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Abstract
Human lemur tyrosine kinase-3 (LMTK3) is primarily involved in regulation of estrogen receptor–α (ERα) by phosphoryla-
tion activity. LMTK3 acts as key biomarker for ERα positive breast cancer and identified as novel drug target for breast cancer. 
Due to the absence of experimental reports, the computational approach has been followed to screen LMTK3 inhibitors from 
natural product curcumin derivatives based on rational inhibitor design. The initial virtual screening and re-docking resulted 
in identification of top three leads with favorable binding energy and strong interactions in critical residues of ATP-binding 
cavity. ADME prediction confirmed the pharmacological activity of the leads with various properties. The stability and 
binding affinity of leads were well refined in dynamic system from 25 ns MD simulations. The behavior of protein motion 
towards closure of ATP-binding cavity was evaluated based on eigenvectors by PCA. In addition, MM/PBSA calculations also 
confirmed the relative binding free energy of LMTK3–lead complexes in favor of the effective binding. From our study, novel 
LMTK3 inhibitors tetrahydrocurcumin, curcumin 4,4′-diacetate, and demethoxycurcumin have been proposed with inhibition 
mechanism. Further experimental evaluation on reported lead candidates might prove its role in breast cancer therapeutics.

Keywords LMTK3 · Virtual screening · Molecular dynamics simulation · Principal component analysis · Free energy 
calculation

Introduction

The human hormone estrogen plays a vital role in breast 
cancer growth and cell development (Labrie et al. 1999). 
Estrogen receptors (ERs) are the specific hormone receptor 
of estrogen found to be express more in two-thirds of tumor 
cells compared to normal breast cells (Robinson et al. 2000). 
Among types of breast cancer, the estrogen receptor-α (ERα) 
positive breast cancers are very common in metastatic stage 
of breast cancer (Stebbing et al. 2011). The development of 
endocrine resistance in human is the major bottleneck for 
the treatment of ERα positive breast cancer. In case of ERα 

positive breast cancer, the protein kinase enzymes are found 
to be novel drug target to overcome the endocrine resistance. 
Moreover, the kinase inhibitors that target protein kinase 
enzymes are considered as effective therapeutic agents for 
breast cancer (Giamas et al. 2007).

Human lemur tyrosine kinase-3 (LMTK3) is identified 
as novel drug target for breast cancer with extensive screen-
ing of human genes involved in ERα positive breast cancer. 
LMTK3 belongs to protein group of serine/threonine/tyros-
ine kinases family (Robinson et al. 2000). The primary func-
tion of LMTK3 is the regulation of human ERα by phospho-
rylation activity in breast cancer. The key process of LMTK3 
exon sequence change between human and chimpanzees 
confirmed the major reason for susceptibility of humans to 
ERα positive breast cancer (Stebbing et al. 2012). In addi-
tion, LMTK3 also identified as new potential biomarker for 
ERα positive breast cancer with positive selection compared 
with chimpanzee ortholog (Giamas et al. 2011). Due to the 
critical role of LMTK3 in breast cancer, the design of poten-
tial inhibitors against LMTK3 can downregulate mRNA 
expression of ERα and can be successful in breast cancer 
treatment in modern era (Johnson and O’Malley, 2011).
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Curcumin, a potential anti-cancer agent, found to be more 
effective in prevention and treatment of various cancers. 
Basically, curcumin belongs to class of polyphenol com-
pounds derived from the South Asian herb turmeric belongs 
to Curcuma longa (Creighton et al. 2003). The herb C. longa 
contains curcuminoids that comprised of curcumin, demeth-
oxycurcumin, and bisdemethoxycurcumin (Jurenka 2009). 
In Ayurvedic medicine, curcumin is widely used for vari-
ous treatment aspects due to the therapeutic properties like 
anti-oxidant, anti-septic, analgesic, anti-malarial, and anti-
inflammatory (Aggarwal et al. 2007). The human carcino-
mas like melanoma, head and neck, breast, colon, pancreatic, 
prostate, and ovarian cancers are effectively inhibited by cur-
cumin (Wilkenet al. 2011). The key mechanism of inhibitory 
effects of curcumin compounds against human cancers is by 
the regulation of biochemical cascades, various transcrip-
tion factors, growth factors, inflammatory cytokines, protein 
kinases, and other enzymes (Lin 2007).

