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Abstract – Environmentally conscious manufacturing has become a global attention for the iron and steel manufac-

turers to prevent global warming and climate change while making money. Iron and steel sector is considered as one

of the most polluting sectors in the world. It is also one of the most energy intensive industries. During pig iron man-

ufacturing, there is a number of steps that affect the environment emitting different pollutants. While some step(s)

may be considered critical to damage the environment among all the steps, some pollutant(s) may be considered crit-

ical to affect the environment among all the pollutants. This paper proposes environmental bottleneck to consider crit-

ical step and critical pollutant simultaneously. Unless environmental bottleneck is improved, environmental

performance of the entire manufacturing process may not improve significantly even if other processes (i.e. other than

environmental bottleneck) are taken care of. Thus, environmental bottleneck must be taken care of properly by the

manufacturing organization to enable environmentally conscious manufacturing. Hence, a method should be devel-

oped to identify environmental bottleneck. Current research work uses Bayesian Networks (BN) to identify environ-

mental bottleneck. The contribution of the paper is to identify the environmental bottleneck for an Indian pig iron

manufacturing organization. Results suggest that carbon monoxide (CO) emission from the blast furnace is the envi-

ronmental bottleneck for the current pig iron manufacturing organization. Hence, proper precautions should be con-

sidered to control the CO emission from the blast furnace.

Key words: Environmental conscious manufacturing, Pig iron manufacturing, Environmental bottleneck, Bayesian

Networks

1. Introduction

Iron is one of the most important raw materials in the mod-

ern world [1]. However, iron and steel sector produces a huge

amount of greenhouse gases (GHG) all over the world every

year leading to global warming and climate change. Approach

of continuous improvement in the iron manufacturing process

may decrease the environmental impacts. Hence, environmen-

tally conscious manufacturing has been the focus of consider-

able attention for the iron and steel manufacturers to protect

the natural environment [2–4]. There also may be a number

of good reasons to get involved in taking action on this matter

like to reduce production cost [5]. Global and domestic envi-

ronmental regulations are forcing many sectors including iron

and steel sector to produce environmentally friendly [6–8].

There are a number of routes for pig iron production.

Though pig iron can be produced directly reducing the iron

ore, however in majority of cases pig iron is produced through

the blast furnace route in India. Indian pig iron manufacturing

organizations are continuously focusing to decrease the envi-

ronmental impacts [9, 10]. Typical foundry grade pig iron is

carbon enriched with other constituents. It is brittle in nature

and the weight may vary from 3 to 5 kg [11, 12].

Pig iron starts with three basic raw materials; namely iron

ore, limestone and coking coal. First, the coking coal is heated

in the coke oven to produce coke. Simultaneously, iron ore,

limestone and coke breeze are granulated, mixed and preheated

in a sinter plant to form sinter (porous material). In palletizing

plant, iron ores are palletized in order to feed the blast furnace.

In blast furnace oxygen is combusted with coke to form carbon

monoxide (CO) releasing heat. CO reduces iron ore to liquid

pig iron (hot metal) [11–13].

Coke making, sintering, palletizing and iron making (i.e.

blast furnace melting) processes emit different major pollutants

like carbon dioxide (CO2), carbon monoxide (CO), sulphur

oxides (SOx) and nitrogen oxides (NOx) [14]. Considering a

time horizon of 20 years, while CO2 has a global warming

potential (GWP) of one, CO may have a GWP of 7.*e-mail: paragbelurmath@gmail.com
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CO indirectly helps to increase the amount of methane (CH4)

which is a GHG. Recent studies indicate that SOx and NOx also

may lead to increase the temperature of the globe [15, 16].

Some GHGs not only increase the temperature of the earth,

but also may affect the local environment and occupational

health. For example, CO, SOx and NOx may cause respiratory

problems and lung diseases [17]. Prolonged exposure of SOx

and NOx may cause violent coughing and difficulty in breath-

ing [17, 18]. High concentration of CO exposure in blast fur-

nace may significantly increase the carboxyhaemoglobin

(COHb) level of the blast furnace workers [19]. Freeman dis-

cusses in detail about the causes behind CO accidents. He also

shows the conditions of human health for different COHb con-

centration level in the blood [20].

