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The quest to develop computational drug target identification methods in complex diseases like cancer is growing
in recent years. Feedback, feed-forward loops and cross-talks observed among the MAPK pathways led to the
definition of a network of MAPK pathways and considered for single or multiple therapeutic interventions. We
developed a computational method to identify clusters of drug targets by analysing the directed network's to-
pological properties and the individual node's functional roles. We aim to identify the primary drug target nodes
possessing more cancerous properties and less number of cellular functional roles. For every primary drug targets,
we collect the alternate substrate activating nodes for local resistance analysis. Alternate substrate activation free
nodes identified as single drug target are SOS, ATF1, BAD, GAB1, LAD, NFAT4, ATF2, MEF2, eEF2K, 4EBP1 and
HSP27. Among the remaining identified nodes and their corresponding alternate substrate activating nodes with
their cancer retaining and side effects causing properties studied as three different classes-single, multiple and
dangerous targets. C-Raf1 and MAPKAP-K observed as a single efficient target due to the absence of resistance
mechanism. Due to the resistance mechanism observed among the targeted M3/6, GADD45, and MKK6 multiple
target intervention of their corresponding alternate nodes might prove to be the efficient targets. Targeted effect
on MLK3, ZAK, DLK and MLTKa/b will impair the network due to intertwined and proximity nature among
themselves.
1. Introduction

Effective therapeutic target strategy for the complex disease like
cancer challenged in recent years due to late-stage failure in clinical trials
[1]. Cancer is well known as “signaling disease”, and therapeutic inhi-
bition of signal transduction network in human malignancies is gaining
remarkable success. Intervention with the multiple drug targets is found
to be more efficient than single target strategy [2–4]. Aiming to elucidate
single/multiple targets in addicted signal transduction by a mutation in
disease network is more complicated. Side effects are caused due to loss
of functional properties of the targeted proteins. Computational ap-
proaches have attempted a systematic search of the pharmacological
inhibitors playing vital role in controlling intracellular signaling event
[5]. One such an approach is the development of an algorithm for mul-
tiple target optimal intervention (MTOI) in an arachidonic acid metabolic
network using its structure and dynamics [2]. In this work, we develop a
computational method to identify clusters of drug targets using topo-
logical and functional properties of the complex directed signaling
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network. Here, we confined to the network of MAPK pathways whose
deregulation is the cause of cancer [6].

Understanding of cancer mechanism and the search for drug targets in
MAPK pathways are dates back to 3 decades [7–9]. Disrupting the signal
transduction that abnormally regulates cell growth and programmed cell
death (apoptosis) are the therapeutic strategy. MAPK pathways uniquely
form complex network due to the cross-talks among them [10]. Upstream
and downstream of the pathways are involved in making cross-talks with
each other, and there is no cross-talk observed at the MAPK level.
Furthermore, drug resistance attained in MAPK pathways is due to the
synergistic activation of them through cross-talks [11,12]. Tackling the
problem of drug resistance in MAPK pathways [13–15] considered in
this work.

We build a “Tailored” drug target identification method for the
network of MAPK pathways by exploring topological and functional
properties. The topological structure of the network is analysed to choose
the best centrality. For instance, efficient and destructive free nodes are
isolated in a topological sense. Functional and pathological properties of
sekaran), sundaramurthy@pointcross.com (S. Pandurangan).
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Table 1
Some of the nodes observed as skipping the immediate substrate layer to activate the more
further layers.