Materials and methods

Data set

The three-dimensional structural model of LMTK3 kinase 
domain (PMDB identifier: PM0078692) reported in our 
previous study (Anbarasu and Jayanthi 2014) was used as 
protein target for the inhibitor design. The critical binding 
of ATP and active residues involved in the binding cavity 
with LMTK3 was used as target region. Based on rational 
design, 50 curcumin derivatives were selected as ligand data 
set and structures retrieved from PubChem database in SDF 
format. The format conversion of ligands from SDF to PDB 
format was performed using E-BABEL tool in VCCLAB 
server (Tetko et al. 2005).

Virtual screening

The initial virtual screening (VS) on the data set was manu-
ally done by Lipinski’s Rule of Five filter (Lipinski et al. 
1997). Lipinski’s Rule of Five was mainly evaluated the 
pharmacological properties of the ligands that ensure the 
oral active drugs. The properties include Molecular weight 
(mw) less than 500 daltons, logP (octanol–water partition 
coefficient) less than 5, hydrogen bond acceptors less than 
10, and hydrogen bond donors less than 5. After filtering, 
further virtual screening using molecular docking proce-
dures was carried out for the screened curcumin deriva-
tives. The software AutoDock Vina (Trott and Olson 2010) 
in PyMOL plugin (Seeliger and de Groot 2010) was used 
for the identification of hits from the given ligand data set. 
The input of both protein and ligands was saved in PDB 
format and used for the docking procedures. To have large 

search space for the docking, the volume of the grid box was 
fixed to 27,000 Å. The docking grid box was constructed 
with center x = 0.04, y = 2.45, z = 1.26, size 60 × 60 × 60 Å, 
and spacing 0.375 Å that target the ATP-binding cavity 
of LMTK3. The molecular docking run was set to 100 for 
effective screening and more specificity. The scoring func-
tion of AutoDock Vina was categorized by binding affinity 
expressed in kcal/mol and ligands with least binding affinity 
were identified as top hit compounds.

Molecular docking

The re-docking on hits was performed in software AutoDock 
4.2 (Morris et al. 1998) in PyMOL plugin for the identi-
fication of lead candidates. All the non-polar hydrogens 
were merged and water molecules were removed. For the 
molecular docking, the same grid parameters were used as 
in Vina. Using the genetic algorithm, 100 possible binding 
conformations were generated in AutoDock. A default pro-
tocol was applied in genetic algorithm, with population size 
of 150 randomly placed individuals; maximum number of 
2.5 × 105 energy evaluations, maximum number of 2.7 × 104 
generations, gene mutation rate of 0.02, and crossover rate 
of 0.8 were used. The visualization of molecular docking 
results was done by  LigPlot+ for both hydrophobic interac-
tions and hydrogen bond interactions (Laskowski and Swin-
dells 2011).

ADME prediction

To check the pharmacological activity, ADME predictions 
were carried out for the ligands using QikProp 4.5 mod-
ule (Schrödinger 2015-3). The pharmacological param-
eters like Human Oral Absorption, QPPMDCK, QPPCaco, 
QPlogHER, and QPlogBB were predicted for the analysis. 
Human oral absorption descriptor predicted the qualitative 
of oral absorption. QPPMDCK descriptor predicted the 
apparent MDCK cell permeability in nm/s. MDCK cells are 
considered to be a good mimic for the blood brain barrier. 
QPPCaco descriptor predicted apparent Caco-2 cell perme-
ability in nm/s. Caco-2 cells predicted a model for the gut-
blood barrier. QPlogHER descriptor predicted IC50 value 
for blockage of HERG K+ channels. QPlogBB descriptor 
predicted the brain/blood partition coefficient.