To enable environmentally conscious manufacturing, envi-

ronmental bottleneck must be identified. Environmental bottle-

neck is a relatively new concept which may be defined as an

entity in a particular manufacturing process which considers

critical step (of the entire manufacturing process) and critical

pollutant simultaneously. Unless environmental bottleneck is
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Figure 1. Methodological framework for identification of environmental bottleneck of an Indian pig iron manufacturing organization.
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Figure 2. Bayesian Networks to identify environmental bottleneck.
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improved, environmental performance of the entire manufac-

turing process may not improve significantly even if other

processes (i.e. other than environmental bottleneck) are taken

care of. Environmental bottleneck also includes occupational

environment to incorporate total health affecting potential of

the pollutants. A proper method is required to identify the envi-

ronmental bottleneck for a particular manufacturing. In this

paper Bayesian networks are used to identify the environmen-

tal bottleneck because of its ability and flexibility in limited

knowledge environment.

Environmental bottleneck also depends on the average

amount of generation of the pollutants which may be termed

as average generation percentage (AGP). There may be differ-

ent corrective measures for each step of pig iron manufacturing

in different manufacturing units (MU) (i.e. coke making plant,

sintering plant, palletizing plant and blast furnace). These mea-

sures should be taken into account while identifying the envi-

ronmental bottleneck because these corrective measures

decrease the possibility of being environmental bottleneck

for the concerned consideration (i.e. combination of a particu-

lar manufacturing step/unit and pollutant).

Information about rest of the paper is organized as follows.

Literature review is discussed in Section 2. Study methods and

data collection are provided in Section 3. Results are discussed

in Section 4 and the conclusion is provided in Section 5.

2. Literature review

Several researchers proposed different modelling and opti-

mization techniques to improve the process of pig iron manu-

facturing. These modelling and optimization techniques

essentially focused to improve the process efficiency and the

quality of pig iron. In particular, artificial intelligence was

widely used to predict different parameters related to pig iron

manufacturing. Tunckaya and Koklukaya predicted blast fur-

nace flame temperature using artificial intelligence and statisti-

cal methods [21]. Kumar et al. suggested a model to predict

blast furnace hot metal temperature through neural network

[22]. Angstenberger showed the application of fuzzy clustering

and neural networks to classify temperature profiles and to

build a model of the interdependence between process opera-

tion parameters and the resulting temperature profiles [23].

Bag considered artificial neural network (ANN) and used feed

forward neural network (FFNN) to predict the process param-

eters of blast furnace [13]. Langer and Vogel suggested a

hybrid modeling method combined with a suitable classifica-

tion of process characteristics to ensure a widespread model

synthesis for quality prediction in sintering plant [24].

Worrell et al. discussed about energy efficiency and CO2

emissions reduction opportunities in the US iron and steel sec-

tor [25]. Several reports highlighted the essence to control

energy consumption and GHG emission during iron and steel

production [26–28]. Cavaliere and Perrone optimized blast fur-

nace productivity coupled with CO2 emissions reduction [9].

Ion et al. predicted the generation of the pollutants in natural

gas and residual steel gases (i.e. blast furnace and coke oven

gases) [29]. Korshikov et al. discussed the importance to con-

trol energy expenditure and CO2 emissions in the blast furnace

[30]. While Miyakawa et al. stated the importance to control

SOx emission, Wang et al. focused on the importance of

NOx removal [31, 32]. CO emission control was also high-

lighted by the researchers and practitioners and was addressed

in several reports [19, 20, 33]. Xiang et al. developed the strat-

egy to remove multi-pollutants simultaneously from flue gas

[34]. Control of GHG emission helps to protect the natural

environment, to prevent global warming and climate change.

GHG emission reduction also indirectly may help pig iron

manufacturing organizations to make money [33, 34].