Signal events starts from node(layer) substrate node(layer)

RTPK (layer 1) substrate GAB1, LAD (layer 4)
Cdc42, Rac, GADD45, TRAF6 (layer 2) substrate MLK2, MLK1, MLK3, MEKK4, GCK,
TAB2, TAB1(layer 4)

Cdc42, Rac (layer 2) substrate MEKK1(layer 5)
MLK2, MLK1, MLK3, MEKK4 (layer 4) substrate MKK7, MKK4 (layer 6)
TAB1(layer 4) substrate P38alpha(layer 7)
P38delta (layer 7) substrate eEF2K (layer 9)
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the nodes in a network of MAPK pathways were derived from the Gene
Ontology domain Biological Process (GO: BP) to cluster the proteins.
Aiming to collect the nodes which are having more number of cancerous
properties and less number of cellular functional roles. Causes of resis-
tance mechanism prevailed in the network of MAPK pathways are
identified and analysed to overcome them. The nodes in the clusters are
analysed to determine the drug resistance mechanism acquired through
the alternative activations of their substrates. Furthermore functional
and cancerous properties of the identified drug target nodes and their
corresponding alternate nodes are used to study the causes of retaining
cancer and side effects.

2. Results

2.1. Topology of the network of MAPK pathways

Topological properties based analysis carried out to identify the
efficient and destruction free centrality nodes as drug targets. The
Fig. 1. A) Model hierarchal network with increasing number of nodes with 2n�1 order cont
respectively. B) Network of MAPK pathways found to be hierarchical up to 6 layers, converge
respectively. Network properties reveal to be small world having network diameter 9 with ave
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network of MAPK pathways is directed network due to a chain of
activation from receptor to transcription factors (Fig. 1). We assume
the network of MAPK pathways as directed ordered network on acti-
vation time of the proteins. Directed ordered networks was first
introduced by Pavel et al. [15] in the food web network by ordered
nodes based on animal's body size. In this work, layer wise (9 layers)
analysis carried out by considering the directed order (Fig. 1). The
ains increasing number of nodes in the layers. Average in and out degrees are 1 and 2
at a 7th layer and diverges further. Average in and out degree at a 7th layer is 4.4 and 5
rage number of neighbours 4.410.



Table 2
Some of the signals observed to start from intracellular environment,
but are not from layer 1 (receptor).

Layer – nodes starting from layers

layer 2 - Cdc42, Rac and GADD45.
layer 3 - PKA
layer 5 - Mos, Tpl-2, ZAK, DLK, LZK, MLTKa/b and ASK1
layer 6 - MKP2, PAC1, MKP3, MKP4, MKP1, MKP5 and M3/6

Table 3
Layerwise average number of cancerous and functional properties of the nodes.

Layer No of nodes Average no. of
cancerous property

Average no. of functional
property

Sum

1 2 2.5 25 27.5
2 6 2.166667 25.5 27.66667
3 2 1 11 12
4 11 1.272727 11.36364 12.63636
5 14 0.785714 10.5 11.28571
6 14 1.142857 10.42857 11.57143
7 10 1.4 13.9 15.3
8 16 1.75 15.0625 16.8125
9 8 2 13.375 15.375
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topological structure of the network reveals two properties. 1- Most of
the signaling events start from the intracellular environment (Table 1),
and very few events start from receptors (RTPK and IL-1R). 2- Most of
Table 4
Top ten degree proteins and their associated GO terms.

Uniprot ID Signaling
Proteins

Out Degree In Degree Cytohubba
degree

Biological Process

P27361 ERK1 6 6 12 cell cycle, macrom
interspecies interac

P28482 ERK2 6 6 12 activation of immu
process, system pro
communication, m
biotic stimulus, an
of metabolic proces
regulation of locom
macromolecule me
interaction betwee
process, negative r
of cellular process,
structure developm
cellular process, ne
localization, establ

P45983 JNK1 6 5 11 ossification, cell m
abiotic stimulus, re
process, primary m
biological process,
structure developm
stimulus.