Molecular dynamics (MD) simulations

MD simulations were performed in GROMACS 4.5 (Ber-
endsen et al. 1995) for refinement of binding affinity, analysis 
the stability of the complex, and evaluate the conformational 
changes in LMTK3 after ligand binding. The best binding 
conformation of all three lead complexes from the AutoDock 
results was used as input for the MD simulations. The force 
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field GROMOS96 43a1 (Lindahl et al. 2001) was used for 
all simulations and the energy minimization of LMTK3 com-
plex was performed with steepest algorithm. Initially, the 
topology of ligands from the docked complex was generated 
using PRODRG server (Schüttelkopf and van Aalten 2004) 
and partial charges were added for the ligand preparation. 
After topology generation, the solvation of complex was per-
formed in a dynamic system with cubic box size 1.0 nm and 
distance between periodic images with minimum of 2.0 nm. 
The specific water model spc216 was used for the aqueous 
environment in the dynamic system. The system was energy 
minimized by steepest descent minimization with emstep of 
0.01, emtol of 1000, and steps 100 ps. The Verlet–leap-frog 
algorithm was used in numerical integration with a 1.0 fs time 
step length for minimization and 2.0 fs for dynamics. The neu-
tralization of the system was done by adding six chlorine ions 
and periodic boundary conditions were applied in all direc-
tions. LMTK3–ligand complex was well equilibrated by initial 
simulations in two phases, namely, NVT and NPT. In case of 
NVT, the complex was simulated at 300 K and with a coupling 
constant of 0.1 ps for duration 100 ps using leap-frog integra-
tor. The cut-off range for short electrostatic and van der waals 
interactions was set to 14 Å for both. All bond lengths and 
hydrogen bonds of the protein were constrained by LINCS 
algorithm (Hess et al. 1996) and geometry of water molecules 
was constrained by SETTLE algorithm (Miyamoto and Koll-
man 1992). After NVT, the complex equilibrated with constant 
pressure of 1 bar was employed with a coupling constant of 
5 ps with steps 100 ps using leap-frog integrator. Particle Mesh 
Ewald (PME) for long-range electrostatics interactions was set 
with order 4 and 0.16 fourier spacing. The temperature was set 
by V-rescale, a modified Berendsen thermostat with reference 
temperature of 300 K in time constant and Parrinello-Rah-
man barostat with 1 bar pressure for equilibration ensembles. 
Finally, the production MD run was performed for duration 
25 ns and all MD trajectories were analyzed.

Principal component analysis (PCA)

Principal component analysis (PCA) or essential dynamics 
was one of the advance methods in MD simulations. PCA 
was more specific in elucidate the functional relevant motions 
of protein by the combination of local fluctuations and collec-
tive motions. The protocol (Amadei et al. 1993) was used for 
construction of PCA with the extraction of concerted motion 
from all trajectories using Cα atoms. The PCA method was 
based on the construction of covariance matrix with elements 
Cij for coordinates i and j:

where x1,…, x3N—mass-weighted Cartesian coordi-
nates of an N-particle system and <>—average over all 

Cij = ⟨
�
xi − ⟨ xi ⟩

� �
xj − ⟨ xj ⟩

�
⟩,

instantaneous structures sampled during the simulations. 
The symmetric 3 × 3 N matrix C was then process with 
diagonalization of an orthonormal transformation matrix R:

where k1 ≥ k2 ≥ ≥k3N—eigenvalues and RT—transpose 
of R. The eigenvalue was the key property of covariance 
matrix and consists of energetic contribution of all motion. 
Eigenvectors were used in evaluation of direction of atomic 
motion in conformational phase. The eigenvector that con-
tains largest eigenvalue was called as “principal compo-
nent”. The PCA plot constructed by plotting eigenvectors 
(eigenvectors 1 and 2 or PCA1 vs PCA2) showed the maxi-
mum motion of protein.

The trajectories of LMTK3 complexes were retrieved 
and analyzed using Gromacs utilities: g_energy to evaluate 
the various energy contributions in dynamic system, g_rms 
to analyze the structural deviation through RMSD plot, g_
hbond to evaluate inter-hydrogen bond interactions between 
two groups by NH plot, g_gyrate to identify the compact-
ness of protein during folding–unfolding states through Rg 
plot, g_sas to evaluate the surface area of the protein acces-
sible to solvent by SASA plot, and, finally, PCA plot to find 
overall motion of protein by g_covar and g_anaeig utilities. 
All plots from MD trajectories were plotted using Xmgrace 
tool (Turner 2005).