Though several researchers have considered different

mathematical modelling in case of pig iron manufacturing,

however environmental bottleneck has never been highlighted

by any of the researchers which may be considered as the main

aim of this paper. This research work uses Bayesian networks

to identify environmental bottleneck for an Indian pig iron

manufacturing organization because it has the ability of struc-

tured guidance for efficient reasoning even in case of incom-

plete knowledge [35]. Bayesian networks may be used for

root cause analysis in the uncertain environment as have been

highlighted by several researchers. Bayesian networks link

variables with probabilities to calculate posterior probabilities

of outcome states supporting an efficient evidence propagation

mechanism [36, 37]. Bayesian inference has been quite suc-

cessful for ecological research and environmental decision

making because it has the potentiality to handle multi-criteria

and multi-attribute decision problems [38]. Zhu and Deshmukh

apply Bayesian decision networks to environment friendly

design [39]. Pérez-Miñana et al. consider Bayesian networks

for the management of GHG emissions in the British agricul-

tural sector [40]. Webster and McLaughlin apply Bayesian

belief network to assess GHG production and climate

feedback [41].

Bayesian networks have also been used for more specific

cases of selection and decision support systems [42, 43].

Table 2. CPT for node OHAP.

PLT CO CO2 SOx NOx

MPS BF SP PP COP BF SP PP COP BF SP PP COP BF SP PP COP

H 0.9 1 0 0.1 0.2 0 0 0.2 0 0.9 0 0.1 0 0.1 0 0.2

M 0.1 0 0 0.8 0.8 0.1 0.1 0.8 0.2 0.1 0.1 0.8 0.2 0.9 0.1 0.7

L 0 0 1 0.1 0 0.9 0.9 0 0.8 0 0.9 0.1 0.8 0 0.9 0.1

Table 3. CPT for node EIN.

MPS BF SP PP COP

C 1 0 0 0

NC 0 1 1 1
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Kelly and Kolstad illustrate the importance of Bayesian learn-

ing to control pollution and environmental problems [44].

Wang uses Bayesian networks to predict the blast furnace sil-

icon content in hot metal [45]. Zheldak et al. develop a knowl-

edge-based intellectual system using Bayesian network for

deoxidation of steel [46]. Leicester et al. apply Bayesian net-

work to evaluate the social, economic and environmental

impacts of community deployed renewable energy [47]. But

Bayesian networks have not been highlighted for a particular

manufacturing organization to identify a special entity like

environmental bottleneck under considerations. Hence, the

objective of this paper is to identify environmental bottleneck

for a particular pig iron manufacturing organization using

Bayesian networks under considerations. Identification of envi-

ronmental bottleneck may help the pig iron manufacturing

organization to develop future strategies ensuring which partic-

ular area is needed to be improved.

3. Study methodology and data collection

Based on the existing gap, this section proposes study

methodology to enable Bayesian networks (BN) including data

collection. BNs are directed acrylic graphs (DAG) associated

with joint probability distributions (JPD). In BN, directed

cycles are not allowed. Basically it integrates the principles

of graph theory and probability theory to provide a normative

framework for documenting cause and effect relationships con-

sidering ‘‘if-then’’ statements. Different attributes make BN

ideal for modelling and assessing several aspects of environ-

mental management. A key benefit of BN is that the probabil-

ities can be easily modified as knowledge is improved.

Whenever new information becomes available, changes made

in one area of the model may propagate throughout the rest

of the model (from input to output and vice-versa) and may

lead to affect the model outcomes. BN have the advantages

over other similar methods like Monte Carlo simulation is that

the whole set of variables is represented as DAG, making it a

suitable tool for complexity reduction [35, 48].

The uncertainties related to environmental bottleneck may

be conceptualized by the data. For example, the uncertainty

(overall mean and variation) involved in pollutant emission

may be addressed by analyzing the historical data. Moreover,

the decisionmakers’subjective judgmentsmust be incorporated

during the analysis. For this reason, Bayesian network is chosen

for the current analysis as it has the potentiality to accept limited

information or knowledge. This study methodology consists of

the following steps to describe the problem definition, model

inference and model validation (see Figure 1 [49]):

Step 1: The first step is to identify the variables responsible

for the environmental bottleneck. The random variables

indicate different nodes and the nodes may be categorized

as state nodes, decision nodes and utility nodes. State nodes

represent different states each with certain probability.