P53779 JNK3 6 5 11 response to stress,
regulation of biolo

O14733 MKK7 3 13 16 response to stress,
regulation of biolo

P45984 JNK2 6 5 11 response to stress,
chemical stimulus,
positive regulation
process, regulation
developmental pro

P45985 MKK4 5 13 18 response to stress,
regulation of biolo

Q15759 P38beta 9 4 13 response to stress,
regulation of biolo

Q16539 P38alpha 9 5 14 regulation of immu
multicellular organ
anatomical structu
process, regulation
process, cellular m
positive regulation
anatomical structu
regulation of devel
process, regulation
stimulus.
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the nodes skip activation of substrates in the next layer and activates
the nodes in subsequent layers(Table 2). Due to the above two prop-
erties, betweenness centrality [16] may not isolate the efficient nodes.
We use in and out-degree centrality in understanding the topology of
the network layerwise (Fig. 1A). The number of nodes, average in and
out degree found to be increasing and decreasing simultaneously.
Furthermore, we also observed the network as a hierarchical tree up to
6th layer, converges at the 7th layer and diverges further(Fig. 1B).
Highest average in and out degrees of the nodes found in a 7th layer
with 4.4 and 5 respectively. Targeted effect on this layer will be
destructive to the network topology due to their high degree nature
[17]. After thorough analysis, we set the criteria of less than or equal
to degree 3 (both in and out degree) for the nodes to define a cluster of
destruction free nodes.

We checked our network's directed core/periphery structures like a
bow-tie, which claimed as the cause of attaining network robustness
[18]. Our network is far from forming the core/periphery network
structures due to the presence of very few complete subgraphs (e.g.,
3-cliques).
2.2. Classification of cancer and other functions of the nodes

Gene Ontology: biological process (GO: BP) based protein functional
annotation is used to evaluate the relationship among the nodes in the
olecule metabolic process, cellular metabolic process, primary metabolic process,
tion between organisms, regulation of biological process, regulation of cellular process.
ne response, regulation of immune system process, positive regulation of immune system
cess, nitrogen compound metabolic process, transport, response to stress, cell cycle, cell
ulticellular organismal development, behavior, response to external stimulus, response to
atomical structure morphogenesis, response to endogenous stimulus, positive regulation
s, regulation of metabolic process, regulation of localization, macromolecule localization,
otion, positive regulation of locomotion, response to chemical stimulus, taxis,
tabolic process, cellular metabolic process, primary metabolic process, interspecies
n organisms, establishment of protein localization, positive regulation of biological
egulation of biological process, positive regulation of cellular process, negative regulation
regulation of response to stimulus, positive regulation of response to stimulus, anatomical
ent, regulation of biological process, regulation of developmental process, regulation of
gative regulation of developmental process, establishment of localization, cellular
ishment of localization in cell, response to other organism, cellular response to stimulus.
otion, response to stress, multicellular organismal development, cell death, response to
sponse to chemical stimulus, macromolecule metabolic process, cellular metabolic
etabolic process, positive regulation of biological process, negative regulation of
positive regulation of cellular process, negative regulation of cellular process, anatomical
ent, regulation of biological process, regulation of cellular process, cellular response to

macromolecule metabolic process, cellular metabolic process, primary metabolic process,
gical process, regulation of cellular process, cellular response to stimulus.
macromolecule metabolic process, cellular metabolic process, primary metabolic process,
gical process, regulation of cellular process, cellular response to stimulus.
positive regulation of metabolic process, regulation of metabolic process, response to
macromolecule metabolic process, cellular metabolic process, primary metabolic process,
of biological process, positive regulation of cellular process, regulation of biological
of developmental process, regulation of cellular process, positive regulation of
cess, cellular response to stimulus.
macromolecule metabolic process, cellular metabolic process, primary metabolic process,
gical process, regulation of cellular process, cellular response to stimulus.
macromolecule metabolic process, cellular metabolic process, primary metabolic process,
gical process, regulation of cellular process.
ne system process, alcohol metabolic process, cell motion, response to stress,
ismal development,behavior, response to external stimulus, response to biotic stimulus,
re morphogenesis, positive regulation of metabolic process, regulation of metabolic
of homeostatic process, response to chemical stimulus, taxis,macromolecule metabolic
etabolic process, primary metabolic process, positive regulation of biological process,
of cellular process, anatomical structure formation involved in morphogenesis,
re development, cellular developmental process, regulation of biological process,
opmental process, regulation of cellular process, positive regulation of developmental
of multicellular organismal process, response to other organism, cellular response to