Binding free energy calculation: MM/PBSA

The relative binding free energy protein–ligand complex 
was calculated by g_mmpbsa gromacs utility (Kumari 
et  al. 2014). Molecular mechanics Poisson–Boltzmann 
surface area (MM-PBSA) calculations from the Gromacs 
and APBS packages (Baker et al. 2001) were adopted. The 
binding energy consists of three energetic terms potential 
energy in vacuum, polar solvation energy, and non-polar sol-
vation energy. Full description of the MM/PBSA protocol 
was followed from the web page (http://rashm ikuma ri.githu 
b.io/g_mmpbs a/). From 25 ns simulations, each trajectory 
saved at 2 ps frame subjected for the binding free energies 
that have been calculated from electrostatic, polar salvation, 
and SASA energies. The default parameters were used in all 
instances.

Results and discussion

Currently, many protein kinases act as potential drug tar-
gets for breast cancer and most of the successful drugs 
were belongs to kinase inhibition. Especially, ATP-bind-
ing cavity was the common target site for the various 
classes of kinase inhibitors. In this present study, we 
focused on identification of potent LMTK3 inhibitors 

RTCR = diag
(
k2,.........k3N

)
,

http://rashmikumari.github.io/g_mmpbsa/
http://rashmikumari.github.io/g_mmpbsa/
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(lead candidates) using curcumin derivatives based on 
rational inhibitor design. The feasible binding mecha-
nism of curcumin derivatives with LMTK3 was evalu-
ated by structure-based virtual screening. We used three-
dimensional structural model of human LMTK3 domain 
characterized with functional kinase domains contains 
ATP-binding cavity (Supp Fig. 1). In case of LMTK3 
kinase activity, ATP-binding cavity in a specific cavity 
between the hinge of ‘N’ terminal domain and ‘C’ ter-
minal domain was critical for the region of ERα phos-
phorylation. In deep structural level, our previous study 
reported the ATP-binding cavity and key residues Tyr185 
and Asp284 involved in binding were target region for 
inhibitor design.

The currently available 50 curcumin derivatives were 
retrieved from PubChem database and filtered using 
Lipinski’s Rule of Five. Based on the properties of drug 
likeness, 12 curcumin derivatives were filtered out from 
50 derivatives for virtual screening (Table 1) and 2D 
chemical structures were shown (Fig. 1). The molecular 
weight of the screened derivatives in range of 300–400 g/
mol and log P in range of 3–4 confirmed the favorable 
oral activity. The H-bond donor in the range of 1–4 and 
H-bond acceptor in range of 4–8 confirmed the binding 
affinity of ligands. Mainly, the basic skeleton of curcumin 
derivatives contains phenol aromatic rings connected by 
unsaturated carbonyl groups that characterized the ligand 
function for potential binding. Thus, the active functional 
groups in curcumin were more critical in case of virtual 
screening and molecular docking against ATP-binding 
cavity of LMTK3.

Virtual screening

From virtual screening, the results showed that curcumin 
derivatives docked well with LMTK3. The best binding 
affinity was observed in hit CID 124072 of − 7.8 kcal/mol 
and lower binding affinity in CID 11947775 of − 4.6 kcal/
mol confirmed the changes in binding due to ligand atom 
interactions with LMTK3. The top four ligands CID 124072, 
CID 6441419, CID 2889, and CID 5469424 were chosen as 
hits with binding affinity more than − 7 kcal/mol confirmed 
the potential binding (Table 2). Hence, the virtual screening 
method was more useful in identifying the top hits from the 
curcumin ligand data set.

Molecular docking

After hit identification, re-docking on the same was per-
formed for identification of potential lead candidates with 
binding pose in AutoDock. With the result of docking run, 
100 conformations for each hits were generated and binding 
mode with least binding energy was selected as best confor-
mation. The post-docking analysis was evaluated by parame-
ters like favorable energy, low inhibition constant, and weak 
interactions involved between protein/ligand complexes. The 
energy terms including binding energy, final intermolecu-
lar energy, electrostatic energy, and van der Waals energy 
showed the energy contribution for the favorable docked 
complex. In LMTK3–ligand complex, weak interactions 
such as hydrogen bond interactions and hydrophobic inter-
actions play a critical role in ligand recognition and protein 
stability after ligand binding.

