84 87.17 59.77 0.6876 13.85
30 1.14

3 13 0.73 72.78 50.66 0.6302 15.91
30 1.09
24 1.07

4 24 1.25 76.50 52.89 0.6903 17.05
19 0.19
9 1.01
31 0.8

It is understood from Table 1 that the system loss reduced to 72.7853 kW when the system was

integrated with three DGs from the base loss of 210.84 kW. Figure 3 demonstrates the comparison of

voltage summary with respect to DG units.

Figure 3. Bus voltage profile comparison with the inclusion of DGs in IEEE 33-bus system.

Table 1 displays the identification of optimal location in the DG placement problem as bus

number 6 in single DG placement, buses 13 and 30 for double DG placement, and buses 13, 24, and 30

for three DG placement, along with the identification of its optimal DG rating. The voltage profile was

maintained within the allowable limits and a remarkable reduction was observed in the losses for all

test cases. A maximum loss reduction of 65.5% was achieved. Table 2 indicates the effects of power

loss in the IEEE 33-bus system under different loading conditions. It was perceived that the lowest

voltage magnitude was enhanced at all load levels by including DGs.



Sustainability 2020, 12, 5787 11 of 21

Table 2. Summary of results with different load conditions – IEEE 33 bus system –with 3 DGs–PIPSO–SQP.

Parameters
Load Flow Results

Light Load (0.5) Nominal Load (1.0) Peak Load (1.6)

Ploss in kW 48.787 210.9876 603.4308

Qloss in kVAR 33.0486 143.1284 410.2075

Vmin in pu/bus no 0.954/18 0.9038/18 0.836/18

Vmax in pu/bus no 0.9986/2 0.997/2 0.995/2

Sequential Quadratic Programming

Optimal DG location
(/size in kW)

12/445.9889 30/1053.6346 14/1062.5833

30/504.5479 24/1091.385 31/1233.5485

24/486.0889 13/801.8118 6/1645.5499

Ploss in kW 17.7977 72.7853 208.9403

Qloss in kVAR 12.3427 50.6601 145.2327

Vmin in pu/bus no 0.9824/18 0.9687/33 0.9505/18

Vmax in pu/bus no 0.9994/2 0.9988/2 0.9976/2

The smallest voltage profile at bus 18 improved from 0.836 to 0.9505 during heavy load (160%) and

the voltage improved for other loading conditions. The voltage value improved at bus 18, as shown in

Figure 4.

Figure 4. Comparison of voltage profile with the load flow and the proposed SQP at bus 18 for different

loading conditions.

The attained results were compared with other conventional and meta-heuristic methods found

in the literature as shown in Table 3. It was inferred that the PIPSO–SQP had better results in all the

cases. The minimum voltage at bus 18 was improved at light load, nominal load, and substantial

load conditions.
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Table 3. Comparison of hybrid PIPSO–SQP results with other methods for IEEE 33 bus system.

Method

Single DG Two DGs Three DGs

Bus
Number/Size
of DG, MW

Power
Loss,
kW

Bus No./Size
of DG, MW

Power
Loss,
kW

Bus
Number/Size
of DG, MW

Power
Loss,
kW

Backtracking
search [40]

8/1.8575 118.12
13/0.880,
31/ 0.924

89.34
13/0.632,
28/0.487,
31/0.550

89.05

Intelligent
Water

drop [15]
6/2.49 111.01 – –

9/0.6003,
16/0.300,
30/1.0112

85.78

Bacterial
Forging [17]

– – – –
14/0.6521,
18/0.1984,
32/1.0672

89.90

GA+PSO [41] – – – –
32/1.200,
16/0.8630,
11/0.9250

103.40

Loss
Sensitivity [42]

10/1.4 123.82 – – – –

Repeated
load flow [42]

6/2.6 111.10 – – – –

Analytical [42] 6/2.49 111.24 – – – –

Loss
Sensitivity
factor [43]

18/0.743 146.82
18/0.72
33/0.9

100.69
18/0.72
33/0.81
25/0.9

85.07

Improved
Analytical [43]