Decision nodes represent sets of distinct management alter-

natives. Utility nodes allow valuating the states defined by

the modality combinations of its parents. These nodes also

may be classified as parent nodes and child nodes. Parent

nodes (variables with no external influence and values set

by user) provide information to selective child nodes

(variables whose values are conditional upon the values

of its parent nodes). In other words, for each possible con-

figuration of the parent values, a probability is provided for

each state of the child [50].
Step 2: The second step deals with determining the struc-

ture of the model by building relations among the selected

criteria/variables. The arcs between the nodes represent the

interdependence causal relations. The causality is defined

according to a certain probability of occurrence. As men-

tioned earlier, an arc from variable x to y represents that

x is a direct cause of y. Using standard terminology in graph

theory, it may be stated as x is the parent of y and y is the

child of x. A directed path from x to z through y represents

that y shields all the causal influence of x to z (i.e. z and x

are conditionally independent given y). If neither x nor y

has any parent, the two variables are marginally indepen-

dent (i.e. not relevant to each other) [39].

Table 4. CPT for node EI.

GWp C NC

OHAP H M L H M L

EIN C NC C NC C NC C NC C NC C NC

H 1 0.85 0.8 0.3 0.75 0 0.7 0.7 0.1 0 0 0

M 0 0.15 0.2 0.7 0.2 0.2 0.3 0.2 0.8 0.3 0.2 0

L 0 0 0 0 0.05 0.8 0 0.1 0.1 0.7 0.8 1

Figure 3. Results of EI for combination CO-BF.
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Step 3: The third step is to feed the data as conditional

probability table (CPT) into the BN. CPTs define the prob-

abilistic relationship between variables in the BN and these

can be inferred from a variety of information sources,

including observed data and experts’ judgments. Variables

connected through Bayes’ rule may update the nodes of

BN as P(x|y) = P(x,y)/P(y), where x indicates a state of a

target variable and y indicates evidence of a parent node

to describe P(x|y) (i.e. probability of x given y) [48]. In

BN, JPDs over a large set of variables can be compactly

specified by a reduced number of variables. It is to be noted

that for feeding the data as CPT into the model of BN, dis-

cretization of the continuous variables may be required.

This may be considered as a weakness of BN which may

be handled through the application of dynamic discretiza-

tion. Dynamic discretization is a computational mechanism

that approximates the distribution of a continuous variable x

by finding an optimal discrete set of intervals in the range

of x, and also the optimal values for x’s discretized proba-

bility density function [40]. However, uncertainty associ-

ated with the formulation of the model will not be

explicitly accounted for in the BN. Hence, results generated

by the model for conditions outside of the model calibration

and validation data range may add unreliability to the

model. Large amounts of data may be required to calibrate

a deterministic model. Thus, in this case, it may be more

appropriate to find out probability distributions directly

from the data [49].
Step 4: The fourth step is to select the decision under con-

siderations. All the possible decision combinations may be

checked to select the best scenario (outcome). Finally, a

sensitivity analysis may be performed for model validation

due to the uncertainties associated with the BN model [49].

4. Case study

For the present case study, GeNIe 2.0 software is used

because this is a user-friendly software to perform BN. First,

three experts’ (chief production manager, chief environmental

manager and chief energy manager) are chosen for the current

study who have over 15 years of industrial experience in the

area of pig iron manufacturing. The manufacturing process is

analyzed precisely to identify the variables which may be

responsible to identify environmental bottleneck for the pig

iron manufacturing organization. A total of six variables are

selected, namely (i) pollutants (PLT), (ii) manufacturing

plants/sections (MPS), (iii) global warming potential of the

pollutants (GWP), (iv) occupational health affecting potential

of the pollutants (OHAP), (v) energy intense nature (EIN)

and (vi) environmental impact (EI). Among these variables,

the first two variables are decision variables because condition

of these two variables will be used to detect the environmental

bottleneck. Third, fourth and fifth variables may be considered

as utility variables as they are utilized to determine the condi-

tion of the state variable ‘‘environmental impact’’.

For the present study four pollutants are considered,

namely carbon monoxide (CO), carbon dioxide (CO2), sulpher

oxide (SOx) and nitrogen oxide (NOx). Regarding manufactur-

ing plants/sections, namely coke oven plant (COP), palletizing

plant (PP), sintering plant (SP) and blast furnace (BF), are con-

sidered. As per the opinion of the experts whereas GWP and

EIN are discretized as ‘‘critical’’ and ‘‘not critical’’, OHAP

and EI are discretized as ‘‘high’’, ‘‘moderate’’ and ‘‘low’’. This

factor depends on the severity and average generation percent-

age of the pollutants in the manufacturing plants/sections. For

example, though BF produces CO at an average of only 4%,

however it is larger than COP and PP (2% and 1% respec-

tively). Moreover, the severity of CO on health is very high.