Fig. 1  2D Chemical structure 
of screened curcumin deriva-
tives obtained from PubChem 
database
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From post-docking analysis (Table 3), three hits CID 
124072, CID 6441419, and CID 5469424 showed the 
favorable binding energy with range − 6 to − 7 kcal/mol that 
showed the effective docked complex. The binding energy 
was more reasonable for the changes induced and subsequent 
rearrangements in protein after ligand binding. Moreover, 
the effective interaction was further supported by energies 
like final intermolecular energy, electrostatic energy, and 
van der Waals energy. From the energy analysis, the LMTK3 
inhibition by curcumin hits was mostly by non-polar forces 
contribution. Besides energy terms, inhibition constant of 
three hits showed less than 8 µM, supported the docking 
results, and confirmed the significance of inhibition.

The hydrogen bond and hydrophobic interactions of 
LMTK3–CID 124072 complex were evaluated using 
 LigPlot+. The results showed three hydrogen bonds 
between the protein and ligand atoms. The interaction 
residues including Asn261, Lys137, and Ser265 involved 
in active LMTK3 inhibition. The binding pose of hit CID 
124072 clearly suggested the effective inhibition compete 
with ATP molecule. The hydrogen bond interaction pattern 
evaluated by atom ‘O’ of Asn261 interact with atom ‘O3’ 
of ligand, atom ‘N’ of Ser265 interact with atom ‘O4’ of 
ligand, and atom ‘NE’ of Lys137 interact with atom ‘O6’ 
of ligand. The hydrophobic interactions were analyzed for 
LMTK3–CID 124072 complex, six hydrophobic interac-
tions were observed, and residues Glu181, Tyr262, Val263, 
His264, Asp284, and Phe322 involved in interaction. Espe-
cially, key residue Asp284 involved in both hydrogen bond 
and hydrophobic interactions in CID 124072 which clearly 
showed its role in stability of the complex (Fig. 2a).

In case of LMTK3–CID 6441419 complex, the results 
showed three hydrogen bonds between the protein and Ta
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Table 2  Virtual screening results of curcumin derivatives against 
ATP-binding cavity of human LMTK3 from AutoDock Vina

The top hits were highlighted in bold

Compound Binding affinity (kcal/
mol)

Conformation

CID 969516 − 6.4 34
CID 5315472 − 6.4 41
CID 5469424 − 7.2 55
CID 6441419 − 7.6 41
CID 2889 − 7.3 72
CID 53464495 − 6.3 25
CID 5469426 − 6.7 63
CID 5469425 − 6.9 18
CID 124072 − 7.8 51
CID 11947775 − 4.6 78
CID 6477182 − 6.6 22
CID 53442582 − 6.4 42
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ligand atoms. The interaction residues include Arg270 
and Tyr185. The hydrogen bond interaction pattern was 
evaluated by atom ‘N’ of Tyr185 interact with atom ‘O3’ 
of ligand, atom ‘N’ of Tyr185 interact with atom ‘O2’ of 
ligand, and atom ‘NE’ of Arg270 interact with atom ‘O1’ 
of ligand. In addition, the complex was observed with 13 

hydrophobic interactions and residues Gln137, Glu138, 
Ile139, Leu149, Leu194, Phe212, Asp217, Arg220, Asn271, 
Gly283, Asp284, Gly286, and Leu287 involved in interac-
tion (Fig. 2b).

In case of LMTK3–CID 5469424 complex, the results 
showed that one hydrogen bond interaction includes Arg270. 

Table 3  Molecular docking results of top curcumin hits from AutoDock and analyzed in  LigPlot+

Compound Binding 
energy (kcal/
mol)

Inhibition 
constant 
(µM)

Final intermolecu-
lar energy (kcal/
mol)

Electrostatic 
energy (kcal/
mol)

vdW + Hbond + des-
olv energy (kcal/
mol)

Hydro-
gen 
bonds

Residues involved

CID 124072 − 7.41 3.72 − 9.66 − 0.28 − 9.38 3 Asn261, Lys137, Ser265
CID 6441419 − 7.19 5.40 − 9.72 − 0.19 − 9.53 3 Arg270, Tyr185(2)
CID 5469424 − 6.93 7.39 − 9.71 − 0.27 − 9.44 1 Arg270