6/2.601 111.10
6/0.18

14/0.72
91.63

6/0.9
12/0.9
31/0.72

81.05

Exhaustive
Load

flow [43]
6/2.601 111.10

12/1.02
30/1.02

87.63
13/0.9
30/0.9
24/0.9

74.27

PSO [44] 6/3.151 115.29 – – – –

PIPSO [37] 6/2.59 111.02 – – – –

SQP [45] – – – –
13/0.8018
24/1.0913
30/1.0536

72.951

Proposed
PIPSO-SQP

6/2.590 111.0188
13/0.8516
30/1.1576

87.1656
30/1.0507,
24/1.0697,
13/0.8055

72.79

4.2. Case 2: IEEE 69-bus RDS

In the RDS of IEEE 69-bus, the base value of the voltage is 12.66 kV and the total load is considered

to be (3.80 + j2.69) MVA [37]. The proposed PIPSO–SQP method was employed on IEEE 69 bus system

and the power loss without DG was calculated as 224.8949 kW and 102.1155 kVAR. The optimal DG

locations and sizes are presented in Table 4. In order to find the maximum allowable DG to be located

in IEEE 69-bus system, the strategy explained in the previous section was implemented and the results

are presented in Table 4. It is perceived that both losses decreased with the increase of DGs, because the

losses were reduced when there were four DGs. Hence, the maximum number of DGs to be installed

in IEEE 69–bus RDS was three.
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Table 4. Results after placing multiple DGs in IEEE 69–bus system using PIPSO–SQP.

Number of DGs DG Location
DG Power

Rating in MW
Real Power
Loss in kW

Reactive Power
Loss in kVAR

Simulation
Time in s

1 61 1.86 81.60 40.49 25.70

2 17 0.52 70.40 35.96 34.06
61 1.77

3 61 1.77 69.16 33.04 37.13
16 0.53
49 1.07

4 28 1.14 70.61 32.53 41.33
50 0.75
15 0.50
61 1.7

The bus voltage profile of test system IEEE 69-bus is presented in Figure 5. The PL was reduced

to 70.8681 kW after the employment of DG and the minimum voltage was 0.9799 at bus 65. It can be

observed in Figure 5 that power loss considerably decreased with the inclusion of DGs, when compared

to the base case.

Figure 5. Bus voltage profile comparison with the inclusion of DGs in IEEE 69-bus system.

In Table 5, the various parameters are presented for different loading conditions. It is proved that

the voltage profile at bus 65 for the SQP improved even for different loading conditions.
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Table 5. Summary of results with different load conditions – IEEE 69 bus system –Inclusion of

3 DGs–PIPSO–SQP.

Parameters
Load Flow Results

Light Load (0.5) Nominal Load (1.0) Peak Load (1.6)

Ploss in kW 50.64 224.89 638.08

Qloss in kVAR 23.09 102.11 287.42

Vmin in pu/bus no 0.957/65 0.9105/65 0.8469/65

Vmax in pu/bus no 1.0/2, 3, 28, 36 1.0/2, 28 0.999/2, 3, 28, 36

Sequential Quadratic Programming

Optimal DG location/size in kW

24/52.6136 49/1067.92 20/553.175

1/873.58 61/1777.24 61/2814.58

16/218.796 16/533.24 11/914.49

Ploss in kW 17.2131 69.16 178.4262

Qloss in kVAR 8.6632 33.0426 89.7021

Vmin in pu/bus number 0.9894/65 0.9799/65 0.9679/65

Vmax in pu/bus number 1.0/2,3,28,29,36 1.0/2,3,28 1.0/2,28

In this bus system, the minimum voltage at bus 65 improved from 0.8469 to 0.9679 and the bus

voltage improved even for other loading conditions. In order to confirm the effectiveness of the

proposed PIPSO–SQP algorithm, the analysis was done with light load, nominal load and heavy load,

and the results were analyzed with the load flow method. The voltage profile improvement at bus 65

is shown in Figure 6.

Figure 6. Comparison of voltage profile with load flow and the proposed PIPSO–SQP at bus 65 for

different loading conditions in IEEE 69 bus system.
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The SQP results were compared with other classical and meta-heuristic methods in the literature.

It is evident from the comparison in Table 6 that the PIPSO–SQP is effective to solve the problems of

the power system.

Table 6. Comparison of PIPSO–SQP results with other methods for IEEE–69 bus RDS.