V.K. MD Aksam et al. Informatics in Medicine Unlocked 9 (2017) 86–92
network of MAPK pathways. GO: BP annotations assigned to each of the
nodes. In general, GO: BP representing protein functional annotation is
used to evaluate the relationship between the sets of proteins [19]. we
classify cancer-related and other functional GO: BP separately by using
DAVID database level-2 for GO: BP annotations. The annotations like
response to stress, cell proliferation, and response to chemical stimulus,
regulation of growth, cell death, cell division and regulation of anti-
apoptosis (0–6) are the key GO: BP contributing to cancerous pro-
cesses. The other 75 processes (7–81) include different biological pro-
cesses listed in Supp. Table - 1. The 83 nodes in the network assigned
with 82 distinct GO: BP annotations and an adjacency matrix[Aij] con-
structed with elements 0 or 1.
½Aij� ¼
�

1 for the nodes which has a cancer and functional attributes specific GO:BP
0 for the nodes which doesn' t have a cancer and functional attributes specific GO:BP
Cluster-based drug target identification strategy aims to find the
nodes with fewer cellular functional properties and more cancerous
properties and by the ratio between them. Nine layers of the network are
analysed to find the distribution of the proportion of GO: BP in each layer
to determine the strategy for clustering. Average cellular functional and
cancerous processes are calculated for nodes in the each layer (Table 3).
In Layer 1, receptors RTPK and IL-1R possess various cellular functions
and cancerous properties 25 and 2.5 respectively on an average.
Molecularly targeting the intracellular elements than targeting receptor
would cause fewer side effects [36]. Layer 2 with six nodes possess 2
average cancerous properties and 25 cellular functional processes.
Average cancerous and functional properties of the nodes in layers 3, 4, 5
(around 1 cancerous and 11 functional properties). Nodes in the layers 7,
8 and 9 possess 13, 15 and 13 average cellular functions, and 1.4, 1.7 and
2 average cancerous properties respectively(Table 3). We set three ratios
1:5, 1:6 and 1:7 to obtain three clusters with cancerous and other
Fig. 2. Flow chart of the clustering procedure. The sum over cancerous attributes given in GO: B
In and out degree cut-off fixed as 3 due to simultaneous degree change in each layer of the netw
and 3 respectively. 83 nodes in the network of MAPK pathways clustered with 10, 5 and 5 no
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functional attributes. Inhibition of nodes in a cluster possessing more
cellular functional process would cause various side effects. Trade off
between cancerous and other functional properties while identifying
drug target is significant to eliminate or reduce side effects. In Table 3,
Layerwise average number of cancerous and functional properties of the
nodes reveals minimum value at level 5 as 0.785 and 10.5 respectively.
So, we set nearest cut-off value as 1:5, 1:6 and 1:7. For instance in the
cluster with the ratio 1:7, inhibiting node with one cancerous activity can
target 7 cellular functional properties. The loss of those functional
properties would contribute to the side effects which can be taken care by
the alternative drugs. The nodes in the cluster with 1:5 ratios of cancer
and other functional properties would be the preferable drug targets.
Furthermore, Top ten degree proteins and their associated GO terms
enlisted to understand the distribution (Table 4).

2.3. Topological and functional attributes based cluster identification

Integration of topological and functional attributes of the nodes in the
network used for cluster identification. We set a cut-off in & out degree -
3, cancerous and other functional attributes ratio- 1: 5/1: 6/1:7. Cut-off
values set by analysing 9 layers of nodes, the minimum average ratio
observed between cancer and other functional attributes as 1:7. Cluster 1,
2, 3 contains the potential drug targets with the ratio of one cancerous
attributes to 5, 6, 7 biological processes respectively. The topological
parameter fixed with in & out degree and the functional parameter
describing the three clusters can be involved fewer side effects. Flow
chart, algorithm and the obtained cluster of nodes enlisted (Fig. 2) and
supp. Table 2. The adjacency matrix [Aij] entries (0 or 1) summed over
P up to i¼ 1 to 7 is stored in C[i] for the node i and other cellular functions summed as S[i].
ork. Along with functional attributes ratio of 1:5, 1:6 and 1:7 are the criteria to cluster 1, 2
des in cluster 1, 2 and 3 respectively.