Fig. 2  Hydrogen bond interactions and hydrophobic interactions of 
top three lead complexes were visualized in  LigPlot+. a CID 124072 
complex, b CID 6441419 complex, c CID 5469424 complex. Color 

representation: hydrophobic interactions in red color arc and hydro-
gen bonds showed in green color dots
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The hydrogen bond interaction pattern was evaluated by 
atom ‘NE’ of Arg270 interact with atom ‘O1’ of ligand. In 
addition, the complex was observed with 13 hydrophobic 
interactions were observed and residues Ile139, Gly140, 
Ser141, Tyr185, Leu194, Asn271, Cys272, Leu273, Glu283, 
Asp284, Ala288, Ser290, and Asn291 involved in the inter-
action (Fig. 2c). Thus, hit compounds CID 124072, CID 
6441419, and CID 5469424 were identified as novel lead 
candidates (lead1, lead2, and lead3, respectively) with potent 
LMTK3 inhibition. The impact of weak interactions in the 

strong inhibition mechanism was well defined between 
LMTK3 and lead candidates.

ADME prediction

ADME properties inspected using QIKPROP 4.5 were ana-
lyzed and listed (Table 4). Human oral absorption was high 
with value 3. QPPMDCK was great with more than 500 with 
permeability to MDCK cells. QPPCaco was great with 500 
with permeability to Caco cells. QPlogHER was less than 
− 5 with permeability to HER. QPlogBB was with range of 
in range of − 3.0 to 1.2 that cross blood brain barrier. Thus, 
docking and ADME predictions confirmed the three lead 
molecules as good inhibitors for LMTK3.

Molecular dynamics simulations

After virtual screening and docking analysis, the bind-
ing affinity and stability of the lead candidates were fur-
ther investigated using molecular dynamics simulations 
with respect to nanosecond scales. MD simulation method 
mainly considers the receptor flexibility which not involved 
in molecular docking module. In addition, MD simulation 
was more powerful technique near to experimental studies 

Table 4  ADME predictions of curcumin leads in QikProp (Schrod-
inger)

Human oral absorption: 1-low, 2-medium and 3 for high; QPPM-
DCK: < 25 poor, > 500 great; QPPCaco: < 25 poor, > 500 great; 
QPlogHER: concern below − 5; QPlogBB: − 3.0 to 1.2

Properties CID 124072 CID 6441419 CID 5469424

Human oral absorption 3 3 3
QPPMDCK 546.903 711.846 684.179
QPPCaco 525.729 1400.266 794.27
QPlogHER − 8.975 − 9.412 − 6.385
QPlogBB − 1.004 − 0.47 − 2.008

Fig. 3  Group properties of 
LMTK3–lead complexes from 
MD trajectories a RMSD of 
protein backbone atoms, b 
RMSD of ligand atoms. Color 
representation: LMTK3–CID 
124072 complex in black, 
LMTK3–CID 6441419 complex 
in red, and LMTK3–CID 
5469424 complex in blue
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for the investigation of protein–ligand complex. From 25 ns 
production MD run, the analysis was evaluated by group 
properties like total energy, RMSD, Rg, SASA, inter-hydro-
gen bond interactions, and advance properties like PCA and 
MM/PBSA free energy calculations using trajectory files.

The total energy was calculated for the three lead com-
plexes that evaluated the protein stability after lead binding. 
The total energy of complexes was − 489578, − 489617, 
and − 467522 kJ/mol, respectively, which showed the sta-
ble conformation with LMTK3. The comparison of total 
energy reported that both complexes possessed the favorable 
energy during the complex formation in the dynamic sys-
tem. In addition, other energies like potential energy, kinetic 
energy, average Coul-SR, and average LJ-SR energies were 
evaluated and supported the stable energy contributions in 
LMTK3 (Supp Table 1).

Root mean square deviation (RMSD) was evaluated for 
the convergence of the protein structure towards an equilib-
rium state after lead binding. From protein RMSD plot based 
on backbone atoms, lead1 complex showed until 5 ns that 
the structure was equilibrated well and started to converge 
with RMSD range near to 0.3 nm. The RMSD value of lead1 
complex was less and clearly explained the less structural 
deviation after ligand binding. From the RMSD plot of lead2 
complex, the structure was equilibrated until 6 ns and then 

started to converge near to 0.4 nm. From the RMSD plot of 
lead3 complex, the structure was equilibrated until 5 ns and 
then started to converge near to 0.5 nm. In comparison with 
protein RMSD from our previous study, the results showed 
the high structural deviation until 12 ns due to conforma-
tional change after ligand binding and after that the structure 
started to obtain the stability with less structural deviation at 
end of 25 ns simulation. After ligand binding, the structural 
deviation of lead2 and lead3 complex was little higher when 
compared to lead1 complex (Fig. 3a).