Hence, OHAP of CO on blast furnace is high. OHAP of CO

is also high in case of sintering plant. Again, OHAP of SOx

in sintering plant is high though the severity of SOx on health

is not as high as CO, because SP produces SOx at an average of

67%, which is quite high compared to COP, PP and BF (23%,

2% and 6% respectively). Regarding the variable EIN, BF

melting process is the only energy intensive process in the

entire pig iron manufacturing.

After identifying and getting the data of the variables, they

can be fed to the BN model However, before that the BN

model must be structured considering the variables to build

up the interdependence causal relationships. In this case,

PLT and MPS are the parent nodes. Whereas GWP is the child

node of PLT, EIN is the child node of MPS. OHAP is the child

node of both the parent nodes (i.e. PLT and MPS). GWP,

OHAP and EIN have the child node EI. The structure of the

proposed BN model is shown in Figure 2. Rectangles are used

for decision variables, diamond shapes are used for utility vari-

ables and oval is used to represent state variable. Data (see

Tables 1–4) is fed in the form of CPT for each node as per

experts’ opinion.

5. Results and discussion

In the present study, the target node is EI. For each possible

scenario (i.e. combination) of the PLT and MPS, the value of

EI is noticed. It is found that for CO-BF combination the prob-

ability of EI being high is the highest (98%), followed by the

combinations for CO-SP and CO2-BF. The probability of

CO-BF combination to be moderate is only 2% (see Figure 3).

Hence, carbon monoxide emission from the blast furnace is the

Table 5. Probability results for target node EI.

CO CO2 SOx NOx

BF SP PP COP BF SP PP COP BF SP PP COP BF SP PP COP

H 0.98 0.85 0 0.325 0.84 0.03 0.03 0.41 0.02 0.63 0 0.07 0.02 0.07 0 0.14

M 0.02 0.15 0.2 0.595 0.16 0.16 0.25 0.59 0.32 0.21 0.03 0.26 0.32 0.29 0.03 0.25

L 0 0 0.8 0.08 0 0 0.72 0 0.66 0.16 0.97 0.67 0.66 0.64 0.97 0.61

P. Sen: Manufacturing Rev. 2015, 2, 17 5



most important criteria to be considered in order to minimize

the environmental impacts. Management should take necessary

steps to reduce the carbon monoxide emission from the blast

furnace in this manufacturing plant. Though carbon monoxide

emission from the sintering plant and carbon dioxide emission

from the blast furnace also need to take care of, however their

relative importance is low.

It is also noticed that for CO-COP combination (i.e. carbon

monoxide emission from the coke oven plant), the probability

of EI being moderate is the highest, followed by the combina-

tions for CO2-COP, SOx-BF and NOx-BF. The highest probabil-

ity of EI being low is for the combinations SOx-PP (i.e. sulphur

oxides emission from palletizing plant) and NOx-PP (nitrogen

oxides emission from palletizing plant), which is followed by

the combinations for CO2-PP and SOx-COP (see Table 5).

6. Conclusions

In this paper, an attempt has been made to identify a new

concept of environmental bottleneck for an Indian pig iron

manufacturing organization using Bayesian networks. In this

study, environmental bottleneck is considered taking into

account critical pollutant and critical operational step (that

has the most environmental impacts) simultaneously. From

the Bayesian analysis, it is observed that the carbon monoxide

emission from the blast furnace may be considered as the envi-

ronmental bottleneck for the present pig iron manufacturing

organization, because it may have the highest environmental

impacts. The results obtained from the study have direct man-

agerial implications. It is suggested that the management

should take proper initiatives to control the carbon monoxide

emission from the blast furnace to minimize the environmental

impacts. This study is also useful for the research scholars who

work on the area of environmental management, because this

paper proposes a new concept of environmental bottleneck.

Finally, this is to be concluded that this research work helps

the pig iron manufacturing organization to develop their envi-

ronmental strategy taking precautions properly to control the

environmental impacts.
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