Table 5
Single and multiple targets identified in the network of MAPK pathways.

Protein Alternative protein Single/multi-drug target

c-Raf1 Mos single
A-Raf single
B-Raf single
Tpl-2 single

M3/6 MKP5 Multi
MKP2 Multi

GADD45 Cdc42 Multi
Rac Multi

MLK3 MEKK1 –

MEKK2 –

MEKK3 –

MEKK4 –

ASK1 –

MLK1 –

MLK2 –

LZK –

DLK –

ZAK –

MLTKa/b –

TAK1 –

MLTKa/b MEKK1 –

MEKK2 –

MEKK3 –

MEKK4 –

ASK1 –

MLK1 –

MLK2 –

LZK –

DLK –

ZAK –

MLK3 –

TAK1 –

ZAK MEKK1 –

MEKK2 –

MEKK3 –

MEKK4 –

ASK1 –

MLK1 –

MLK2 –

LZK –

DLK –

MLTKa/b –

MLK3 –

TAK1 –

DLK MEKK1 –

MEKK2 –

MEKK3 –

MEKK4 –

ASK1 –

MLK1 –

MLK2 –

LZK –

MLTKa/b –

ZAK –

MLK3 –

TAK1 –

MKK6 MKK3 Multi
MAPKAP-K3 MAPKAP-K2 single

V.K. MD Aksam et al. Informatics in Medicine Unlocked 9 (2017) 86–92
cancerous attributes as C[i] where i ¼ 0 to 6 and for the other cellular
functions summed as S[i] where i ¼ 7 to 81. Out of 83 nodes in the
network, 10, 5 and 5 nodes are clustered in the clusters 1, 2 and 3
respectively, and other nodes remain unclustered (Fig. 2).

2.4. Local resistance analysis

The nodes in the clusters are analysed to study the drug resistance
mechanism acquired through the alternate activation of them by other
proteins. The nodes free from the alternate activation mechanism pro-
posed to target by single target approach, and the other alternatively
activated nodes can be targeted by combination therapy to avoid the
resistance factors. Computational and experimental studies on the ver-
satile MAPK pathways studied due to complex feedback/feed-forward
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and cross-talk regulations on multiple timescales [20]. Multiple
concomitant activations and the overlapping cross-talks between the
pathways are the key mechanisms to attain resistance [21]. Furthermore,
the resistance acquired due to epigenetic and genetic aberrations can be
re-enabled by inhibiting the nodes in the MAPK pathways [22,23].
Switching mechanism from B-RAF to C-RAF are the key observed
mechanism [24], which leads to the local analysis of the alternate
switching proteins. Nodes in the upstream and downstream of the
pathways are involved in making cross-talks, and there is no cross-talk
observed at the MAPK level [25].