Method

Single DG Two DGs Three DGs

Bus Number
/Size of DG,

MW

Power
Loss,
kW

Bus Number.
/Size of DG,

MW

Power
Loss,
kW

Bus Number
/Size of DG,

MW

Power
Loss,
kW

Intelligent
Water

drop [15]
60/1.82 80.12 – –

17/0.2999
60/1.320
63/0.4388

73.55

Bacterial
Forging [17] – – – –

27/0.2954,
65/ 0.4476,
61/1.3451

75.238

GA with
PSO [41] – – – –

63/0.8849
61/1.1926
21/0.9105

81.1

Loss
Sensitivity [42] 61/1.9 81.33 – – – –

Repeated
load flow [42] 61/1.9 81.330 – – – –

Analytical [42] 61/1.81 81.44 – – – –

Loss
Sensitivity
factor [43]

65/1.52 109.77
65/1.44
27/0.54 98.74

65/1.36
27/0.51
61/0.51

90.84

Improved
Analytical [43] 61/1.9 81.33

61/1.7
17/0.51 70.3

61/1.7
17/0.51
11/0.34

68.38

Exhaustive
Load

flow [43]
61/1.9 81.33

61/1.7
17/0.51 70.3

61/1.7
17/0.51
11/0.34

68.38

PSO [44] 61/1.80 83.37 – – – –

PIPSO [37] 61/1.87 83.147 – – – –

Proposed
PIPSO-SQP 61/1.86 81.60

61/1.77
17/0.52 70.4

61/1.7
16/0.53
49/1.07

69.16

4.3. Case 3: IEEE 118-bus RDS

In the 118-bus RDS, 11kV is the base voltage and the total load is (22.7097 + j 17.0411) MVA.

The PIPSO–SQP method was applied in 118-bus system to identify the optimum DG locations/sizes

and the attained results are arranged in Table 7. The losses decreased as the number of DGs increased,

as observed in Table 7. In comparison to the system with two DGs, the losses increased when three DGs

were added. Therefore, it is evident that the number of allowable DGs to be connected in IEEE 118–bus

is two. The graphical representations of voltage profiles with various DGs are given in Figure 7.
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Table 7. Results after placing multiple DGs in IEEE 118 bus system using PIPSO–SQP.

Number of DGs DG Location
DG Power

Rating in MW
Real Power
Loss in kW

Reactive Power
Loss in kVAR

Simulation Time, s

1 72 2.9785 1016.8 776.152 42.0828

2 71 3.0768 809.778 660.218 51.7138
111 2.8902

3 72 1.3904 820.703 601.146 51.1177
112 4.2562
48 2.5894

Figure 7. Voltage profile comparison with the inclusion of DGs in the IEEE 118-bus RDS.

From Figure 7, it is perceived that the voltage value improves due to the inclusion of DGs. Table 8

presents the assessment of the results implemented by the proposed PIPSO–SQP method with other

methods in the literature. It was observed that the inclusion of one DG and two DGs had a reduced

power loss than the other methods. However, the power loss started increasing when three DGs were

added, which indicated that the maximum number of allowable DGs was two in this case.

Table 8. Comparison of PIPSO–SQP results with other methods for IEEE 118–bus RDS.

Method

Single DG Two DGs Three DGs

Bus Number
/Size of DG,

MW

Power
Loss,
kW

Bus Number
/Size of DG,

MW

Power
Loss,
kW

Bus Number
/Size of DG,

MW

Power
Loss,
kW

HSA-PABC
(Harmonic search
algorithm -Particle

artificial bee colony) [46]

70/3.05 1021.09 – –

80/2.6
30/6.8
47/6.4

904.38

SOS (Symbiotic
Organism

Search)
[47]

70/3.0482 1021.089 – –

70/2.3788
104/4.7958
68/1.2591

875.2687

Whale optimization
algorithm [48]

113/2.704 1092.46 – – – –

Proposed
PIPSO-SQP

72/2.9785 1016.8
71/3.0768
111/2.8902

809.778

72/1.3094
112/4.256
48/2.5894

820.703
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5. Conclusions

A hybrid PIPSO–SQP-based active power loss minimization problem is presented to identify

the optimum DG rating/location in a radial distribution power network. The presented novel active

set method provides the optimal value for real and reactive power loss minimization problems.

The analysis is highly stabilized, and it converges rapidly in the working set region through the active

set method. To reduce the local optimum settling, the initial values of voltage and angles are determined

from the evolutionary method, followed by the implementation of the classical method. The results

obtained from the PIPSO–SQP method show improved real power loss reduction, and enhanced

voltage profile with less computational time. The SQP based on the active set method can satisfy the

objective function along with the constraints from an economic and technical point of view. Thus,

the proposed hybrid algorithm can be applied similarly for large power distribution systems and for

identifying the optimum location/size of DGs.

6. Annexure

The Radial distribution network of IEEE 33 bus structure, IEEE 69 bus structure and IEEE 118 bus

structure are shown in Figures 8–10 respectively.

Figure 8. Single line diagram structure of IEEE 33 bus system.
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Figure 9. Single line diagram structure of IEEE 69 bus system.

Figure 10. Single line diagram structure of IEEE 118 bus system.
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