From ligand RMSD plot, lead1 complex showed less 
structural change in ligand structure with RMSD 0.2 nm 
throughout the simulations which supported the binding 
affinity. In lead2 complex, the ligand structure showed some 
change in deviation until 10 ns 0.2–0.3 nm explained the 
small change in conformation of complex. In lead3 complex, 
the ligand structure showed some change in deviation until 
10 ns 0.1–0.2 nm explained the small change in conforma-
tion of complex (Fig. 3b). Thus, the favorable energy and 
proper convergence of LMTK3 structure after ligand binding 
explained the stable complex formation.

Radius of gyration (Rg) was evaluated the changes in 
complex compactness which measures the mass of atoms 
relative to the center of mass of the complex. From our pre-
vious study, Rg plot of the LMTK3 apo state was retrieved 

Fig. 4  a Radius of gyration 
(Rg) plot, b Solvent accessible 
surface area (SASA) plot. Color 
representation LMTK3 in black, 
LMTK3–CID 124072 complex 
in red, LMTK3–CID 6441419 
complex in green, and LMTK3–
CID 5469424 complex in blue
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and Rg was near to 1.9 nm showed the native structure with 
defined compactness. In case of lead1 complex, the results 
showed Rg value near to 1.85 nm showed the slight decrease 
in compactness of the structure compared to LMTK3 in apo 
state. In case of lead2 complex, the results showed Rg value 
near to 1.9 nm showed the compactness was near to native 
LMTK3. In case of lead3 complex, the results showed Rg 
value near to 1.88 nm showed that the compactness was 
near to native LMTK3 (Fig. 4a). In comparison with Rg 
plots, very less change in compactness of protein observed 
during the complex formation. Solvent accessible surface 
area (SASA) was the property of protein, where the region 
is accessible to solvent. From SASA plot, lead1 com-
plex showed value of 70–80 nm2, lead2 complex showed 
75–80 nm2, and lead3 complex showed that 78–85 nm2 
confirmed the appropriate change in SASA due to ligand 
binding (Fig. 4b). In comparison with LMTK3 in apo state 
SASA plot from our previous study, the solvent accessibility 
in the protein was decreased due to ligand binding and thus 
favored hydrophobicity related to close of binding cavity.

Inter-hydrogen bond interactions between protein and 
ligands were evaluated for the LMTK3–lead complexes. In 

case of lead1 complex, NH plot results showed that range 
of four-to-six hydrogen bond interactions was observed 
throughout 25 ns simulation and maximum of eight hydro-
gen bonds (Fig. 5a). NH analysis confirmed strong inhibition 
of LMTK3 by lead1 in dynamic system as same as docking 
results inferred with six hydrogen bonds. In case of lead2 
complex, the results showed with range three-to-four hydro-
gen bond interactions were found throughout 25 ns simula-
tion and maximum of six hydrogen bonds as same as dock-
ing results (Fig. 5b). In case of lead3 complex, the results 
showed with range one-to-three hydrogen bond interactions 
were found throughout 25 ns simulation and maximum of 
three hydrogen bonds (Fig. 5c). The inter-hydrogen bond 
interaction pattern suggested the plausible mode of strong 
binding of lead candidates with LMTK3 favored the inhibi-
tion mechanism. Thus, the group properties like total energy, 
RMSD, Rg, SASA, and inter-hydrogen bonds of lead com-
plexes suggested the refined potent binding with LMTK3. 
Overall, the property analysis showed that lead1 complex 
showed better refined binding than other two complexes in 
the dynamic system.