Twenty nodes in the cluster 1, 2 and 3 looked for their alternate
activating substrate nodes. SOS, ATF1, BAD, GAB1, LAD, NFAT4, ATF2,
MEF2, eEF2K, 4EBP1 and HSP27 are the nodes without any alternate
activating nodes and can treat as a single target. c-Raf1, M3/6, GADD45,
MLK3, ZAK, DLK, MLTKa/b, MKK6 and MAPKAP-K3 identify as the nine
nodes with their alternate activating proteins(Table 5). Identified node's
substrate activating other proteins elucidated to observe the procession
of similar GO: BP annotations, which could retain the cancerous mech-
anism or cause side effects if targeted (Supp. Table-1). We classified six
sub-cases to consider them as single/multiple targets due to their sub-
strate activating roles(Fig. 3). Case 1- if targeting the nodes in the iden-
tified clusters, alternate activating nodes would retain the cancerous
mechanism. Case 2- we can treat the cluster nodes which lack cancer
causing alternate activating nodes as drug targets. Case 3- targeting only
the alternate activating nodes which contribute more to the cancer
mechanism than the nodes in the clusters. Case 4 – Alternate activating
nodes would retain the functional properties while targeting the identi-
fied cluster nodes. Case5 - targeted cluster nodes which cause loss of
functions. Case 6 – targeted alternate activating nodes which cause loss of
functions. The cases 4, 5 and 6 can be used to predict the side effects
caused due to the inhibition of functional process. We develop an algo-
rithm to count the attributes falling in each of the cases to classify the
nodes either as single or multiple targets (supp. algorithm 1).

2.5. Efficiency of single or multiple target solution

Eleven single target nodes SOS, ATF1, BAD, GAB1, LAD, NFAT4, ATF2,
MEF2, eEF2K, 4EBP1 and HSP27 side effects are checked in Dr.PRODIS
Database [28]. ATF1 is found tohave chronic side effects like - heart disease
(C0018799), Psychiatric Disorders (C0004936), Nervous SystemDisorders
(C0027765) and all the other nodes are free from such chronic side effects.

While looking for multi-target strategy, alternate activating nodes
also to be targeted along with the primary targets (cluster nodes) as they
help to retain cancer mechanism (Fig. 3). Nine nodes c-Raf1, M3/6,
GADD45, MLK3, ZAK, DLK, MLTKa/b, MKK6 and MAPKAP-K3 which
poses alternatively activated pairs further analysed to considered as
either single or multiple targets (Table 5). The GO: BP attributes fall
under the above mentioned 6 cases counted to interpret whether the
targeted nodes retain cancerous properties or causing side effects(Supp.
Table 2). While targeting the B-RAF, the signaling flow from B-RAF is
taken care by its alternate node C-RAF [3]. The above study leads to the
local resistance analysis among the alternative switching proteins. For
instance, c-Raf1 considered as the primary target, and its alternate acti-
vating nodes are Mos, A-Raf, B-Raf and Tpl-2. As per case 1 and case 3
based local resistance analysis, cancerous attributes of c-Raf1 are not
found in its alternate activation nodes Mos, A-Raf, B-Raf and Tpl-2. Based
on the case 2 analysis, the cancerous attributes 1-cell proliferation and 4-
cell death are found in primary target c-raf1, and no such attributes
possessed by alternate nodes. Inhibition of c-raf1 will be an effective drug
target due to case 2 and loss of functional attributes like 36-regulation of
biological process, 37-regulation of cellular process, 53-organelle orga-
nisation are collected in case5. Identified single target c-raf1 inhibition
proved to be efficient in melanomas and targeting their overlapping
feedback mechanism also perceived [29].

Deregulation of phosphatases results in progression and also phos-
phatases act as tumour suppressor [30,31]. Identified target node M3/6



Fig. 3. Local resistance analysis in the network of MAPK pathways. Primary target c-Raf1 with its alternate activating nodes Mos, A-Raf, B-Raf and Tpl-2 highlighted for local resistance
analysis. Six cases of cancerous and other functional properties of primary and alternate target shown in Table.
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is a dual specific phosphatase for JNK and p38 controlling the phos-
phorylation mechanism. MKP2 and MKP5 are the other two phospha-
tases alternately act along with M3/6. Local analysis on a pair of M3/6
and MKP5 shows 0- response to stress and 2- response to chemical
stimulus in case 2,3 respectively. Multiple targets can be a better strategy
due to inhibition of the pair M3/6 and MKP5. The other pair M3/6 and
MKP2 showed 2- response to chemical stimulus in case 1 (retaining
cancer). Multiple target strategy elucidated by this approach and cross
complex regulatory role played by phosphatases are observed [32].

GADD45 is a node controlling p38 pathway, and their role has been
found in cancer [33,34]. The alternate activating nodes of GADD45 are
Cdc42 and Rac. GADD45 paired with Cdc42 would retain cancerous
properties 0- response to stress and 4- cell death. Targeting them implies to
10 functional attributes of GO: BP collected in case 4. However, targeting
Cdc42 alone leads to the gain of 28 attributes collected in case-6 that may
cause serious side effects. Targeting the other alternate node Rac leads to
sameproperties 0- response to stress and 4- cell death as in case-2. GADD45
paired with Cdc42 and Rac as multiple targets would cause more side ef-
fects. Both theRac andCdc42are found to play a role in cancermechanism,
and their inhibition strategy discussed in the literature [35–37].

MLK3, MLTK a/b, ZAK and DLK are the clustered drug targets in
MAPKKK level with proximity among themselves. All the nodes have
similar 12 alternate activation nodes and among themselves in combi-
nation (Table 5). All the nodes along with their alternate nodes consid-
ered as multiple targets and their proximity made them wrong targets.

MKK3 and MKK6 are the nodes at the MAPKK level confined to p38
pathway observed to be multiple targets by local analysis. Multiple tar-
gets MKK3 and MKK6 are proved to be efficient in lung, head and neck
cancers [38,39]. Further MAPKAP-K3 is found to be a single efficient
target with alternate activating node MAPKAP-K2. Mammalian MAP-
KAP's are found to be regulating cell cycle and targeting them in cancer
has been perceived [26].

3. Conclusions

We have developed a computational framework for a primary drug
target identification strategy by exploring topological and functional
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features of the network of MAPK pathways. Furthermore, local resistance
analysis is done to elucidate alternate cancer retaining nodes to be
inhibited by multiple target approach. Those single or multiple targets
are aimed to restore the deregulated network functions to normal con-
dition. Mechanism-based system level analysis was carried out to over-
come the resistance mechanism acquired due to the alternate substrate
activating nodes. More proximal and side effects causing targets avoided
by employing this method. Similar work can be done to analyse the
complete network of signaling pathways regulating cancer mechanism.
GO-based cellular component and molecular functional properties of the
nodes used for further analysis. Also, available open source data can be
used to study specific cancer types.

4. Methods

A network of MAPK pathways constructed using individual ERK1/2,
ERK5, JNK, and p38 pathways curated by science STKE [40]. We
considered a network of MAPK pathways as the directed ordered network
on activation time. Definition of directed ordered networks was introduced
by Pavel et al. [15] in the food web by ordering nodes among each other
on animal's body size. Which defines ordered network as a graph having
nodes and edges constituted through ordered set. For instance, a distinct
pair of nodes i, j either ordered as i < j or j < i and follow transitive
relation. The orientation of ordered nodes in the network is defined as
directed ordered network.

Network centrality measure used in this work based on in-degree and
out-degree concept. Individual node roles defined by representing the
number of receiving signals and outgoing signals as in and out degree
respectively. In and out-degree centrality measure are used by others in
various networks to identify the most influential nodes [27].

Gene Ontology: biological process (GO: BP) [6] annotations assigned
to all the nodes in the network of MAPK pathways.

Furthermore,weclassify cancer-relatedGO:BPandother functionalGO:
BP separately and used DAVID database level 2 annotations [41]. Level 2
keeps up great coverage and additionally giving significant term specificity.
We obtain 82GO:BP annotations for 83 nodes (Matrix order[Aij] - 83� 82).

An adjacency matrix[Aij] is formed with 0 or 1.



½Aij� ¼
�

1 for the nodes which has a cancer and functional attributes specific GO:BP
0 for the nodes which doesn' t have a cancer and functional attributes specific GO:BP
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The algorithm for primary target identification is implemented using
Python code. Also, local resistance analysis is coded separately as a
module. Python code is added to the github (https://github.com/
mdaksamvk/drug-target-identification-clustering-and-local-
resistance-analysis).
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