Fig. 5  Inter-hydrogen bond interactions. a LMTK3–CID 124072 complex, b LMTK3–CID 6441419 complex, and c LMTK3–CID 5469424 
complex
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Fig. 6  PCA plot constructed by eigenvector 1 vs eigenvector 2. a 
LMTK3, b LMTK3–CID 124072 complex, c LMTK3–CID 6441419 
complex, d LMTK3–CID 5469424 complex, and e combination of 

LMTK3 and its lead complexes. Color representation LMTK3 in 
black, LMTK3–CID 124072 complex in red, LMTK3–CID 6441419 
complex in green, and LMTK3–CID 5469424 complex in blue

Table 5  Binding free energy 
results from MM/PBSA 
calculations. All energies 
represented in kJ/mol

Energies CID 124072 CID 6441419 CID 5469424

Polar energies Electrostatic − 98.352 − 84.778 − 96.331
Polar solvation 220.185 206.011 218.366

Non-polar energies van der Waal − 244.230 − 251.165 − 240.121
SASA − 19.329 − 21.523 − 14.672
Binding energy − 141.727 − 151.455 − 132.758
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Principal component analysis

The impact of overall motion of protein due to lead bind-
ing was analyzed by principal component analysis (PCA) 
using construction of eigenvectors. From our previous study, 
PCA of LMTK3 in apo state was used for the comparison 
of overall motion in conformational space (Fig. 6a). The 
corresponding covariance trace value of LMTK3 in apo 
state was 8.32235 nm2. In case of complexes, the covari-
ance trace values of lead1, lead2, and lead3 complexes were 
7.61036 nm2, 4.62685  nm2, and 9.2788 nm2, respectively. 
The effect of lead1 binding results in slight change in over-
all motion of LMTK3 with clusters extended in conforma-
tional space when compared to PCA plot of LMTK3 in apo 
state (Fig. 6b). The effect of lead2 binding results in sig-
nificant change in overall motion of LMTK3 with clusters 
compressed in conformational space (Fig. 6c). The effect of 
lead3 binding results in significant change in overall motion 
of LMTK3 with clusters extended in conformational space 
(Fig. 6d). To get the better view of protein motion, combined 
PCA was plotted and results showed the change in LMTK3 
motion due to ligand binding (Fig. 6e). Overall, the PCA plot 
confirmed the change in protein motion due to lead binding 
and towards closed conformation of the LMTK3.

Binding free energy calculation: MM/PBSA

To evaluate the binding free energy of LMTK3–lead com-
plexes using MM/PBSA method, trajectories from molecu-
lar dynamic simulations were retrieved (Guan et al. 2016). 
The snapshots were extracted at every 10 ps of stable inter-
vals from 25 ns MD trajectory and served as input for the 
calculation. The binding free energy and its corresponding 
components obtained from the MM/PBSA calculation of the 
LMTK3–lead complexes were listed (Table 5). The results 
indicated that three leads compounds possessed a nega-
tive binding free energy with − 141.727, − 151.455, and 
− 132.758 kJ/mol, respectively. Moreover, van der Waals, 
electrostatic interactions, and non-polar solvation energy 
negatively contribute to the total interaction energy, while 
only polar solvation energy positively contributes to total 
free binding energy. The relative binding free energies of 
three LMTK3–lead complexes supported the strong binding 
in the dynamic system.

Conclusion

In the present study on human LMTK3, we attempted 
to design the potential inhibitors using computational 
approaches. ATP-binding cavity of LMTK3 was the cur-
rent target region for screening based on competitive 
inhibitors. From the virtual screening results, the least 

binding affinity of curcumin derivatives characterized the 
strong binding with LMTK3. The screened hits were under 
further investigation using re-docking and three lead can-
didates were identified based on binding energy. The effec-
tive inhibition mechanism of lead candidates was evaluated 
by binding mode with least binding energy, low inhibition 
constant, more number of hydrogen bond interactions, and 
hydrophobic interactions in ATP-binding cavity involving 
critical residues. MD simulations on LMTK3/lead com-
plexes confirmed the proper refinement of leads in the 
dynamic system. The trajectory analyses like total energy, 
RMSD, Rg, and NH bond analysis characterized by the 
potential binding of leads favor the effective inhibition. 
The inter-hydrogen bond interaction pattern confirmed that 
the high affinity of lead candidates in dynamic system cor-
related well with molecular docking results. The principal 
component analysis (PCA) results confirmed the stability 
of the LMTK3/lead complex with less change in overall 
motion of protein after ligand binding. In a nutshell, the 
screened lead candidates tetrahydrocurcumin, curcumin 
4, 4′-diacetate, and demethoxycurcumin can act as com-
petitive human LMTK3 inhibitors. Hence, the reported 
curcumin leads may act as future anti-breast cancer agents 
that can be confirmed by further experimental methods 
using in vitro and in vivo studies.
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